Exercises for Taylor Series and Laurent Series

[1] Find the Taylor series of $f(z)$ expanded about the given point. Give the region where the series converges.
(a) $f(z)=1 /(z+2)$ expanded about $z=0$.
(b) $f(z)=1 /(z+2)$ expanded about $z=3 i$.
(c) $f(z)=z^{5} /\left(z^{3}-4\right)$ expanded about $z=0$.
(d) $f(z)=z \sin z$ expanded about $z=\pi / 2$.
(e) $f(z)=\log z$ expanded about $z=3$.
[2] Consider the Taylor series of $f(z)=1 /(2-\sin z)$ about the origin $z=0$. What is the radius of convergence of this Taylor series?
[3] Give the first three nonzero terms of the Taylor series of the given function about the specified point. Find the radius of convergence of the Taylor series.
(a) $f(z)=e^{3 z-z^{2}}$ about $z=0$.
(b) $f(z)=\cot z=\frac{\cos z}{\sin z}$ about $z=\pi / 2$.
(c) $f(z)=\log \left(i+e^{2 z}\right)$ about $z=0$.
[4] Find the Laurent series of $f(z)$ expanded about the given point:
(a) $f(z)=\frac{1}{(1-z)(z+2)}$ expanded about $z=0$ for $|z|<1$
(b) $f(z)=\frac{1}{(1-z)(z+2)}$ expanded about $z=0$ for $1<|z|<2$
(c) $f(z)=\frac{1}{(1-z)(z+2)}$ expanded about $z=0$ for $|z|>2$
(d) $f(z)=z^{3} \cos (1 / z)$ expanded about $z=0$ for $|z|>0$.
(e) $f(z)=\sin \left(\frac{z}{1-z}\right)$ expanded about $z=1$ for $|z-1|>0$.
(f) $f(z)=\log \left(1-\frac{2}{z^{2}}\right)$ expanded about $z=0$ for $|z|>\sqrt{2}$.

ANSWERS

[1] (a) $f(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} z^{n}$ for $|z|<2$
(b) $f(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2+3 i)^{n+1}}(z-3 i)^{n}$ for $|z-3 i|<|-2-3 i|=\sqrt{13}$
(c) $f(z)=\sum_{n=0}^{\infty} \frac{-1}{4^{n+1}} z^{3 n+5}$ for $|z|<4^{1 / 3}$
(d) $f(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi / 2}{(2 n)!}(z-\pi / 2)^{2 n}+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}(z-\pi / 2)^{2 n+1}$ for $|z|<\infty$
(e) $f(z)=\ln 3+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n \cdot 3^{n}}(z-3)^{n}$ for $|z-3|<3$
$[2] \sqrt{\frac{\pi^{2}}{4}+[\ln (2-\sqrt{3})]^{2}}$
Hint: It's quite hopeless to solve the problem by finding the values of Taylor coefficients and then carefully studying their asymptotics as $n \rightarrow \infty$. Rather we should examine: What is the largest disk about the origin in which $f(z)$ is complex analytic?
[3] (a) $1+3 z+\frac{7}{2} z^{3}, R=\infty$. (b) $-\left(z-\frac{\pi}{2}\right)-\frac{1}{3}\left(z-\frac{\pi}{2}\right)^{3}-\frac{2}{15}\left(z-\frac{\pi}{2}\right)^{5}, R=\pi / 2$.
(c) $\left(\frac{1}{2} \ln 2+i \frac{\pi}{4}\right)+(1-i) z+z^{2}, R=\pi / 4$.
[4] (a) $f(z)=\sum_{n=0}^{\infty}\left(\frac{1}{3}+\frac{(-1)^{n}}{6 \cdot 2^{n}}\right) z^{n}$ for $|z|<1$
(b) $f(z)=\sum_{n=0}^{\infty} \frac{-1}{3} z^{-1-n}+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{6 \cdot 2^{n}} z^{n}$ for $1<|z|<2$
(c) $f(z)=\sum_{n=0}^{\infty}\left(\frac{-1}{3}+\frac{(-2)^{n}}{3}\right) z^{-1-n}$ for $2<|z|<\infty$
(d) $f(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} z^{3-2 n}$ for $0<|z|<\infty$
(e) $f(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n} \sin 1}{(2 n)!}(z-1)^{-2 n}+\sum_{n=0}^{\infty} \frac{(-1)^{n} \cos 1}{(2 n+1)!}(z-1)^{-2 n-1}$ for $0<|z-1|<\infty$
(f) $f(z)=-\sum_{n=1}^{\infty} \frac{2^{n}}{n} z^{-2 n}$ for $|z|>\sqrt{2}$

