Second Order Nonhomogeneous Linear Differential Equations with Constant Coefficients:
the method of undetermined coefficients

Xu-Yan Chen
Second Order Nonhomogeneous Linear Differential Equations with Constant Coefficients:

\[a_2 y''(t) + a_1 y'(t) + a_0 y(t) = f(t), \]

where \(a_2 \neq 0, a_1, a_0 \) are constants, and \(f(t) \) is a given function (called the nonhomogeneous term).

General solution structure:

\[y(t) = y_p(t) + y_c(t) \]

where \(y_p(t) \) is a particular solution of the nonhomog equation, and \(y_c(t) \) are solutions of the homogeneous equation:

\[a_2 y_c''(t) + a_1 y_c'(t) + a_0 y_c(t) = 0. \]

The characteristic roots: \(a_2 \lambda^2 + a_1 \lambda + a_0 = 0 \)

\[\Rightarrow \] The complementary solutions \(y_c(t) \).
Second Order Nonhomogeneous Linear Differential Equations with Constant Coefficients:

\[a_2 y''(t) + a_1 y'(t) + a_0 y(t) = f(t), \]

where \(a_2 \neq 0, a_1, a_0 \) are constants, and \(f(t) \) is a given function (called the nonhomogeneous term).

General solution structure:

\[y(t) = y_p(t) + y_c(t) \]

where \(y_p(t) \) is a particular solution of the nonhomog equation, and \(y_c(t) \) are solutions of the homogeneous equation:

\[a_2 y_c''(t) + a_1 y_c'(t) + a_0 y_c(t) = 0. \]

The characteristic roots: \(a_2 \lambda^2 + a_1 \lambda + a_0 = 0 \)

⇒ The complementary solutions \(y_c(t) \).
Second Order Nonhomogeneous Linear Differential Equations with Constant Coefficients:

\[a_2 y''(t) + a_1 y'(t) + a_0 y(t) = f(t), \]

where \(a_2 \neq 0, a_1, a_0 \) are constants, and \(f(t) \) is a given function (called the nonhomogeneous term).

General solution structure:

\[y(t) = y_p(t) + y_c(t) \]

where \(y_p(t) \) is a particular solution of the nonhomog equation, and \(y_c(t) \) are solutions of the homogeneous equation:

\[a_2 y''_c(t) + a_1 y'_c(t) + a_0 y_c(t) = 0. \]

The characteristic roots: \(a_2 \lambda^2 + a_1 \lambda + a_0 = 0 \)
\[\Rightarrow \text{The complementary solutions } y_c(t). \]

What is this note about? The Method of Undetermined Coefficients:
Second Order Nonhomogeneous Linear Differential Equations with Constant Coefficients:

\[a_2 y''(t) + a_1 y'(t) + a_0 y(t) = f(t), \]

where \(a_2 \neq 0 \), \(a_1 \), \(a_0 \) are constants, and \(f(t) \) is a given function (called the nonhomogeneous term).

General solution structure:

\[y(t) = y_p(t) + y_c(t) \]

where \(y_p(t) \) is a particular solution of the nonhomog equation, and \(y_c(t) \) are solutions of the homogeneous equation:

\[a_2 y_c''(t) + a_1 y_c'(t) + a_0 y_c(t) = 0. \]

The characteristic roots: \(a_2 \lambda^2 + a_1 \lambda + a_0 = 0 \)

⇒ The complementary solutions \(y_c(t) \).

What is this note about? The Method of Undetermined Coefficients: a method of finding \(y_p(t) \), when the nonhomog term \(f(t) \) belongs a simple class.
Second Order Nonhomogeneous Linear Differential Equations with Constant Coefficients:

\[a_2 y''(t) + a_1 y'(t) + a_0 y(t) = f(t), \]

where \(a_2 \neq 0, a_1, a_0 \) are constants, and \(f(t) \) is a given function (called the nonhomogeneous term).

General solution structure:

\[y(t) = y_p(t) + y_c(t) \]

where \(y_p(t) \) is a particular solution of the nonhomog equation, and \(y_c(t) \) are solutions of the homogeneous equation:

\[a_2 y''_c(t) + a_1 y'_c(t) + a_0 y_c(t) = 0. \]

The characteristic roots: \(a_2 \lambda^2 + a_1 \lambda + a_0 = 0 \)

⇒ The complementary solutions \(y_c(t) \).

What is this note about? The Method of Undetermined Coefficients: a method of finding \(y_p(t) \), when the nonhomog term \(f(t) \) belongs a simple class.

Main Idea: Set up a trial function \(y_p(t) \), by copying the function form of \(f(t) \).
Example 1: Solve $3y'' + y' - 2y = 10e^{4t}$, $y(0) = -1$, $y'(0) = 3$.
Example 1: Solve $3y'' + y' - 2y = 10e^{4t}$, $y(0) = -1, y'(0) = 3$.

- General solutions $y(t) = y_c(t) + y_p(t)$.
Example 1: Solve $3y'' + y' - 2y = 10e^{4t}$, $y(0) = -1, y'(0) = 3$.

- General solutions $y(t) = y_c(t) + y_p(t)$.
- Find complementary solutions $y_c(t)$:
Example 1: Solve $3y'' + y' - 2y = 10e^{4t}$, $y(0) = -1, y'(0) = 3$.

- General solutions $y(t) = y_c(t) + y_p(t)$.
- Find complementary solutions $y_c(t)$:

 $3y''_c + y'_c - 2y_c = 0$ \hspace{1cm} (the corresponding homog eq)

 $3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = \frac{2}{3} \Rightarrow y_c = C_1 e^{-t} + C_2 e^{\frac{2}{3}t}$
Example 1: Solve $3y'' + y' - 2y = 10e^{4t}$, $y(0) = -1, y'(0) = 3$.

- General solutions $y(t) = y_c(t) + y_p(t)$.
- Find complementary solutions $y_c(t)$:

 $3y''_c + y'_c - 2y_c = 0$ (the corresponding homog eq)

 $3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = \frac{2}{3} \Rightarrow y_c = C_1 e^{-t} + C_2 e^{\frac{2}{3}t}$

- To find $y_p(t)$, set the trial function

 $y_p(t) = ae^{4t}$ (form copied from $f(t) = 10e^{4t}$)

where a is the undetermined coefficient.
Example 1: Solve $3y'' + y' - 2y = 10e^{4t}$, $y(0) = -1, y'(0) = 3$.

- General solutions $y(t) = y_c(t) + y_p(t)$.

- Find complementary solutions $y_c(t)$:

 $3y''_c + y'_c - 2y_c = 0$ (the corresponding homog eq)

 $3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1e^{-t} + C_2e^{2/3t}$

- To find $y_p(t)$, set the trial function

 $y_p(t) = ae^{4t}$ (form copied from $f(t) = 10e^{4t}$)

 where a is the undetermined coefficient.

- Substitute $y_p(t)$ in the nonhomog eq:

 $3(ae^{4t})'' + (ae^{4t})' - 2ae^{4t} = 10e^{4t}$

 $= 3(16ae^{4t}) + (4ae^{4t}) - 2ae^{4t}$

 $= 50ae^{4t}$
Example 1: Solve $3y'' + y' - 2y = 10e^{4t}$, \(y(0) = -1, y'(0) = 3 \).

- General solutions \(y(t) = y_c(t) + y_p(t) \).
- Find complementary solutions \(y_c(t) \):

 \[
 3y''_c + y'_c - 2y_c = 0 \quad \text{(the corresponding homog eq)}
 \]

 \[
 3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{2/3 t}
 \]

- To find \(y_p(t) \), set the trial function

 \[
 y_p(t) = ae^{4t} \quad \text{(form copied from } f(t) = 10e^{4t})
 \]

 where \(a \) is the undetermined coefficient.

- Substitute \(y_p(t) \) in the nonhomog eq:

 \[
 3(ae^{4t})'' + (ae^{4t})' - 2ae^{4t} = 10e^{4t}
 \]

 \[
 = 3(16ae^{4t}) + (4ae^{4t}) - 2ae^{4t}
 \]

 \[
 = 50ae^{4t}
 \]

- Compare the coefficients of the two sides:

 \[
 50a = 10 \Rightarrow a = \frac{1}{5}
 \]
Example 1: Solve $3y'' + y' - 2y = 10e^{4t}$, $y(0) = -1$, $y'(0) = 3$.

- General solutions $y(t) = y_c(t) + y_p(t)$.
- Find complementary solutions $y_c(t)$:
 \[3y''_c + y'_c - 2y_c = 0 \quad \text{(the corresponding homog eq)}\]
 \[3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1e^{-t} + C_2e^{2/3t}\]
- To find $y_p(t)$, set the trial function
 \[y_p(t) = ae^{4t} \quad \text{(form copied from } f(t) = 10e^{4t})\]
 where a is the undetermined coefficient.
- Substitute $y_p(t)$ in the nonhomog eq:
 \[3(ae^{4t})'' + (ae^{4t})' - 2ae^{4t} = 10e^{4t}\]
 \[= 3(16ae^{4t}) + (4ae^{4t}) - 2ae^{4t}\]
 \[= 50ae^{4t}\]

- Compare the coefficients of the two sides:
 \[50a = 10 \Rightarrow a = \frac{1}{5} \Rightarrow y_p(t) = \frac{1}{5}e^{4t}\]
Example 1 (continued): Solve
\[3y'' + y' - 2y = 10e^{4t}, \quad y(0) = -1, y'(0) = 3. \]

Combine \(y_c \) and \(y_p \) to get

Gen Sols of Nonhomg Eq:
\[y(t) = \frac{1}{5}e^{4t} + C_1 e^{-t} + C_2 e^{\frac{2}{3}t}. \]
Example 1 (continued): Solve

\[3y'' + y' - 2y = 10e^{4t}, \quad y(0) = -1, y'(0) = 3. \]

- Combine \(y_c \) and \(y_p \) to get

\[\text{Gen Sols of Nonhomg Eq: } y(t) = \frac{1}{5}e^{4t} + C_1 e^{-t} + C_2 e^{\frac{2}{3}t}. \]

- Use initial conditions:

\[y(0) = -1 \quad \Rightarrow \quad \frac{1}{5} + C_1 + C_2 = -1 \]

\[y'(t) = \frac{4}{5}e^{4t} - C_1 e^{-t} + \frac{2}{3}C_2 e^{\frac{2}{3}t}, \quad y'(0) = 3 \quad \Rightarrow \quad \frac{4}{5} - C_1 + \frac{2}{3}C_2 = 3 \]
Example 1 (continued): Solve
\[3y'' + y' - 2y = 10e^{4t}, \quad y(0) = -1, y'(0) = 3.\]

- Combine \(y_c\) and \(y_p\) to get

\[
\text{Gen Sols of Nonhomg Eq: } y(t) = \frac{1}{5}e^{4t} + C_1e^{-t} + C_2e^{\frac{2}{3}t}.
\]

- Use initial conditions:

\[y(0) = -1 \implies \frac{1}{5} + C_1 + C_2 = -1\]

\[y'(t) = \frac{4}{5}e^{4t} - C_1e^{-t} + \frac{2}{3}C_2e^{\frac{2}{3}t}, \quad y'(0) = 3 \implies \frac{4}{5} - C_1 + \frac{2}{3}C_2 = 3\]

Solve this:

\[
\begin{cases}
C_1 = -\frac{9}{5} \\
C_2 = \frac{3}{5}
\end{cases}
\]
Example 1 (continued): Solve

\[3y'' + y' - 2y = 10e^{4t}, \quad y(0) = -1, \ y'(0) = 3. \]

- Combine \(y_c \) and \(y_p \) to get

\[
\text{Gen Sols of Nonhomg Eq:} \quad y(t) = \frac{1}{5}e^{4t} + C_1 e^{-t} + C_2 e^{\frac{2}{3}t}.
\]

- Use initial conditions:

\[
y(0) = -1 \quad \Rightarrow \quad \frac{1}{5} + C_1 + C_2 = -1
\]
\[
y'(t) = \frac{4}{5}e^{4t} - C_1 e^{-t} + \frac{2}{3} C_2 e^{\frac{2}{3}t}, \quad y'(0) = 3 \quad \Rightarrow \quad \frac{4}{5} - C_1 + \frac{2}{3} C_2 = 3
\]

Solve this:

\[
\begin{cases}
C_1 = -\frac{9}{5} \\
C_2 = \frac{3}{5}
\end{cases}
\]

- The solution of the initial value problem:

\[
y(t) = \frac{1}{5}e^{4t} - \frac{9}{5}e^{-t} + \frac{3}{5}e^{\frac{2}{3}t}.
\]
Nonhomogeneous Linear Equations:

\[a_2 y''(t) + a_1 y'(t) + a_0 y(t) = f(t), \]

Towards the Rules of Setting Up the Trial Function:

<table>
<thead>
<tr>
<th>(f(t))</th>
<th>(y_p(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ke^{rt})</td>
<td>(Ae^{rt})</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(to be continued)</td>
<td>(to be continued)</td>
</tr>
</tbody>
</table>
Example 2: Solve $3y'' + y' - 2y = -8te^{-2t}$.
Example 2: Solve $3y'' + y' - 2y = -8te^{-2t}$.

- Complementary solutions $y_c(t)$:

 $3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{2/3 t}$
Example 2: Solve $3y'' + y' - 2y = -8te^{-2t}$.

- Complementary solutions $y_c(t)$:

 $$3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = \frac{2}{3} \Rightarrow y_c = C_1 e^{-t} + C_2 e^{\frac{2}{3}t}$$

- To find $y_p(t)$, set the trial function

 $$y_p(t) = Ate^{-2t}.$$
Example 2: Solve $3y'' + y' - 2y = -8te^{-2t}$.

- Complementary solutions $y_c(t)$:

 $$3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1e^{-t} + C_2e^{2/3 t}$$

- To find $y_p(t)$, set the trial function

 $$y_p(t) = Ate^{-2t}.$$

- Substitute $y_p(t)$ in the nonhomog eq:

 $$-8te^{-2t} = 3(Ate^{-2t})'' + (Ate^{-2t})' - 2Ate^{-2t}$$

 $$= 3(-4Ae^{-2t} + 4Ate^{-2t}) + (Ae^{-2t} - 2Ate^{-2t}) - 2Ate^{-2t}$$

 $$= -11Ae^{-2t} + 8Ate^{-2t}$$
Example 2: Solve $3y'' + y' - 2y = -8te^{-2t}$.

- Complementary solutions $y_c(t)$:

 \[3\lambda^2 + \lambda - 2 = 0 \quad \Rightarrow \quad \lambda_1 = -1, \lambda_2 = 2/3 \quad \Rightarrow \quad y_c = C_1e^{-t} + C_2e^{\frac{2}{3}t} \]

- To find $y_p(t)$, set the trial function

 \[y_p(t) = Ate^{-2t}. \]

- Substitute $y_p(t)$ in the nonhomog eq:

 \[
 -8te^{-2t} = 3(Ate^{-2t})'' + (Ate^{-2t})' - 2Ate^{-2t} \\
 = 3(-4Ae^{-2t} + 4Ate^{-2t}) + (Ae^{-2t} - 2Ate^{-2t}) - 2Ate^{-2t} \\
 = -11Ae^{-2t} + 8Ate^{-2t}
 \]

- Compare the coefficients of the two sides:

 \[
 \begin{cases}
 -11A = 0 \\
 8A = -8
 \end{cases} \quad \Rightarrow \quad \text{Impossible!}
 \]
Example 2: Solve $3y'' + y' - 2y = -8te^{-2t}$.

- Complementary solutions $y_c(t)$:

 $3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1e^{-t} + C_2e^{2/3t}$

- To find $y_p(t)$, set the trial function

 $y_p(t) = Ate^{-2t}$.

- Substitute $y_p(t)$ in the nonhomog eq:

 $-8te^{-2t} = 3(At^{-2t})'' + (At^{-2t})' - 2Ate^{-2t}$

 $= 3(-4Ae^{-2t} + 4Ate^{-2t}) + (Ae^{-2t} - 2Ate^{-2t}) - 2Ate^{-2t}$

 $= -11Ae^{-2t} + 8Ate^{-2t}$

- Compare the coefficients of the two sides:

 $\begin{cases} -11A = 0 \\ 8A = -8 \end{cases} \Rightarrow \text{Impossible!}$

The choice of the trial function $y_p(t) = Ate^{-2t}$ was {WRONG}!
Example 2 (continued): Solve $3y'' + y' - 2y = -8te^{-2t}$.

- The correct point of view:

 $$f(t) = -8te^{-2t} = (\text{a polynomial of degree one})e^{-2t}.$$
Example 2 (continued): Solve $3y'' + y' - 2y = -8te^{-2t}$.

- The correct point of view:

 $$f(t) = -8te^{-2t} = (\text{a polynomial of degree one})e^{-2t}.$$

- The correct trial function:

 $$y_p(t) = (A + Bt)e^{-2t}.$$
Example 2 (continued): Solve $3y'' + y' - 2y = -8te^{-2t}$.

- The correct point of view:

 \[f(t) = -8te^{-2t} = (\text{a polynomial of degree one})e^{-2t}.\]

- The correct trial function:

 \[y_p(t) = (A + Bt)e^{-2t}.\]

- Substitute $y_p(t)$ in the nonhomog eq:

 \[
 -8te^{-2t} = 3[(A + Bt)e^{-2t}]'' + [(A + Bt)e^{-2t}]' - 2(A + Bt)e^{-2t}
 = 3(4A - 4B + 4Bt)e^{-2t} + (-2A + B - 2Bt)e^{-2t} + (-2A - 2Bt)e^{-2t}
 = (8A - 11B)e^{-2t} + 8Bte^{-2t}
 \]
Example 2 (continued): Solve $3y'' + y' - 2y = -8te^{-2t}$.

- The correct point of view:

 $f(t) = -8te^{-2t} = (\text{a polynomial of degree one})e^{-2t}$.

- The correct trial function:

 $y_p(t) = (A + Bt)e^{-2t}$.

- Substitute $y_p(t)$ in the nonhomog eq:

 $-8te^{-2t} = 3[(A + Bt)e^{-2t}]'' + [(A + Bt)e^{-2t}]' - 2(A + Bt)e^{-2t}$

 $= 3(4A - 4B + 4Bt)e^{-2t} + (-2A + B - 2Bt)e^{-2t}$

 $+ (-2A - 2Bt)e^{-2t}$

 $= (8A - 11B)e^{-2t} + 8Bte^{-2t}$

- Compare the coefficients of the two sides:

 \[\begin{aligned}
 8A - 11B &= 0 \\
 8B &= -8
 \end{aligned} \]

 \[\Rightarrow \begin{aligned}
 A &= -\frac{11}{8} \\
 B &= -1
 \end{aligned} \]

 \[\Rightarrow y_p(t) = \left(-\frac{11}{8} - t\right)e^{-2t} \]
Example 2 (continued): Solve $3y'' + y' - 2y = -8te^{-2t}$.

- The correct point of view:
 \[f(t) = -8te^{-2t} = (\text{a polynomial of degree one})e^{-2t}. \]

- The correct trial function:
 \[y_p(t) = (A + Bt)e^{-2t}. \]

- Substitute $y_p(t)$ in the nonhomogeneous eq:
 \[
 -8te^{-2t} = 3[(A + Bt)e^{-2t}]'' + [(A + Bt)e^{-2t}]' - 2(A + Bt)e^{-2t}
 = 3(4A - 4B + 4Bt)e^{-2t} + (-2A + B - 2Bt)e^{-2t}
 + (-2A - 2Bt)e^{-2t}
 = (8A - 11B)e^{-2t} + 8Bte^{-2t}
 \]

- Compare the coefficients of the two sides:
 \[
 \begin{align*}
 8A - 11B &= 0 \\
 8B &= -8
 \end{align*}
 \Rightarrow
 \begin{align*}
 A &= -\frac{11}{8} \\
 B &= -1
 \end{align*}
 \Rightarrow
 y_p(t) = \left(-\frac{11}{8} - t\right)e^{-2t}
 \]

- The General Solutions of the Nonhomogeneous Equation:
 \[y(t) = y_p(t) + y_c(t) = \left(-\frac{11}{8} - t\right)e^{-2t} + C_1 e^{-t} + C_2 e^{2t}. \]
Example 3: Solve $3y'' + y' - 2y = -12t^2$.
Example 3: Solve $3y'' + y' - 2y = -12t^2$.

Complementary solutions $y_c(t)$:

$3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{2/3 t}$
Example 3: Solve $3y'' + y' - 2y = -12t^2$.

- Complementary solutions $y_c(t)$:

 $$3\lambda^2 + \lambda - 2 = 0 \implies \lambda_1 = -1, \lambda_2 = 2/3 \implies y_c = C_1 e^{-t} + C_2 e^{2/3}t$$

- To find $y_p(t)$, set the trial function

 $$y_p(t) = At^2.$$
Example 3: Solve $3y'' + y' - 2y = -12t^2$.

▶ Complementary solutions $y_c(t)$:

$$3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{2/3}t$$

▶ To find $y_p(t)$, set the trial function

$$y_p(t) = At^2.$$ This does not work!
Example 3: Solve $3y'' + y' - 2y = -12t^2$.

- Complementary solutions $y_c(t)$:

 $3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = \frac{2}{3} \Rightarrow y_c = C_1 e^{-t} + C_2 e^{\frac{2}{3}t}$

- To find $y_p(t)$, set the trial function

 $y_p(t) = A t^2$. This does not work!

- The correct trial function:

 $y_p(t) = A + Bt + Ct^2$.
Example 3: Solve $3y'' + y' - 2y = -12t^2$.

- Complementary solutions $y_c(t)$:

 \[
 3\lambda^2 + \lambda - 2 = 0 \implies \lambda_1 = -1, \lambda_2 = 2/3 \implies y_c = C_1 e^{-t} + C_2 e^{2/3t}
 \]

- To find $y_p(t)$, set the trial function

 \[
 y_p(t) = At^2. \quad \text{This does not work!}
 \]

- The correct trial function:
 \[
 y_p(t) = A + Bt + Ct^2.
 \]

- Substitute $y_p(t)$ in the nonhomog eq:
 \[
 -12t^2 = 3(2C) + (B + 2Ct) - 2(A + Bt + Ct^2)
 \]
 \[
 = (-2A + B + 6C) + (-2B + 2C)t - 2Ct^2
 \]
Example 3: Solve $3y'' + y' - 2y = -12t^2$.

- Complementary solutions $y_c(t)$:

 $$3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{\frac{2}{3}t}$$

- To find $y_p(t)$, set the trial function

 $$y_p(t) = At^2.$$

 This does not work!

- The correct trial function:

 $$y_p(t) = A + Bt + Ct^2.$$

- Substitute $y_p(t)$ in the nonhomog eq:

 $$-12t^2 = 3(2C) + (B + 2 Ct) - 2(A + Bt + Ct^2)$$

 $$= (-2A + B + 6C) + (-2B + 2C)t - 2Ct^2$$

- Compare the coefficients of the two sides:

 $$\begin{cases}
 -2A + B + 6C = 0 \\
 -2B + 2C = 0 \\
 -2C = -12
 \end{cases} \Rightarrow \begin{cases}
 A = 21 \\
 B = 6 \Rightarrow y_p(t) = 21 + 6t + 6t^2 \\
 C = 6
 \end{cases}$$
Example 3: Solve $3y'' + y' - 2y = -12t^2$.

- Complementary solutions $y_c(t)$:

 $$3\lambda^2 + \lambda - 2 = 0 \implies \lambda_1 = -1, \lambda_2 = \frac{2}{3} \implies y_c = C_1 e^{-t} + C_2 e^{\frac{2}{3}t}$$

- To find $y_p(t)$, set the trial function

 $$y_p(t) = At^2.$$
 This does not work!

- The correct trial function:

 $$y_p(t) = A + Bt + Ct^2.$$

- Substitute $y_p(t)$ in the nonhomogeneous equation:

 $$-12t^2 = 3(2C) + (B + 2Ct) - 2(A + Bt + Ct^2)$$

 $$= (-2A + B + 6C) + (-2B + 2C)t - 2Ct^2$$

- Compare the coefficients of the two sides:

 $$\begin{cases}
 -2A + B + 6C = 0 \\
 -2B + 2C = 0 \quad \Rightarrow \quad A = 21 \\
 -2C = -12 \quad \Rightarrow \quad B = 6 \quad \Rightarrow \quad y_p(t) = 21 + 6t + 6t^2 \\
 \end{cases}$$

- The General Solutions of the Nonhomogeneous Equation:

 $$y(t) = y_p(t) + y_c(t) = 21 + 6t + 6t^2 + C_1 e^{-t} + C_2 e^{\frac{2}{3}t}.$$
Nonhomogeneous Linear Equations:

\[a_2 y''(t) + a_1 y'(t) + a_0 y(t) = f(t), \]

Towards the Rules of Setting Up the Trial Function:

<table>
<thead>
<tr>
<th>(f(t))</th>
<th>(y_p(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_N(t)) (a polynomial of deg (N))</td>
<td>(A_0 + A_1 t + \cdots + A_N t^N)</td>
</tr>
<tr>
<td>(k e^{rt})</td>
<td>(A e^{rt})</td>
</tr>
<tr>
<td>(p_N(t) e^{rt})</td>
<td>((A_0 + A_1 t + \cdots + A_N t^N) e^{rt})</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
</tbody>
</table>

(to be continued)
Example 4: Find a particular solution of $3y'' + y' - 2y = 5 \cos(2t)$.
Example 4: Find a particular solution of $3y'' + y' - 2y = 5\cos(2t)$.

- Complementary solutions $y_c(t)$:

 $3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1e^{-t} + C_2e^{2/3t}$
Example 4: Find a particular solution of $3y'' + y' - 2y = 5 \cos(2t)$.

- Complementary solutions $y_c(t)$:

 $3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{\frac{2}{3}t}$

- To find $y_p(t)$, set the trial function

 $y_p(t) = A \cos(2t)$.
Example 4: Find a particular solution of $3y'' + y' - 2y = 5 \cos(2t)$.

- Complementary solutions $y_c(t)$:

 $3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{\frac{2}{3} t}$

- To find $y_p(t)$, set the trial function

 $y_p(t) = A \cos(2t)$.

- Substitute $y_p(t)$ in the nonhomog eq:

 $5 \cos(2t) = 3[A \cos(2t)]'' + [A \cos(2t)]' - 2A \cos(2t)$

 $= 3(-4A \cos(2t)) - 2A \sin(2t) - 2A \cos(2t)$

 $= -14A \cos(2t) - 2A \sin(2t)$
Example 4: Find a particular solution of $3y'' + y' - 2y = 5 \cos(2t)$.

- Complementary solutions $y_c(t)$:

 $$3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{2/3 t}$$

- To find $y_p(t)$, set the trial function

 $$y_p(t) = A \cos(2t)$$

- Substitute $y_p(t)$ in the nonhomog eq:

 $$5 \cos(2t) = 3[A \cos(2t)]'' + [A \cos(2t)]' - 2A \cos(2t)$$

 $$= 3(-4A \cos(2t)) - 2A \sin(2t) - 2A \cos(2t)$$

 $$= -14A \cos(2t) - 2A \sin(2t)$$

- Compare the coefficients of the two sides:

 $$\left\{ \begin{array}{l}
 -14A = 5 \\
 -2A = 0
 \end{array} \right. \Rightarrow \text{Impossible!}$$
Example 4: Find a particular solution of $3y'' + y' - 2y = 5 \cos(2t)$.

- Complementary solutions $y_c(t)$:

 $3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{2/3\, t}$

- To find $y_p(t)$, set the trial function

 $$y_p(t) = A \cos(2t).$$

- Substitute $y_p(t)$ in the nonhomog eq:

 $$5 \cos(2t) = 3[A \cos(2t)]'' + [A \cos(2t)]' - 2A \cos(2t)$$

 $$= 3(-4A \cos(2t)) - 2A \sin(2t) - 2A \cos(2t)$$

 $$= -14A \cos(2t) - 2A \sin(2t)$$

- Compare the coefficients of the two sides:

 $$\left\{ \begin{array}{l}
 -14A = 5 \\
 -2A = 0 \\
 \end{array} \right. \Rightarrow \text{Impossible!}$$

 The choice of the trial function $y_p(t) = A \cos(2t)$ was **WRONG!**
Example 4 (continued): Find a particular solution of
\[3y'' + y' - 2y = 5 \cos(2t). \]

The correct trial function:
\[y_p(t) = A \cos(2t) + B \sin(2t). \]
Example 4 (continued): Find a particular solution of
\(3y'' + y' - 2y = 5 \cos(2t) \).

The correct trial function:
\[
y_p(t) = A \cos(2t) + B \sin(2t).
\]

Substitute \(y_p(t) \) in the nonhomog eq:
\[
5 \cos(2t) = 3[A \cos(2t) + B \sin(2t)]'' + [A \cos(2t) + B \sin(2t)]'
- 2[A \cos(2t) + B \sin(2t)]
= 3[-4A \cos(2t) - 4B \sin(2t)] + [-2A \sin(2t) + 2B \cos(2t)]
- 2[A \cos(2t) + B \sin(2t)]
= (-14A + 2B) \cos(2t) + (-2A - 14B) \sin(2t).
\]
Example 4 (continued): Find a particular solution of
\[3y'' + y' - 2y = 5\cos(2t).\]

- The correct trial function:
 \[y_p(t) = A\cos(2t) + B\sin(2t).\]

- Substitute \(y_p(t)\) in the nonhomog eq:

 \[
 5\cos(2t) = 3[A\cos(2t) + B\sin(2t)]'' + [A\cos(2t) + B\sin(2t)]'
 - 2[A\cos(2t) + B\sin(2t)]
 = 3[-4A\cos(2t) - 4B\sin(2t)] + [-2A\sin(2t) + 2B\cos(2t)]
 - 2[A\cos(2t) + B\sin(2t)]
 = (-14A + 2B)\cos(2t) + (-2A - 14B)\sin(2t).
 \]

- Compare the coefficients of the two sides:
 \[
 \begin{cases}
 -14A + 2B = 5 \\
 -2A - 14B = 0
 \end{cases}
 \Rightarrow
 \begin{cases}
 A = -\frac{7}{20} \\
 B = \frac{1}{20}
 \end{cases}
 \]
Example 4 (continued): Find a particular solution of \(3y'' + y' - 2y = 5 \cos(2t)\).

- The correct trial function:
 \[y_p(t) = A \cos(2t) + B \sin(2t).\]

- Substitute \(y_p(t)\) in the nonhomog eq:
 \[
 5 \cos(2t) = 3[A \cos(2t) + B \sin(2t)]'' + [A \cos(2t) + B \sin(2t)]'
 - 2[A \cos(2t) + B \sin(2t)]
 = 3[-4A \cos(2t) - 4B \sin(2t)] + [-2A \sin(2t) + 2B \cos(2t)]
 - 2[A \cos(2t) + B \sin(2t)]
 = (-14A + 2B) \cos(2t) + (-2A - 14B) \sin(2t).
 \]

- Compare the coefficients of the two sides:
 \[
 \begin{align*}
 -14A + 2B &= 5 \\
 -2A - 14B &= 0 \\
 \end{align*}
 \Rightarrow
 \begin{align*}
 A &= -\frac{7}{20} \\
 B &= \frac{1}{20} \\
 \end{align*}
 \]

- A Particular Solution of the Nonhomogeneous Equation:
 \[y_p(t) = -\frac{7}{20} \cos(2t) + \frac{1}{20} \sin(2t).\]
Nonhomogeneous Linear Equations:

\[a_2 y''(t) + a_1 y'(t) + a_0 y(t) = f(t) \]

Towards the Rules of Setting Up the Trial Function:

<table>
<thead>
<tr>
<th>(f(t))</th>
<th>(y_p(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_N(t)) (a polynomial of deg (N))</td>
<td>(A_0 + A_1 t + \cdots + A_N t^N)</td>
</tr>
<tr>
<td>(p_N(t)e^{rt})</td>
<td>((A_0 + A_1 t + \cdots + A_N t^N)e^{rt})</td>
</tr>
</tbody>
</table>
| \(\begin{cases}
 p_N(t) \cos(\omega t) \\
 \text{and/or} \\
 p_N(t) \sin(\omega t)
\end{cases} \) | \((A_0 + A_1 t + \cdots + A_N t^N) \cos(\omega t) + (B_0 + B_1 t + \cdots + B_N t^N) \sin(\omega t) \) |
| \(\begin{cases}
 p_N(t)e^{rt} \cos(\omega t) \\
 \text{and/or} \\
 p_N(t)e^{rt} \sin(\omega t)
\end{cases} \) | \((A_0 + A_1 t + \cdots + A_N t^N)e^{rt} \cos(\omega t) + (B_0 + B_1 t + \cdots + B_N t^N)e^{rt} \sin(\omega t) \) |

(to be continued)
Example 5: Find a particular solution of

$$3y'' + y' - 2y = 10e^{4t} - 8te^{-2t} - 12t^2 + 5\cos(2t) + 17e^{-t}\cos t + 34e^{-t}\sin t$$
Example 5: Find a particular solution of

\[3y'' + y' - 2y = 10e^{4t} - 8te^{-2t} - 12t^2 + 5\cos(2t) + 17e^{-t}\cos t + 34e^{-t}\sin t\]

We give two methods.
Example 5: Find a particular solution of

\[3y'' + y' - 2y = 10e^{4t} - 8te^{-2t} - 12t^2 + 5\cos(2t) + 17e^{-t}\cos t + 34e^{-t}\sin t\]

We give two methods.

Method 1:

Solve \[3y_1'' + y'_1 - 2y_1 = 10e^{4t}\] to get a particular solution \(y_1(t)\).

Solve \[3y_2'' + y'_2 - 2y_2 = -8te^{-2t}\] to get a particular solution \(y_2(t)\).

Solve \[3y_3'' + y'_3 - 2y_3 = -12t^2\] to get a particular solution \(y_3(t)\).

Solve \[3y_4'' + y'_4 - 2y_4 = 5\cos(2t)\] to get a particular solution \(y_4(t)\).

Solve \[3y_5'' + y'_5 - 2y_5 = 17e^{-t}\cos t + 34e^{-t}\sin t\] to get a particular solution \(y_5(t)\). (Set \(y_5(t) = Ae^{-t}\cos t + Be^{-t}\sin t\))
Example 5: Find a particular solution of

\[3y'' + y' - 2y = 10e^{4t} - 8te^{-2t} - 12t^2 + 5 \cos(2t) + 17e^{-t} \cos t + 34e^{-t} \sin t\]

We give two methods.

Method 1:

Solve \(3y_1'' + y_1' - 2y_1 = 10e^{4t}\) to get a particular solution \(y_1(t)\).

Solve \(3y_2'' + y_2' - 2y_2 = -8te^{-2t}\) to get a particular solution \(y_2(t)\).

Solve \(3y_3'' + y_3' - 2y_3 = -12t^2\) to get a particular solution \(y_3(t)\).

Solve \(3y_4'' + y_4' - 2y_4 = 5 \cos(2t)\) to get a particular solution \(y_4(t)\).

Solve \(3y_5'' + y_5' - 2y_5 = 17e^{-t} \cos t + 34e^{-t} \sin t\) to get a particular solution \(y_5(t)\).

(Set \(y_5(t) = Ae^{-t} \cos t + Be^{-t} \sin t\))

A particular solution to the original equation:

\[
y_p(t) = y_1(t) + y_2(t) + y_3(t) + y_4(t) + y_5(t)
= \frac{1}{5} e^{2t} + \left(-\frac{11}{8} - t\right) e^{-2t} + 21 + 6t + 6t^2
- \frac{7}{20} \cos(2t) + \frac{1}{20} \sin(2t) + \frac{7}{2} e^{-t} \cos t - \frac{11}{2} e^{-t} \sin t.
\]
Example 5 (continued): Find a particular solution of

$$3y'' + y' - 2y = 10e^{4t} - 8te^{-2t} - 12t^2 + 5 \cos(2t) + 17e^{-t} \cos t + 34e^{-t} \sin t$$

Method 2:

- Set a **BIIIIIG** trial function:

$$y_p(t) = A_0 e^{4t} + (A_1 + A_2 t) e^{-2t} + (A_3 + A_4 t + A_5 t^2)$$

$$+ [A_6 \cos(2t) + A_7 \sin(2t)] + (A_8 e^{-t} \cos t + A_9 e^{-t} \sin t),$$

with undetermined coefficients A_0, A_1, \cdots, A_9.
Example 5 (continued): Find a particular solution of

\[3y'' + y' - 2y = 10e^{4t} - 8te^{-2t} - 12t^2 + 5\cos(2t) + 17e^{-t}\cos t + 34e^{-t}\sin t\]

Method 2:

- Set a **BIIIIIG** trial function:

\[y_p(t) = A_0e^{4t} + (A_1 + A_2t)e^{-2t} + (A_3 + A_4t + A_5t^2)\]
\[+ [A_6\cos(2t) + A_7\sin(2t)] + (A_8e^{-t}\cos t + A_9e^{-t}\sin t),\]

with undetermined coefficients \(A_0, A_1, \cdots, A_9\).

- Substitute this in the original equation.
Example 5 (continued): Find a particular solution of

\[3y'' + y' - 2y = 10e^{4t} - 8te^{-2t} - 12t^2 + 5 \cos(2t) + 17e^{-t} \cos t + 34e^{-t} \sin t \]

Method 2:

- Set a **BIIIIIG** trial function:

 \[y_p(t) = A_0 e^{4t} + (A_1 + A_2 t) e^{-2t} + (A_3 + A_4 t + A_5 t^2) \]
 \[+ [A_6 \cos(2t) + A_7 \sin(2t)] + (A_8 e^{-t} \cos t + A_9 e^{-t} \sin t), \]

 with undetermined coefficients \(A_0, A_1, \cdots, A_9 \).

- Substitute this in the original equation.

- Compare the coefficients of the two sides

 \[\Rightarrow \] Linear equations for \(A_0, A_1, \cdots A_9 \).
Example 5 (continued): Find a particular solution of
\[3y'' + y' - 2y = 10e^{4t} - 8te^{-2t} - 12t^2 + 5\cos(2t) + 17e^{-t}\cos t + 34e^{-t}\sin t\]

Method 2:

- Set a BIG trial function:
 \[y_p(t) = A_0e^{4t} + (A_1 + A_2t)e^{-2t} + (A_3 + A_4t + A_5t^2)\]
 \[+ [A_6\cos(2t) + A_7\sin(2t)] + (A_8e^{-t}\cos t + A_9e^{-t}\sin t),\]
 with undetermined coefficients \(A_0, A_1, \cdots, A_9\).

- Substitute this in the original equation.

- Compare the coefficients of the two sides
 \[\Rightarrow\] Linear equations for \(A_0, A_1, \cdots A_9\).

- Solve \(A_0, A_1, \cdots A_9\).
Example 5 (continued): Find a particular solution of

\[3y'' + y' - 2y = 10e^{4t} - 8te^{-2t} - 12t^2 + 5 \cos(2t) + 17e^{-t} \cos t + 34e^{-t} \sin t \]

Method 2:

▷ Set a **BIIIIG** trial function:

\[
y_p(t) = A_0 e^{4t} + (A_1 + A_2 t)e^{-2t} + (A_3 + A_4 t + A_5 t^2) \\
+ [A_6 \cos(2t) + A_7 \sin(2t)] + (A_8 e^{-t} \cos t + A_9 e^{-t} \sin t),
\]

with undetermined coefficients \(A_0, A_1, \cdots, A_9 \).

▷ Substitute this in the original equation.

▷ Compare the coefficients of the two sides
 \(\Rightarrow \) Linear equations for \(A_0, A_1, \cdots A_9 \).

▷ Solve \(A_0, A_1, \cdots A_9 \).

▷ Finally obtain the particular solution

\[
y_p(t) = \frac{1}{5} e^{2t} + \left(-\frac{11}{8} - t \right) e^{-2t} + 21 + 6t + 6t^2 \\
- \frac{7}{20} \cos(2t) + \frac{1}{20} \sin(2t) + \frac{7}{2} e^{-t} \cos t - \frac{11}{2} e^{-t} \sin t.
\]

(Computational details skipped here.)
Example 6: Find general solutions of $y'' - y' - 2y = 36e^{3t} + 2e^{2t}$.
Example 6: Find general solutions of $y'' - y' - 2y = 36e^{3t} + 2e^{2t}$.

Complementary solutions $y_c(t)$:

$\lambda^2 - \lambda - 2 = 0 \Rightarrow \lambda_1 = 2, \lambda_2 = -1 \Rightarrow y_c = C_1 e^{2t} + C_2 e^{-t}$
Example 6: Find general solutions of \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions \(y_c(t) \):
 \[
 \lambda^2 - \lambda - 2 = 0 \implies \lambda_1 = 2, \lambda_2 = -1 \implies y_c = C_1 e^{2t} + C_2 e^{-t}
 \]

- To find \(y_p(t) \), set the trial function
 \[
 y_p(t) = Ae^{3t} + Be^{2t}.
 \]
Example 6: Find general solutions of \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions \(y_c(t) \):
 \[
 \lambda^2 - \lambda - 2 = 0 \Rightarrow \lambda_1 = 2, \lambda_2 = -1 \Rightarrow y_c = C_1 e^{2t} + C_2 e^{-t}
 \]

- To find \(y_p(t) \), set the trial function
 \[
 y_p(t) = Ae^{3t} + Be^{2t}.
 \]

- Substitute \(y_p(t) \) in the nonhomog eq:
 \[
 36e^{3t} + 2e^{2t} = (Ae^{3t} + Be^{2t})'' - (Ae^{3t} + Be^{2t})' - 2(Ae^{3t} + Be^{2t})
 \]
 \[
 = (9Ae^{3t} + 4Be^{2t}) - (3Ae^{3t} + 2Be^{2t}) - 2(Ae^{3t} + Be^{2t})
 \]
 \[
 = 4Ae^{3t}
 \]
Example 6: Find general solutions of \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions \(y_c(t) \):
 \[\lambda^2 - \lambda - 2 = 0 \Rightarrow \lambda_1 = 2, \lambda_2 = -1 \Rightarrow y_c = C_1 e^{2t} + C_2 e^{-t} \]

- To find \(y_p(t) \), set the trial function
 \[y_p(t) = Ae^{3t} + Be^{2t}. \]

- Substitute \(y_p(t) \) in the nonhomog eq:
 \[
 36e^{3t} + 2e^{2t} = (Ae^{3t} + Be^{2t})'' - (Ae^{3t} + Be^{2t})' - 2(Ae^{3t} + Be^{2t})
 = (9Ae^{3t} + 4Be^{2t}) - (3Ae^{3t} + 2Be^{2t}) - 2(Ae^{3t} + Be^{2t})
 = 4Ae^{3t}
 \]

- Compare the coefficients of the two sides:
 \[
 \begin{cases}
 4A = 36 \\
 0 = 2 \\
 \end{cases} \Rightarrow \text{Impossible!}
 \]
Example 6: Find general solutions of \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions \(y_c(t) \):
 \[\lambda^2 - \lambda - 2 = 0 \Rightarrow \lambda_1 = 2, \lambda_2 = -1 \Rightarrow y_c = C_1 e^{2t} + C_2 e^{-t} \]

- To find \(y_p(t) \), set the trial function \(y_p(t) = Ae^{3t} + Be^{2t} \).

- Substitute \(y_p(t) \) in the nonhomog eq:
 \[
 36e^{3t} + 2e^{2t} = (Ae^{3t} + Be^{2t})'' - (Ae^{3t} + Be^{2t})' - 2(Ae^{3t} + Be^{2t})
 = (9Ae^{3t} + 4Be^{2t}) - (3Ae^{3t} + 2Be^{2t}) - 2(Ae^{3t} + Be^{2t})
 = 4Ae^{3t}
 \]

- Compare the coefficients of the two sides:
 \[
 \begin{cases}
 4A = 36 \\
 0 = 2
 \end{cases} \Rightarrow \text{Impossible!}
 \]

The trial function \(y_p(t) = Ae^{3t} + Be^{2t} \) was \textbf{BAD}!
Example 6 (continued): \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions: \(y_c = C_1e^{2t} + C_2e^{-t} \)
- The **BAD** trial function: \(y_p(t) = Ae^{3t} + Be^{2t} \).
Example 6 (continued): \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions: \(y_c = C_1e^{2t} + C_2e^{-t} \)
- The BAD trial function: \(y_p(t) = Ae^{3t} + Be^{2t} \).
- The Reason of the Failure:
Example 6 (continued): \[y'' - y' - 2y = 36e^{3t} + 2e^{2t}. \]

- Complementary solutions: \[y_c = C_1 e^{2t} + C_2 e^{-t} \]
- The BAD trial function: \[y_p(t) = Ae^{3t} + Be^{2t}. \]
- The Reason of the Failure:
 - When \(y_p(t) \) is plugged in the nonhomog eq, we wish the left hand side would match the right hand side \(36e^{3t} + 2e^{2t} \).
Example 6 (continued): \[y'' - y' - 2y = 36e^{3t} + 2e^{2t}. \]

- Complementary solutions: \[y_c = C_1e^{2t} + C_2e^{-t} \]
- The **BAD** trial function: \[y_p(t) = Ae^{3t} + Be^{2t}. \]
- The **Reason of the Failure**:
 - When \(y_p(t) \) is plugged in the nonhomog eq, we wish the left hand side would match the right hand side \(36e^{3t} + 2e^{2t} \).
 - The \(Be^{2t} \) part of the trial function satisfies the homog eq. That is, \((Be^{2t})'' - (Be^{2t})' - 2Be^{2t} = 0. \)
Example 6 (continued): \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions: \(y_c = C_1e^{2t} + C_2e^{-t} \)
- The \textbf{BAD} trial function: \(y_p(t) = Ae^{3t} + Be^{2t} \).
- The \textbf{Reason of the Failure}:
 - When \(y_p(t) \) is plugged in the nonhomog eq, we wish the left hand side would match the right hand side \(36e^{3t} + 2e^{2t} \).
 - The \(Be^{2t} \) part of the trial function satisfies the homog eq. That is, \((Be^{2t})'' - (Be^{2t})' - 2Be^{2t} = 0 \).
 - In other words, when plugged in the nonhomog equation, this \(Be^{2t} \) produces many terms, but the sum of those terms will simplify to zero!
Example 6 (continued): \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions: \(y_c = C_1 e^{2t} + C_2 e^{-t} \)

- The **BAD** trial function: \(y_p(t) = Ae^{3t} + Be^{2t} \).

- **The Reason of the Failure:**
 - When \(y_p(t) \) is plugged in the nonhomog eq, we wish the left hand side would match the right hand side \(36e^{3t} + 2e^{2t} \).
 - The \(Be^{2t} \) part of the trial function satisfies the homog eq. That is, \((Be^{2t})'' - (Be^{2t})' - 2Be^{2t} = 0\).
 - In other words, when plugged in the nonhomog equation, this \(Be^{2t} \) produces many terms, but the sum of those terms will simplify to zero!
 - Thus, impossible to balance the two sides of the nonhomog equation.
Example 6 (continued): $y'' - y' - 2y = 36e^{3t} + 2e^{2t}$.

- Complementary solutions: $y_c = C_1 e^{2t} + C_2 e^{-t}$
- The BAD trial function: $y_p(t) = Ae^{3t} + Be^{2t}$.
- The Reason of the Failure:
 - When $y_p(t)$ is plugged in the nonhomog eq, we wish the left hand side would match the right hand side $36e^{3t} + 2e^{2t}$.
 - The Be^{2t} part of the trial function satisfies the homog eq. That is, $(Be^{2t})'' - (Be^{2t})' - 2Be^{2t} = 0$.
 - In other words, when plugged in the nonhomog equation, this Be^{2t} produces many terms, but the sum of those terms will simplify to zero!
 - Thus, impossible to balance the two sides of the nonhomog equation.

- In short, the failure was due to the fact that $y_p(t)$ has overlap(s) with $y_c(t)$.
Complementary solutions: $y_c = C_1 e^{2t} + C_2 e^{-t}$

The BAD trial function: $y_p(t) = Ae^{3t} + Be^{2t}$.

The Reason of the Failure:

- When $y_p(t)$ is plugged in the nonhomog eq, we wish the left hand side would match the right hand side $36e^{3t} + 2e^{2t}$.
- The Be^{2t} part of the trial function satisfies the homog eq.
 That is, $(Be^{2t})'' - (Be^{2t})' - 2Be^{2t} = 0$.
- In other words, when plugged in the nonhomog equation, this Be^{2t} produces many terms, but the sum of those terms will simplify to zero!
- Thus, impossible to balance the two sides of the nonhomog equation.

In short, the failure was due to the fact that $y_p(t)$ has overlap(s) with $y_c(t)$.

This kind of cases are called resonance.

The term $2e^{2t}$ in $f(t)$ is called a resonant term.
Example 6 (continued):
\[y'' - y' - 2y = 36e^{3t} + 2e^{2t}. \]

- Complementary solutions:
 \[y_c(t) = C_1e^{2t} + C_2e^{-t}. \]

- The **NAIVE** trial function:
 \[y_p(t) = Ae^{3t} + Be^{2t}. \]
 This failed, since it has a term \(Be^{2t} \) overlapping \(y_c(t) \).
Example 6 (continued): $y'' - y' - 2y = 36e^{3t} + 2e^{2t}$.

- Complementary solutions: $y_c(t) = C_1 e^{2t} + C_2 e^{-t}$
- The **NAIVE** trial function: $y_p(t) = Ae^{3t} + Be^{2t}$. This failed, since it has a term Be^{2t} overlapping $y_c(t)$.
- The **CORRECT** trial function: $y_p(t) = Ae^{3t} + Bte^{2t}$.
Example 6 (continued): \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions: \(y_c(t) = C_1 e^{2t} + C_2 e^{-t} \)
- The **NAIVE** trial function: \(y_p(t) = Ae^{3t} + Be^{2t} \).
 This failed, since it has a term \(Be^{2t} \) overlapping \(y_c(t) \).
- The **CORRECT** trial function: \(y_p(t) = Ae^{3t} + Bte^{2t} \).
- The **Method of Correction:** In the naive trial function, multiply the bad term \(Be^{2t} \) by \(t^k \), where \(k \) is the smallest positive integer to ensure that \(y_p \) does not overlap \(y_c \).
Example 6 (continued): \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions: \(y_c(t) = C_1e^{2t} + C_2e^{-t} \)

- The **NAIVE** trial function: \(y_p(t) = Ae^{3t} + Be^{2t} \).
 This failed, since it has a term \(Be^{2t} \) overlapping \(y_c(t) \).

- The **CORRECT** trial function: \(y_p(t) = Ae^{3t} + Bte^{2t} \).

- The **Method of Correction**: In the naive trial function, multiply the bad term \(Be^{2t} \) by \(t^k \), where \(k \) is the smallest positive integer to ensure that \(y_p \) does not overlap \(y_c \).

- Substitute \(y_p(t) \) in the nonhomog eq:

 \[
 36e^{3t} + 2e^{2t} = (Ae^{3t} + Bte^{2t})'' - (Ae^{3t} + Bte^{2t})' - 2(Ae^{3t} + Bte^{2t})
 \]

 \[
 = (9Ae^{3t} + 4Be^{2t} + 4Bte^{2t}) - (3Ae^{3t} + Be^{2t} + 2Bte^{2t})
 \]

 \[
 -2(Ae^{3t} + Bte^{2t})
 \]

 \[
 = 4Ae^{3t} + 3Be^{2t}
 \]
Example 6 (continued): $y'' - y' - 2y = 36e^{3t} + 2e^{2t}$.

- Complementary solutions: $y_c(t) = C_1e^{2t} + C_2e^{-t}$

- The **NAIVE** trial function: $y_p(t) = Ae^{3t} + Be^{2t}$.
 This failed, since it has a term Be^{2t} overlapping $y_c(t)$.

- The **CORRECT** trial function: $y_p(t) = Ae^{3t} + Bte^{2t}$.

- **The Method of Correction:** In the naive trial function, multiply the bad term Be^{2t} by t^k, where k is the smallest positive integer to ensure that y_p does not overlap y_c.

- Substitute $y_p(t)$ in the nonhomog eq:

 $$36e^{3t} + 2e^{2t} = (Ae^{3t} + Bte^{2t})'' - (Ae^{3t} + Bte^{2t})' - 2(Ae^{3t} + Bte^{2t})$$
 $$= (9Ae^{3t} + 4Be^{2t} + 4Bte^{2t}) - (3Ae^{3t} + Be^{2t} + 2Bte^{2t})$$
 $$- 2(Ae^{3t} + Bte^{2t})$$
 $$= 4Ae^{3t} + 3Be^{2t}$$

- Compare the coefficients of the two sides:

 $$\begin{cases} 4A = 36 \\ 3B = 2 \end{cases} \Rightarrow \begin{cases} A = 9 \\ B = 2/3 \end{cases} \Rightarrow y_p(t) = 9e^{3t} + \frac{2}{3}te^{2t}$$
Example 6 (continued): \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- **Complementary solutions:** \(y_c(t) = C_1e^{2t} + C_2e^{-t} \)
- **The NAIVE trial function:** \(y_p(t) = Ae^{3t} + Be^{2t} \). This failed, since it has a term \(Be^{2t} \) overlapping \(y_c(t) \).
- **The CORRECT trial function:** \(y_p(t) = Ae^{3t} + Bte^{2t} \).
- **The Method of Correction:** In the naive trial function, multiply the bad term \(Be^{2t} \) by \(t^k \), where \(k \) is the smallest positive integer to ensure that \(y_p \) does not overlap \(y_c \).
- **Substitute** \(y_p(t) \) in the nonhomog eq:

 \[
 36e^{3t} + 2e^{2t} = (Ae^{3t} + Bte^{2t})'' - (Ae^{3t} + Bte^{2t})' - 2(Ae^{3t} + Bte^{2t})

 = (9Ae^{3t} + 4Be^{2t} + 4Bte^{2t}) - (3Ae^{3t} + Be^{2t} + 2Bte^{2t})

 - 2(Ae^{3t} + Bte^{2t})

 = 4Ae^{3t} + 3Be^{2t}

- **Compare the coefficients of the two sides:**

 \[
 \begin{align*}
 4A &= 36 \\
 3B &= 2
 \end{align*}
 \Rightarrow \begin{align*}
 A &= 9 \\
 B &= 2/3
 \end{align*}
 \Rightarrow y_p(t) = 9e^{3t} + \frac{2}{3}te^{2t}

- The general solutions

 \[
 y(t) = y_p(t) + y_c(t) = 9e^{3t} + \frac{2}{3}te^{2t} + C_1e^{2t} + C_2e^{-t}

\]
Example 7: Find a particular solution of
\[y'' + 4y' + 4y = 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t. \]
Example 7: Find a particular solution of
\[y'' + 4y' + 4y = 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t. \]

Complementary solutions:
\[\lambda^2 + 4\lambda + 4 = 0 \Rightarrow \lambda_1 = \lambda_2 = -2 \Rightarrow y_c = C_1 e^{-2t} + C_2 te^{-2t} \]
Example 7: Find a particular solution of
\[y'' + 4y' + 4y = 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t. \]

- **Complementary solutions:**
 \[\lambda^2 + 4\lambda + 4 = 0 \Rightarrow \lambda_1 = \lambda_2 = -2 \Rightarrow y_c = C_1e^{-2t} + C_2te^{-2t} \]

- **The trial function:**
 \[y_p(t) = ae^{4t} + (b_0 + b_1t + b_2t^2)e^{-2t} + (A \cos t + B \sin t). \]
Example 7: Find a particular solution of
\[y'' + 4y' + 4y = 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t. \]

- Complementary solutions:
 \[\lambda^2 + 4\lambda + 4 = 0 \Rightarrow \lambda_1 = \lambda_2 = -2 \Rightarrow y_c = C_1 e^{-2t} + C_2 te^{-2t} \]

- The trial function:
 \[y_p(t) = ae^{4t} + (b_0 + b_1 t + b_2 t^2)e^{-2t} + (A \cos t + B \sin t). \]
 This would fail, since the part \((b_0 + b_1 t)e^{-2t}\) overlaps \(y_c(t)\).
Example 7: Find a particular solution of
\[y'' + 4y' + 4y = 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t. \]

- Complementary solutions:
 \[\lambda^2 + 4\lambda + 4 = 0 \Rightarrow \lambda_1 = \lambda_2 = -2 \Rightarrow y_c = C_1e^{-2t} + C_2te^{-2t} \]

- The trial function:
 \[y_p(t) = ae^{4t} + (b_0 + b_1t + b_2t^2)e^{-2t} + (A \cos t + B \sin t). \]

 This would fail, since the part \((b_0 + b_1t)e^{-2t}\) overlaps \(y_c(t)\).

- The modified trial function:
 \[y_p(t) = ae^{4t} + t (b_0 + b_1t + b_2t^2)e^{-2t} + (A \cos t + B \sin t). \]
Example 7: Find a particular solution of
\(y'' + 4y' + 4y = 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t. \)

- Complementary solutions:
 \[\lambda^2 + 4\lambda + 4 = 0 \Rightarrow \lambda_1 = \lambda_2 = -2 \Rightarrow y_c = C_1 e^{-2t} + C_2 te^{-2t} \]

- The trial function:
 \[y_p(t) = ae^{4t} + (b_0 + b_1 t + b_2 t^2)e^{-2t} + (A \cos t + B \sin t). \]
 This would fail, since the part \((b_0 + b_1 t)e^{-2t}\) overlaps \(y_c(t)\).

- The modified trial function:
 \[y_p(t) = ae^{4t} + t^2(b_0 + b_1 t + b_2 t^2)e^{-2t} + (A \cos t + B \sin t). \]
Example 7: Find a particular solution of
\[y'' + 4y' + 4y = 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t. \]

- Complementary solutions:
 \[\lambda^2 + 4\lambda + 4 = 0 \Rightarrow \lambda_1 = \lambda_2 = -2 \Rightarrow y_c = C_1 e^{-2t} + C_2 te^{-2t} \]

- The trial function:
 \[y_p(t) = ae^{4t} + (b_0 + b_1t + b_2t^2)e^{-2t} + (A \cos t + B \sin t). \]
 This would fail, since the part \((b_0 + b_1t)e^{-2t}\) overlaps \(y_c(t)\).

- The modified trial function:
 \[y_p(t) = ae^{4t} + t^2(b_0 + b_1t + b_2t^2)e^{-2t} + (A \cos t + B \sin t). \]

- Substitute this correct \(y_p(t)\) in the nonhomog eq:
 \[9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t = y_p'' + 4y_p' + 4y_p = \cdots \cdots \]
 \[= 36ae^{4t} + (2b_0 + 6b_1t + 12b_2t^2)e^{-2t} + (3A + 4B) \cos t + (-4A + 3B) \sin t \]
Example 7: Find a particular solution of
\[y'' + 4y' + 4y = 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t. \]

- Complementary solutions:
 \[\lambda^2 + 4\lambda + 4 = 0 \Rightarrow \lambda_1 = \lambda_2 = -2 \Rightarrow y_c = C_1 e^{-2t} + C_2 te^{-2t} \]

- The trial function:
 \[y_p(t) = ae^{4t} + (b_0 + b_1 t + b_2 t^2)e^{-2t} + (A \cos t + B \sin t). \]
 This would fail, since the part \((b_0 + b_1 t)e^{-2t}\) overlaps \(y_c(t)\).

- The modified trial function:
 \[y_p(t) = ae^{4t} + t^2(b_0 + b_1 t + b_2 t^2)e^{-2t} + (A \cos t + B \sin t). \]

- Substitute this correct \(y_p(t)\) in the nonhomog eq:
 \[9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t = y_p'' + 4y_p' + 4y_p = \cdots \cdots \]
 \[= 36ae^{4t} + (2b_0 + 6b_1 t + 12b_2 t^2)e^{-2t} + (3A + 4B) \cos t + (-4A + 3B) \sin t \]

- Compare the coefficients of the two sides:
 \[
 \begin{align*}
 36a &= 9 \\
 2b_0 &= 3, \quad 6b_1 &= -2, \quad 12b_2 &= -1 \\
 3A + 4B &= 1, \quad -4A + 3B &= 0 \\
 \end{align*}
 \]
 \[
 \begin{align*}
 a &= \frac{1}{4} \\
 b_0 &= \frac{3}{2}, \quad b_1 &= -\frac{1}{3}, \quad b_2 = -\frac{1}{12} \\
 A &= \frac{3}{25}, \quad B = \frac{4}{25} \end{align*}
 \]
Example 7: Find a particular solution of
\[y'' + 4y' + 4y = 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t. \]

- Complementary solutions:
 \[\lambda^2 + 4\lambda + 4 = 0 \Rightarrow \lambda_1 = \lambda_2 = -2 \Rightarrow y_c = C_1 e^{-2t} + C_2 te^{-2t} \]

- The trial function:
 \[y_p(t) = ae^{4t} + (b_0 + b_1 t + b_2 t^2)e^{-2t} + (A \cos t + B \sin t). \]
 This would fail, since the part \((b_0 + b_1 t)e^{-2t} \) overlaps \(y_c(t) \).

- The modified trial function:
 \[y_p(t) = ae^{4t} + t^2(b_0 + b_1 t + b_2 t^2)e^{-2t} + (A \cos t + B \sin t). \]

- Substitute this correct \(y_p(t) \) in the nonhomog eq:
 \[9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t = y_p'' + 4y_p' + 4y_p = \cdots \cdots \]
 \[= 36ae^{4t} + (2b_0 + 6b_1 t + 12b_2 t^2)e^{-2t} + (3A + 4B) \cos t + (-4A + 3B) \sin t \]

- Compare the coefficients of the two sides:
 \[
 \begin{cases}
 36a = 9 \\
 2b_0 = 3, \ 6b_1 = -2, \ 12b_2 = -1 \\
 3A + 4B = 1, \ -4A + 3B = 0
 \end{cases} \Rightarrow \begin{cases}
 a = \frac{1}{4} \\
 b_0 = \frac{3}{2}, \ b_1 = -\frac{1}{3}, \ b_2 = -\frac{1}{12} \\
 A = \frac{3}{25}, \ B = \frac{4}{25}
 \end{cases}
 \]

- The particular solution
 \[y_p(t) = \frac{1}{4}e^{4t} + t^2 \left(\frac{3}{2} - \frac{1}{3} t - \frac{1}{12} t^2 \right) e^{-2t} + \frac{3}{25} \cos t + \frac{4}{25} \sin t. \]
Example 8: Find a particular solution of
\[y'' + 2y' + 10y = e^{-t} + \cos(3t) + e^{-t} \sin(3t). \]
Example 8: Find a particular solution of
\[y'' + 2y' + 10y = e^{-t} + \cos(3t) + e^{-t} \sin(3t). \]

- Complementary solutions: \(\lambda^2 + 2\lambda + 10 = 0 \Rightarrow \lambda_{1,2} = -1 \pm 3i \)
 \[y_c = C_1 e^{-t} \cos(3t) + C_2 e^{-t} \sin(3t) \]
Example 8: Find a particular solution of
\[y'' + 2y' + 10y = e^{-t} + \cos(3t) + e^{-t} \sin(3t). \]

- Complementary solutions: \(\lambda^2 + 2\lambda + 10 = 0 \Rightarrow \lambda_{1,2} = -1 \pm 3i \)
 \[y_c = C_1 e^{-t} \cos(3t) + C_2 e^{-t} \sin(3t) \]

- The trial function:
 \[y_p(t) = ae^{-t} + [b_1 \cos(3t) + b_2 \sin(3t)] + [Ate^{-t} \cos(3t) + Bte^{-t} \sin(3t)] \]
Example 8: Find a particular solution of
\[y'' + 2y' + 10y = e^{-t} + \cos(3t) + e^{-t} \sin(3t). \]

- Complementary solutions: \(\lambda^2 + 2\lambda + 10 = 0 \Rightarrow \lambda_{1,2} = -1 \pm 3i \)
 \(\Rightarrow y_c = C_1 e^{-t} \cos(3t) + C_2 e^{-t} \sin(3t) \)

- The trial function:
 \[y_p(t) = ae^{-t} + [b_1 \cos(3t) + b_2 \sin(3t)] \]
 \[+ [Ate^{-t} \cos(3t) + Bte^{-t} \sin(3t)] \]

- Substitute \(y_p(t) \) in the nonhomog eq and simplify:

 \[e^{-t} + \cos(3t) + e^{-t} \sin(3t) \]
 \[= y''_p + 2y'_p + 10y_p \]
 \[= 9ae^{-t} + (b_1 + 6b_2) \cos(3t) + (-6b_1 + b_2) \sin(3t) \]
 \[+ 6Be^{-t} \cos(3t) - 6Ae^{-t} \sin(3t). \]
Example 8: Find a particular solution of

\[y'' + 2y' + 10y = e^{-t} + \cos(3t) + e^{-t} \sin(3t). \]

- Complementary solutions: \(\lambda^2 + 2\lambda + 10 = 0 \Rightarrow \lambda_{1,2} = -1 \pm 3i \)
 \(y_c = C_1 e^{-t} \cos(3t) + C_2 e^{-t} \sin(3t) \)

- The trial function:
 \[y_p(t) = ae^{-t} + [b_1 \cos(3t) + b_2 \sin(3t)] \]
 \[+ [Ate^{-t} \cos(3t) + Bte^{-t} \sin(3t)] \]

- Substitute \(y_p(t) \) in the nonhomog eq and simplify:
 \[e^{-t} + \cos(3t) + e^{-t} \sin(3t) = y'' + 2y' + 10y_p = \cdots = 9ae^{-t} + (b_1 + 6b_2) \cos(3t) + (-6b_1 + b_2) \sin(3t) + 6Be^{-t} \cos(3t) - 6Ae^{-t} \sin(3t). \]

- Compare the coefficients of the two sides:
 \[
 \begin{align*}
 9a &= 1 \\
 b_1 + 6b_2 &= 1, \quad -6b_1 + b_2 &= 0 \\
 6B &= 0, \quad -6A &= 1
 \end{align*}
 \]
 \[
 \begin{align*}
 a &= 1/9 \\
 b_1 &= 1/37, \quad b_2 = 6/37 \\
 A &= -1/6, \quad B = 0
 \end{align*}
 \]
Example 8: Find a particular solution of
\[y'' + 2y' + 10y = e^{-t} + \cos(3t) + e^{-t} \sin(3t). \]

- Complementary solutions:
 \[\lambda^2 + 2\lambda + 10 = 0 \Rightarrow \lambda_{1,2} = -1 \pm 3i \]
 \[\Rightarrow y_c = C_1 e^{-t} \cos(3t) + C_2 e^{-t} \sin(3t) \]

- The trial function:
 \[y_p(t) = ae^{-t} + [b_1 \cos(3t) + b_2 \sin(3t)] + [Ate^{-t} \cos(3t) + Bte^{-t} \sin(3t)] \]

- Substitute \(y_p(t) \) in the nonhomog eq and simplify:
 \[e^{-t} + \cos(3t) + e^{-t} \sin(3t) = y_p'' + 2y_p' + 10y_p = \cdots \cdots \]
 \[= 9ae^{-t} + (b_1 + 6b_2) \cos(3t) + (-6b_1 + b_2) \sin(3t) \]
 \[+ 6Be^{-t} \cos(3t) - 6Ae^{-t} \sin(3t). \]

- Compare the coefficients of the two sides:
 \[\begin{cases}
 9a &= 1 \\
 b_1 + 6b_2 &= 1, \quad -6b_1 + b_2 &= 0 \\
 6B &= 0, \quad -6A &= 1
\end{cases} \Rightarrow \begin{cases}
 a &= 1/9 \\
 b_1 &= 1/37, \quad b_2 &= 6/37 \\
 A &= -1/6, \quad B &= 0
\end{cases} \]

- The particular solution
 \[y_p(t) = \frac{1}{10} e^{-2t} + \frac{1}{37} \cos(3t) + \frac{6}{37} \sin(3t) - \frac{1}{6} te^{-t} \cos(3t). \]
Summary of the Method of Undetermined Coefficients

Nonhomog Linear Equations: \[a_2 y''(t) + a_1 y'(t) + a_0 y(t) = f(t) \]

How to set up the trial function?

<table>
<thead>
<tr>
<th>(f(t))</th>
<th>(y_p(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_N(t)) (a polynomial of deg (N))</td>
<td>(A_0 + A_1 t + \cdots + A_N t^N)</td>
</tr>
<tr>
<td>(p_N(t)e^{rt})</td>
<td>((A_0 + A_1 t + \cdots + A_N t^N)e^{rt})</td>
</tr>
<tr>
<td>(\left{ \begin{array}{l} p_N(t) \cos(\omega t) \ \text{and/or} \quad p_N(t) \sin(\omega t) \end{array} \right})</td>
<td>((A_0 + A_1 t + \cdots + A_N t^N) \cos(\omega t) + (B_0 + B_1 t + \cdots + B_N t^N) \sin(\omega t))</td>
</tr>
<tr>
<td>(\left{ \begin{array}{l} p_N(t)e^{rt} \cos(\omega t) \ \text{and/or} \quad p_N(t)e^{rt} \sin(\omega t) \end{array} \right})</td>
<td>((A_0 + A_1 t + \cdots + A_N t^N)e^{rt} \cos(\omega t) + (B_0 + B_1 t + \cdots + B_N t^N)e^{rt} \sin(\omega t))</td>
</tr>
</tbody>
</table>

In the case of resonance:
- First pick a naive trial function as in the above table.
- Then multiply the resonant term(s) by \(t^k \), where \(k \) is the smallest positive integer to ensure that \(y_p \) does not overlap \(y_c \).
Bad News
Bad News

- The method of undetermined coefficients does **NOT** work, when the equation has variable coefficients:

\[a_2(t)y'' + a_1(t)y' + a_0(t)y = f(t) \]

Example: \((t - 1)y'' - ty' + y = e^{2t}\) cannot be solved by the m.u.c.
Bad News

- The method of undetermined coefficients does NOOOOOOT work, when the equation has variable coefficients:
 \[a_2(t)y'' + a_1(t)y' + a_0(t)y = f(t) \]

 Example: \((t-1)y'' - ty' + y = e^{2t}\) cannot be solved by the m.u.c.

- Even for the equations of constant coefficients:
 \[a_2y'' + a_1y' + a_0y = f(t), \]
 the m.u.c. does NOOOOOOT always work.
 It only works when \(f(t)\) is a linear combination of the functions that appear in the table of the last page.

 Examples for which the m.u.c. fails:
 \[y'' + y = \tan t, \quad y'' + 2y' + y = e^{t^2}, \quad y'' - y = \frac{1}{1+t}, \quad \cdots \]
Bad News

- The method of undetermined coefficients does **NOT** work, when the equation has variable coefficients:
 \[a_2(t)y'' + a_1(t)y' + a_0(t)y = f(t) \]

 Example: \((t - 1)y'' - ty' + y = e^{2t}\) cannot be solved by the m.u.c.

- Even for the equations of constant coefficients:
 \[a_2y'' + a_1y' + a_0y = f(t), \]

 the m.u.c. does **NOT** always work.

 It only works when \(f(t)\) is a linear combination of the functions that appear in the table of the last page.

 Examples for which the m.u.c. fails:
 \[y'' + y = \tan t, \quad y'' + 2y' + y = e^{t^2}, \quad y'' - y = \frac{1}{1+t}, \quad \cdots \]

Good News

- There is a more general method, the *variation of parameters*, that can solve any nonhomog linear differential equation, as long as \(y_c\) has been provided/prepared.