Full Rank Matrix. Inverse Matrix

Rank and Nullity:

\[
\text{rank}(A) = \dim(\text{Range of } A) = \dim(\text{Column Space of } A) = \dim(\text{Row Space of } A) = \# \text{ of pivots in the echelon form of } A = \# \text{ of nonzero rows in the echelon form of } A = \text{the maximal number of linearly independent columns in } A = \text{the maximal number of linearly independent rows in } A.
\]

\[
\text{nullity}(A) = \dim(\text{Nullspace of } A).
\]

- If \(A \) is an \(m \times n \) matrix, then \(\text{rank}(A) + \text{nullity}(A) = n \).

DEFINITION: Let \(A \) be a square matrix of size \(n \).

An \(n \times n \) matrix \(B \) is called the inverse matrix of \(A \) if it satisfies

\[
AB = BA = I_n.
\]

The inverse of \(A \) is denoted by \(A^{-1} \).

If \(A \) has an inverse, \(A \) is said to be invertible or nonsingular.

If \(A \) has no inverses, it is said to be not invertible or singular.

HOW TO COMPUTE?

Row reduce \(\left[\begin{array}{c|c} A & I_n \end{array} \right] \).

Case 1: The row echelon form becomes \(\left[\begin{array}{c|c} I_n & B \end{array} \right] \).

In this case, the matrix \(B \) on the right half equals \(A^{-1} \).

Case 2: The left half has one entire row equal to zero.

In this case, the matrix \(A \) is not invertible.
EXERCISES:

[1] Suppose that a 4×6 matrix A has rank 3.
 (a) Find the nullity of A.
 (b) The range of A is
 \begin{align*}
 (i) & \ 0 \\
 (ii) & \ \mathbb{R}^4 \\
 (iii) & \ \mathbb{R}^6 \\
 (iv) & \ \text{none of the above.}
 \end{align*}
 (c) Does $A\mathbf{x} = 0$ have no solution, infinitely many solutions, or one solution?
 (d) True or False? $A\mathbf{x} = \mathbf{b}$ is always solvable for any vector \mathbf{b} in \mathbb{R}^4.
 (e) True or False? $A\mathbf{x} = \mathbf{b}$ has at most one solution.
 (f) True or False? The columns of A are linearly independent.

[2] Suppose that a 4×6 matrix A has rank 4.
 (a) Find the nullity of A.
 (b) The range of A is
 \begin{align*}
 (i) & \ 0 \\
 (ii) & \ \mathbb{R}^4 \\
 (iii) & \ \mathbb{R}^6 \\
 (iv) & \ \text{none of the above.}
 \end{align*}
 (c) Does $A\mathbf{x} = 0$ have no solution, infinitely many solutions, or one solution?
 (d) True or False? $A\mathbf{x} = \mathbf{b}$ is always solvable for any vector \mathbf{b} in \mathbb{R}^4.
 (e) True or False? $A\mathbf{x} = \mathbf{b}$ has at most one solution.
 (f) True or False? The columns of A are linearly independent.

[3] Suppose that A is a 6×4 matrix such that $A\mathbf{x} = 0$ has only one solution $\mathbf{x} = 0$.
 (a) Find the nullity and rank of A.
 (b) The range of A is
 \begin{align*}
 (i) & \ 0 \\
 (ii) & \ \mathbb{R}^4 \\
 (iii) & \ \mathbb{R}^6 \\
 (iv) & \ \text{none of the above.}
 \end{align*}
 (c) True or False? $A\mathbf{x} = \mathbf{b}$ is always solvable for any vector \mathbf{b} in \mathbb{R}^6.
 (d) True or False? $A\mathbf{x} = \mathbf{b}$ has at most one solution.
 (e) True or False? The columns of A are linearly independent.

[4] Suppose that a 6×6 matrix A has rank 6.
 (a) Find the nullity of A.
 (b) The range of A is
 \begin{align*}
 (i) & \ 0 \\
 (ii) & \ \mathbb{R}^6 \\
 (iii) & \ \mathbb{R}^{36} \\
 (iv) & \ \text{none of the above.}
 \end{align*}
(c) Does $A\vec{x} = 0$ have no solution, infinitely many solutions, or one solution?

(d) True or False? $A\vec{x} = \vec{b}$ is always solvable for any vector \vec{b} in \mathbb{R}^6.

(e) True or False? $A\vec{x} = \vec{b}$ has at most one solution.

(f) True or False? The columns of A are linearly independent.

(g) True or False? Matrix A is invertible.

[5] For each given matrix, determine whether the matrix is invertible. If it is invertible, find its inverse matrix.

(a) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$,
(b) $\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$,
(c) $\begin{bmatrix} 1 & 2 & -4 \\ 3 & 1 & 3 \\ 7 & -1 & 17 \end{bmatrix}$,
(d) $\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 3 & -1 & 1 \end{bmatrix}$,

(e) $\begin{bmatrix} -1 & 1 & -1 & 2 \\ 1 & -2 & 3 & -3 \\ -1 & 1 & 0 & 1 \\ 0 & -1 & 2 & -2 \end{bmatrix}$,
(f) $\begin{bmatrix} 0 & 1 & 2 & 4 \\ 2 & 1 & 1 & 3 \\ 1 & 3 & 4 & 10 \\ 0 & 0 & 2 & 2 \end{bmatrix}$.

[6] Given the fact that matrix $A = \begin{bmatrix} -1 & 1 & -1 & 2 \\ 1 & -2 & 3 & -3 \\ -1 & 1 & 2 & 1 \\ 1 & -1 & 2 & -2 \end{bmatrix}$ has inverse $A^{-1} = \begin{bmatrix} 3 & -1 & -1 & 4 \\ -3 & -1 & 1 & -1 \\ 1 & 0 & 0 & 1 \\ 4 & 0 & -1 & 3 \end{bmatrix}$, solve the equation $A\vec{x} = \begin{bmatrix} 2 \\ 1 \\ 1 \\ -1 \end{bmatrix}$, by carrying out a matrix multiplication.

Turn over for the answers
Answers:

[1] (a) 3 (b) iv (c) Infinitely many solutions (d) False (e) False (f) False

[2] (a) 2 (b) ii (c) Infinitely many solutions (d) True (e) False (f) False

[3] (a) Nullity=0, Rank=4 (b) iv (c) False (d) True (e) True

[4] (a) 0 (b) ii (c) One solution $\vec{x} = 0$ (d) True (e) True (f) True (g) True

[5] (a) $A^{-1} = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix}$

(b) A is singular

(c) A is singular

(d) $A^{-1} = \begin{bmatrix} 1 & -3/2 & 1/2 \\ 1 & -1 & 0 \\ -2 & 7/2 & -1/2 \end{bmatrix}$

(e) $A^{-1} = \begin{bmatrix} -1 & 1 & 1 & -2 \\ -2 & 0 & 2 & -1 \\ 0 & 1 & 1 & -1 \\ 1 & 1 & 0 & -1 \end{bmatrix}$

(f) A is singular

[6] $\vec{x} = \begin{bmatrix} 0 \\ -5 \\ 1 \\ 4 \end{bmatrix}$