Yes / no answers are not enough. Give some mathematical justification (which can be short and should not be an essay).

Answers like \(\binom{10}{3}(.5)^6 \) are fine - you don’t need to give a decimal.

The questions on the actual midterm will vary in difficulty and in general the more difficult questions will count less.

1

I tell you that a coin has probability of heads .75. You flip it 4 times and get no heads. Do you believe my claim? Justify your answer with statistics.

answer:

We use the statistical method. Say we set \(\alpha = .01 \). Our null hypothesis, \(H_0 \) is that the coin has probability of heads .75. The alternate hypothesis could either be that \(p \neq .75 \) or that \(p < .75 \). In either case, we calculate the probability under the null hypothesis that what we saw occurs or something more extreme. In this case 4 tails in 4 flips is the most extreme outcome (4 heads is not as extreme since under \(H_0 \) the coin is biased in favor of heads.) \(\Pr[4 \text{ tails}] = .25^4 = \frac{1}{256} \), so our p-value is less than .01 so we reject the null hypothesis and say that we don’t believe the coin has \(p = .75 \).

2

We model tomorrow’s weather as follows, with four possible outcomes: \((\text{sunny, warm}), (\text{sunny, cold})\), \((\text{rainy, warm}), (\text{rainy, cold})\) with probabilities \(.2, .6, .1, .1\) respectively. The salesman makes $30 selling umbrellas if it rains, but $0 on umbrellas if it is sunny. He also makes $60 selling gloves if it is cold, and $10 selling gloves if it is warm.

Let \(Y \) be the total amount of money he makes, \(U \) be the amount he makes on umbrellas, and \(G \) the amount he makes on gloves.

- Calculate \(\mathbb{E}Y, \mathbb{E}U, \mathbb{E}G \)
- Calculate \(\text{var}(Y) \)
- Are \(U \) and \(G \) independent?

answer:

\[
\mathbb{E}U = .2 \cdot 30 = 6 \\
\mathbb{E}G = .7 \cdot 60 + .3 \cdot 10 = 45 \\
\mathbb{E}Y = \mathbb{E}U + \mathbb{E}G = 51
\]

3

Let \(X \) be a random variable that always takes a value \(\geq 0 \). Prove that \(\mathbb{E}X \geq \Pr[X \geq 1] \).
Prove that if X and Y are independent random variables then

$$\mathbb{E}[XY] = \mathbb{E}X \cdot \mathbb{E}Y$$

answer:

$$\mathbb{E}[XY] = \sum_{t,s} ts \Pr[X = t, Y = s]$$

$$= \sum_{t,s} ts \Pr[X = t] \cdot \Pr[Y = s]$$

$$= \sum_t t \Pr[X = t] \mathbb{E}Y$$

$$= \mathbb{E}Y \cdot \mathbb{E}X$$

Let X be an non-negative, integer-valued random variable. Prove that $\Pr[X \geq 1] \leq \mathbb{E}X$.

I pick a number from 1 to 1,000,000 at random, with equal probability.

- What’s the probability the last digit is a 3?
- What’s the probability the second-to-last digit is a 3?
- Are these events independent?
- What’s the expected number of 3’s in my number?

answers:

- $1/10$
- $1/10$
- $1/10$
- probability both last and second to last are 3 is $1/100$, so probabilities multiply and they are independent.
- $= 6 \cdot \frac{1}{10} = 3/5$

I have a class with 10 students.

1. How many different ways can I line them up, first to tenth?
2. If I pick a random way of lining them up, what’s the probability the shortest student is in front?
3. What’s the probability the tallest student is in back?
4. Are these events independent?

- $10!$
- $1/10$
- $1/10$
- probability shortest in front and tallest in back $= \frac{1}{10} \cdot \frac{1}{5} \neq \frac{1}{10} \cdot 110$ so they are not independent.
In no more than 10 sentences, describe how you would use statistics to answer the following question: “Does higher income lead to better health?”

After describing your procedure for answering that question, critique it: what might be the potential problems or biases in your method?

A policeman’s radar gun says ‘speeding’ with probability .9 if a car is actually speeding. If the car is not speeding, it still will say ‘speeding’ with probability .01. 5% of drivers on the Garden Parkway are speeding. If The policeman points his radar gun at a random car and it says ‘speeding’ what’s the chance the car is actually speeding?

Recall the geometric distribution: X is the number of tails before you get one head with a p-biased coin.

i.e.

$$
Pr[X = i] = (1 - p)^i p, \text{ for } i = 0, 1, \ldots
$$

• Calculate $E[X]$

• Calculate $var(X)$

You do the following. You flip a fair coin until you get a head. You then continue flipping until you get a tail after that. (So you flip the coin at least twice, and exactly twice only if you flip H, T. Another possible sequence is TTTHHHHT). Let X be the total number of flips, Y the total number of heads, Z the total number of tails.

• Calculate $E[X], E[Y], E[Z]$

Write the definition of two random variables X and Y being independent.

There is a lottery in which all 365 days of the year are put into a big hopper, and a random date drawn out. Whoever’s birthday it is wins the lottery, and that date returned to the hopper.

The lottery happens 40 times, and only 1 of the winning days is a December birthday. The December birthdays are angry and think the lottery is biased.

What do you say? Justify your answer.

Let Y be the number of heads in n flips of a p-biased coin.

• What is $E[Y]$?

• What is $var(Y)$?
Let X be a random variable, and let $Y = 2 - X$.

If $\text{var}(X) = 10$, what is $\text{var}(Y)$?

answer: $\text{var}(Y) = 10$, not independent because X is not constant and $\{X \leq t\}$ and $\{Y \geq 2 - t\}$ are the same event, so probabilities don't multiply.

Let A be the event that I get all heads in 6 flips of a p-biased coin, and B the event I get all tails.

1. Are A and B independent?
2. What is $\Pr[A|B^c]$?
3. What is $\Pr[A|B]$?
4. What is $\Pr[A \cap B]$?
5. What is $\Pr[A \cup B]$?

answers:

- no, disjoint $\Pr(A \cap B) = 0.$
- $\frac{p^6}{1-(1-p)^6}$
- 0
- 0
- $p^6 + (1 - p)^6$