Green’s Theorem. Gauss’s Divergence Theorem.

[1] For a planar domain G with boundary ∂G and real-valued functions $p(x, y)$ and $q(x, y)$, Green’s theorem states that

$$\int_{\partial G} p(x, y)dx + q(x, y)dy = \iint_G \left(\frac{\partial q}{\partial x} - \frac{\partial p}{\partial y} \right) dxdy,$$

under appropriate conditions on the smoothness of functions $p(x, y), q(x, y)$, and the boundary curve ∂G.

Prove Green’s theorem under the following conditions:

- The functions $p, q : \Omega \to \mathbb{R}$ are differentiable everywhere in a planar domain Ω;
- The function $\frac{\partial q}{\partial x} - \frac{\partial p}{\partial y}$ is continuous in Ω; (we are not assuming that p, q are C^1)
- Domain G is the interior of a triangle with $\overline{G} \subset \Omega$.

[2] Assume that

- The planar domain Ω is simply connected.
- The functions $p, q : \Omega \to \mathbb{R}$ are differentiable everywhere in a planar domain Ω and satisfy

$$\frac{\partial q}{\partial x} = \frac{\partial p}{\partial y}.$$

Show that there exists a C^1 function $f : \Omega \to \mathbb{R}$ such that $\text{grad } f = (p, q)$.

[3] For a vector field \mathbf{F} defined on a 3-D solid domain G with boundary surface ∂G and the unit outward normal \mathbf{n}, Gauss’s divergence theorem states that

$$\iint_{\partial G} \mathbf{F} \cdot \mathbf{n}dS = \iiint_G \text{div } \mathbf{F} dxdydz,$$
under appropriate conditions on the smoothness of \(\mathbf{F}(x, y, z) \), and the boundary surface \(\partial G \).

Prove Gauss’s divergence theorem under the following conditions:

- The vector field \(\mathbf{F} = (F_1, F_2, F_3) \) is defined on a 3-D solid domain \(\Omega \) such that each component \(F_i : \Omega \to \mathbb{R} \) is differentiable everywhere in \(\Omega \);
- The divergence \(\text{div} \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \) is continuous in \(\Omega \); (we are not assuming that \(F_1, F_2, F_3 \) are \(C^1 \))
- Domain \(G \) is the interior of a tetrahedron such that \(\overline{G} \subset \Omega \).