Vector Spaces and Subspaces

DEFINITION (Vector Space): A vector space is a nonempty set V of “vectors” such that the vector addition and multiplication by real scalars are defined. First of all, the addition and multiplication must give vectors that are within V. And they need to satisfy the following 8 rules:

1. $u + v = v + u$
2. $u + (v + w) = (u + v) + w$
3. There is a “zero vector” 0 such that $0 + u = u$ for all u
4. For any u in V, there is a vector $-u$ such that $u + (-u) = 0$
5. $1u = u$
6. $(ab)u = a(bu)$
7. $a(u + v) = au + av$
8. $(a + b)u = au + bu$

DEFINITION (Subspace): Let V be a vector space. A subspace of V is a nonempty subset S of V satisfying the following two properties:

1. If u and v are in S, then $u + v$ is in S
2. If u is in S and a is a scalar, then au is in S
EXAMPLES: The following are vector spaces:

- \(\mathbb{R} \) (the set of all real numbers)
- \(\mathbb{R}^2 \) (the space of all vectors of the form \(\begin{bmatrix} x \\ y \end{bmatrix} \) with real numbers \(x \) and \(y \))
- \(\mathbb{R}^3 \) (the space of all vectors of the form \(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \) with real numbers \(x_1, x_2, \) and \(x_3 \))
- \(\mathbb{R}^4 \) (the space of all vectors of the form \(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \) with real numbers \(x_1, x_2, x_3, \) and \(x_4 \))
- \(\mathbb{R}^n \) (the space of all vectors of the form \(\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \) with real numbers \(x_1, x_2, \cdots, x_n \))
- The space of all real valued functions defined on the interval \([0,1]\)
- \(C[0,1] = \) the space of all real valued continuous functions defined on the interval \([0,1]\)
- \(C^1(-2,2) = \) the space of all real valued \(C^1 \) (i.e., continuously differentiable) functions defined on the interval \((-2,2)\)
- The space of all real valued continuous functions \(f \) defined on the interval \([-2,2]\) such that \(f(-2) = f(2) = 0 \)
- The space of all real valued continuous functions \(f \) defined on the interval \([0,1]\) such that \(\int_{0}^{1} f(x)dx = 0 \)
- The set of all polynomials of a single real variable with real coefficients
- The set of all sequences of real numbers
EXAMPLES: In each of the following, S is a subspace of vector space V:

- $V = $ any vector space, $S = \{0\}$
- $V = $ any vector space, $S = V$
- $V = \mathbb{R}^2$, S = a line in \mathbb{R}^2 through the origin
- $V = \mathbb{R}^3$, S = a line in \mathbb{R}^3 through the origin
- $V = \mathbb{R}^3$, S = a plane in \mathbb{R}^3 through the origin

- $V = \mathbb{R}^4$, S = the space of all vectors of the form $\begin{bmatrix} 2t_1 \\ t_1 \\ t_2 \\ 3t_1 - t_2 \end{bmatrix}$ with reals t_1 and t_2
- $V = \mathbb{R}^4$, S = the space of all vectors in \mathbb{R}^4 with the zero coordiantes $x_3 = x_4 = 0$
- $V = \mathbb{R}^5$, S = the space of all vectors in \mathbb{R}^5 satisfying $2x_1 - 3x_2 + x_4 = 0, x_3 - 2x_5 = 0$
- $V = \mathbb{R}^n$, S = the space of all vectors $\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ in \mathbb{R}^n satisfying $x_1 + x_2 + x_3 + \cdots + x_n = 0$

- $V = $ the space of all real valued functions defined on the interval $[0, 1]$,

 \[S = C[0, 1] = \text{the space of all real valued continuous functions defined on the interval } [0, 1] \]

- $V = $ the space of all real valued functions defined on the interval $[0, 1]$,

 \[S = C^1[0, 1] = \text{the space of all real valued } C^1 \text{ functions defined on the interval } [0, 1] \]

- $V = C[0, 1], S = C^1[0, 1]$
- $V = C[-2, 2], S = \text{the space of all real valued continuous functions } f \text{ defined on the interval } [-2, 2] \text{ such that } f(-2) = f(2) = 0$
- $V = C[0, 1], S = \text{the space of all functions } f \text{ in } C[0, 1] \text{ satisfying } \int_0^1 f(x)dx = 0$
- $V = C[0, 1], S = \text{the set of all polynomials of a single real variable with real coefficients}$
- $V = C[0, 1], S = \text{the set of all polynomials of a single real variable with real coefficients with degree at most } 2$
- $V = $ the set of all sequences of real numbers,

 \[S = \text{the set of all sequences of real numbers } \{a_n\} \text{ such that } \lim_{n \to \infty} a_n = 0 \]
EXAMPLES: In each of the following, S is NOT a subspace of vector space V:

- $V = \mathbb{R}^2$, S = a line in \mathbb{R}^2 not through the origin
- $V = \mathbb{R}^2$, S = the first quadrant
- $V = \mathbb{R}^2$, S = all vectors in \mathbb{R}^2 with integer coordinates
- $V = \mathbb{R}^2$, S = the graph of a parabola
- $V = \mathbb{R}^2$, S = a circle
- $V = \mathbb{R}^3$, S = a line in \mathbb{R}^3 not through the origin
- $V = \mathbb{R}^3$, S = a plane in \mathbb{R}^3 not through the origin
- $V = \mathbb{R}^3$, S = a cylinder
- $V = \mathbb{R}^3$, S = a rectangular box
- $V = \mathbb{R}^4$, S = the space of all vectors in \mathbb{R}^4 with $x_1 = 3$
 \[
 \begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
 x_5
 \end{bmatrix}
 \]
- $V = \mathbb{R}^5$, S = the space of all vectors in \mathbb{R}^5 satisfying $2x_1 - 3x_2 + x_4 = 0$, $x_3 - 2x_5 = 4$
- $V = \mathbb{R}^n$, S = the space of all vectors in \mathbb{R}^n satisfying $x_1 + x_2 + x_3 + \cdots + x_n = 1$
 \[
 \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
 \end{bmatrix}
 \]
- V = the space of all real valued functions defined on the interval $[0, 1]$,
 S = the space of all real valued discontinuous functions defined on the interval $[0, 1]$
- V = the space of all real valued functions defined on the interval $[0, 1]$,
 S = the space of those functions in V that are monotonic increasing
- $V = C[-2, 2]$, S = the space of all real valued continuous functions f defined on the interval $[-2, 2]$ such that $f(-2) = f(2) = 100$
- $V = C[0, 1]$, S = the space of all functions f in $C[0, 1]$ satisfying \[\int_0^1 f(x) \, dx = 3 \]
- $V = C[0, 1]$, S = the set of all real polynomials of a single real variable with degree 2
- V = the set of all sequences of real numbers,
 S = the set of all sequences of real numbers \(\{a_n\} \) such that $\lim_{n \to \infty} a_n = 1$
EXERCISES:

With the usual definitions of matrix addition and a matrix multiplied by a scalar, are the following sets vector spaces?

1. The set of all real square matrices
2. The set of all real square matrices of size 2
3. The set of all real matrices of type 2×3
4. The set of all real square matrices of size 2 with nonegative entries
5. The set of all real square matrices of size 2 with 0 determinant
 (recall that $\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$)
6. The set of all real square matrices of size 2 with nonzero determinant
7. The set of all upper triangular real square matrices of size 3
 (recall that an upper triangular matrix is a matrix of the form $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix}$)

Turn over for the answers
Answers:

1. No (Can we do a 2×2 matrix + a 3×3 matrix?)
2. Yes
3. Yes
4. No (Examine -2 times $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$)
5. No (Examine $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$)
6. No (Is the 0 matrix in the set?)
7. Yes