Definition 2.2 A bifurcation point or branch point (with respect to λ) is a solution (y_0, λ_0) of equation (2.1) or (2.2), where the number of solutions changes when λ passes λ_0.

TABLE 2.1. Solutions in Figure 2.3.

<table>
<thead>
<tr>
<th>λ-interval</th>
<th>Number of solutions y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda < \lambda_1$</td>
<td>1</td>
</tr>
<tr>
<td>$\lambda_1 \leq \lambda < \lambda_2$</td>
<td>2</td>
</tr>
<tr>
<td>λ_2</td>
<td>3</td>
</tr>
<tr>
<td>$\lambda_2 < \lambda < \lambda_3$</td>
<td>4</td>
</tr>
<tr>
<td>λ_3</td>
<td>3</td>
</tr>
<tr>
<td>$\lambda_3 < \lambda < \lambda_4$</td>
<td>2</td>
</tr>
<tr>
<td>λ_4</td>
<td>1</td>
</tr>
<tr>
<td>Etc.</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2.4. Deflection v of a beam

2.3 Buckling and Oscillation of a Beam

Consider the following situation (see Figure 2.4). A beam is subjected at its ends to a compressive force Γ along its axis. The beam is excited by a harmonic excitation $P(x, t)$ that depends on the spatial variable x (with $0 \leq x \leq 1$) and on the time t. This experiment may represent a beam supporting a machine with a rotating imbalance. We denote the viscous damping by δ and the membrane stiffness by K. Small deflections $v(x, t)$ of the beam are described by solutions of the partial differential equation
\[v_{xxxx} + \left(\Gamma - K \int_0^1 (v_x(\xi,t))^2 \, d\xi \right) v_{xx} + \delta v_t + v_{tt} = P \]

[Hua68], [Hol79]. Reasonable boundary conditions at \(x = 0 \) and \(x = 1 \) are \(v = v_{xx} = 0 \). We simplify the analysis by assuming perfect symmetry of \(P(x,t) \) around \(x = 0.5 \), in which case the response of the beam is likely to be in the “first mode.” That is, we take both \(P \) and \(v \) to be sinusoidal in \(x \),

\[
P(x,t) = \gamma \cos \omega t \sin \pi x,
\quad v(x,t) = u(t) \sin \pi x.
\]

The ansatz for \(P \) reflects the additional assumption of a harmonic excitation with frequency \(\omega \).
Inserting the expressions for \(P \) and the single-mode approximation of \(v \) into the PDE leads to a Duffing equation describing the temporal behavior of the displacement of the beam,

\[
\ddot{u} + \delta \dot{u} - \pi^2 (\Gamma - \pi^2) u + \frac{1}{2} K \pi^4 u^3 = \gamma \cos \omega t.
\] (2.8)

\[u \text{ constant} \]

\[\Gamma \]

\[\text{stable} \]

\[\text{stable} \]

\[\text{unstable} \]

\[\text{stable} \]

\textbf{Fig. 2.5.} Solutions to equation (2.8), \(\gamma = 0 \)

We first discuss the stability of deflections when the driving force is zero \((\gamma = 0) \). It turns out (Exercise 2.4) that for \(\Gamma > \pi^2 \) there are two stable equilibria with \(u \neq 0 \), whereas for \(\Gamma < \pi^2 \) there is only one equilibrium \((u = 0, \text{stable}) \). Here we interpret the force \(\Gamma \) as our bifurcation parameter \(\lambda \) and depict the results in a bifurcation diagram (Figure 2.5). The stationary solution \((u, \Gamma) = (0, \pi^2) \) of equation (2.8) with \(\gamma = 0 \) is an example of a bifurcation point. As Figure 2.5 indicates, this bifurcation point separates domains of different qualitative behavior. In particular, the “trivial” solution \(u = 0 \) loses its stability at \(\Gamma = \pi^2 \). The value \(\Gamma = \pi^2 \) is called Euler’s first buckling load, because Euler calculated the critical load where a beam buckles (this will be discussed in some detail in Section 6.5).
bifurcation diagram with respect to the Γ-axis reflects the basic assumption of perfect symmetry.

So far no external energy has entered the system ($\gamma = 0$). Now we study equation (2.8) with excitation ($\gamma \neq 0$). Note that for $\gamma \neq 0$ the ODE is no longer autonomous. The possible responses of the beam can be explained most easily by discussing the experiment illustrated in Figure 2.6. Imagine a vehicle with a ball rolling inside on a cross section with one minimum ($\Gamma < \pi^2$) or two minima ($\Gamma > \pi^2$). Moving the vehicle back and forth in a harmonic fashion corresponds to the term $\gamma \cos \omega t$. We expect interesting effects in the case $\Gamma > \pi^2$. Choose (artificially)

$$\Gamma = \pi^2 + 0.2\pi^{-2}, \quad K = 16\pi^{-4}/15, \quad \gamma = 0.4, \quad \delta = 0.04.$$

This choice leads to the specific Duffing equation

$$\ddot{u} + \frac{1}{5}\dot{u} - \frac{1}{3}u + \frac{8}{15}u^3 = \gamma \cos \omega t. \quad (2.9)$$

The harmonic responses can be calculated numerically; we defer a discussion of the specific methods to Section 6.1 and focus our attention on the results. The parameter Γ is now kept fixed, and we choose the frequency ω as bifurcation parameter λ. This parameter is considered to be constant; it is varied in a quasi-static way. The main response of the oscillator to the sinusoidal forcing is shown in Figure 2.7. As a scalar measure of $u(t)$, amplitude A is chosen. The bifurcation diagram Figure 2.7 shows a typical response of an oscillator with a hardening spring. We find two bifurcation points with parameter values

$$\omega_1 = 0.748, \quad \omega_2 = 2.502.$$

Hysteresis effects, such as that depicted in Figure 2.7, are ubiquitous in science. Characteristic for hysteresis effects are jump phenomena, which here