Exercises for Stereographic Projection

Let S be the Riemann sphere:

$$X^2 + Y^2 + (Z - 1/2)^2 = 1/4,$$

with the North Pole $N = (0, 0, 1)$.
Let $\Phi : S \setminus \{N\} \to \mathbb{C}$ be the stereographic projection.

1. Find the explicit formulas for Φ and Φ^{-1}.

2. Two points on the Riemann sphere are antipodal if and only if their stereographic projections z_1 and z_2 satisfy $z_1 \overline{z_2} = -1$.

3. What is the image of the lower hemisphere under the stereographic projection? What about the upper hemisphere?

4. (a) Show that C is a circle on \mathbb{C} if and only if $\Phi^{-1}(C)$ is a circle on S that does not pass through the North Pole N.
 (b) Show that L is a straight line on \mathbb{C} if and only if $\Phi^{-1}(L) \cup \{N\}$ is a circle on S that passes through N.
 (c) What are the stereographic projections of great circles on S that pass through N?

5. The stereographic projection is conformal; in other words, the transformation does not change the intersecting angle of curves.

More precisely, let C_1 and C_2 be two smooth curves in \mathbb{C} intersecting at a point z with angle θ (that means the angle between the tangent lines of the two curves at z is θ). Show that the angle between $\Phi^{-1}(C_1)$ and $\Phi^{-1}(C_2)$ at $\Phi^{-1}(z)$ is also equal to θ.