Second Order Nonhomogeneous Linear Differential Equations with Constant Coefficients:
the method of undetermined coefficients

Xu-Yan Chen
Second Order Nonhomogeneous Linear Differential Equations with Constant Coefficients:

\[a_2 y''(t) + a_1 y'(t) + a_0 y(t) = f(t), \]

where \(a_2 \neq 0, a_1, a_0 \) are constants, and \(f(t) \) is a given function (called the nonhomogeneous term).

General solution structure:

\[y(t) = y_p(t) + y_c(t) \]

where \(y_p(t) \) is a particular solution of the nonhomog equation, and \(y_c(t) \) are solutions of the homogeneous equation:

\[a_2 y_c''(t) + a_1 y_c'(t) + a_0 y_c(t) = 0. \]

The characteristic roots: \(a_2 \lambda^2 + a_1 \lambda + a_0 = 0 \)

\(\Rightarrow \) The complementary solutions \(y_c(t) \).
Second Order Nonhomogeneous Linear Differential Equations with Constant Coefficients:

\[a_2 y''(t) + a_1 y'(t) + a_0 y(t) = f(t), \]

where \(a_2 \neq 0, a_1, a_0 \) are constants, and \(f(t) \) is a given function (called the nonhomogeneous term).

General solution structure:

\[y(t) = y_p(t) + y_c(t) \]

where \(y_p(t) \) is a particular solution of the nonhomogeneous equation, and \(y_c(t) \) are solutions of the homogeneous equation:

\[a_2 y_c''(t) + a_1 y_c'(t) + a_0 y_c(t) = 0. \]

The characteristic roots: \(a_2 \lambda^2 + a_1 \lambda + a_0 = 0 \)

⇒ The complementary solutions \(y_c(t) \).

What is this note about? The Method of Undetermined Coefficients:
Second Order Nonhomogeneous Linear Differential Equations with Constant Coefficients:

\[a_2 y''(t) + a_1 y'(t) + a_0 y(t) = f(t), \]

where \(a_2 \neq 0, a_1, a_0 \) are constants, and \(f(t) \) is a given function (called the nonhomogeneous term).

General solution structure:

\[y(t) = y_p(t) + y_c(t) \]

where \(y_p(t) \) is a particular solution of the nonhomog equation, and \(y_c(t) \) are solutions of the homogeneous equation:

\[a_2 y_c''(t) + a_1 y_c'(t) + a_0 y_c(t) = 0. \]

The characteristic roots: \(a_2 \lambda^2 + a_1 \lambda + a_0 = 0 \)

\[\Rightarrow \] The complementary solutions \(y_c(t) \).

What is this note about? **The Method of Undetermined Coefficients:** a method of finding \(y_p(t) \), when the nonhomog term \(f(t) \) belongs a simple class.
Second Order Nonhomogeneous Linear Differential Equations with Constant Coefficients:

\[a_2 y''(t) + a_1 y'(t) + a_0 y(t) = f(t), \]

where \(a_2 \neq 0, a_1, a_0 \) are constants, and \(f(t) \) is a given function (called the nonhomogeneous term).

General solution structure:

\[y(t) = y_p(t) + y_c(t) \]

where \(y_p(t) \) is a particular solution of the nonhomog equation, and \(y_c(t) \) are solutions of the homogeneous equation:

\[a_2 y''_c(t) + a_1 y'_c(t) + a_0 y_c(t) = 0. \]

The characteristic roots: \(a_2 \lambda^2 + a_1 \lambda + a_0 = 0 \)

\(\Rightarrow \) The complementary solutions \(y_c(t) \).

What is this note about? The Method of Undetermined Coefficients: a method of finding \(y_p(t) \), when the nonhomog term \(f(t) \) belongs a simple class.

Main Idea: Set up a trial function \(y_p(t) \), by copying the function form of \(f(t) \).
Example 1: Solve $3y'' + y' - 2y = 10e^{4t}$, \(y(0) = -1, y'(0) = 3 \).
Example 1: Solve $3y'' + y' - 2y = 10e^{4t}$, $y(0) = -1, y'(0) = 3$.

- General solutions $y(t) = y_c(t) + y_p(t)$.
Example 1: Solve $3y'' + y' - 2y = 10e^{4t}, \quad y(0) = -1, y'(0) = 3.$

- General solutions $y(t) = y_c(t) + y_p(t)$.
- Find complementary solutions $y_c(t)$:
Example 1: Solve $3y'' + y' - 2y = 10e^{4t}$, \(y(0) = -1, y'(0) = 3 \).

- General solutions \(y(t) = y_c(t) + y_p(t) \).
- Find complementary solutions \(y_c(t) \):

 \[
 3y''_c + y'_c - 2y_c = 0 \quad \text{(the corresponding homog eq)}
 \]

 \[
 3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = \frac{2}{3} \Rightarrow y_c = C_1 e^{-t} + C_2 e^{\frac{2}{3}t}
 \]
Example 1: Solve $3y'' + y' - 2y = 10e^{4t}$, $y(0) = -1, y'(0) = 3$.

- General solutions $y(t) = y_c(t) + y_p(t)$.
- Find complementary solutions $y_c(t)$:

 $3y''_c + y'_c - 2y_c = 0$ (the corresponding homog eq)

 $3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1e^{-t} + C_2e^{2/3t}$

- To find $y_p(t)$, set the trial function

 $y_p(t) = ae^{4t}$ (form copied from $f(t) = 10e^{4t}$)

where a is the undetermined coefficient.
Example 1: Solve $3y'' + y' - 2y = 10e^{4t}$, $y(0) = -1$, $y'(0) = 3$.

- General solutions $y(t) = y_c(t) + y_p(t)$.
- Find complementary solutions $y_c(t)$:

 $3y''_c + y'_c - 2y_c = 0$ (the corresponding homog eq)

 $3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{2/3 t}$

- To find $y_p(t)$, set the trial function

 $y_p(t) = ae^{4t}$ (form copied from $f(t) = 10e^{4t}$)

 where a is the undetermined coefficient.

- Substitute $y_p(t)$ in the nonhomog eq:

 \[
 3(ae^{4t})'' + (ae^{4t})' - 2ae^{4t} = 10e^{4t}
 \]

 \[
 = 3(16ae^{4t}) + (4ae^{4t}) - 2ae^{4t}
 \]

 \[
 = 50ae^{4t}
 \]
Example 1: Solve \(3y'' + y' - 2y = 10e^{4t}, \ y(0) = -1, \ y'(0) = 3.\)

- General solutions \(y(t) = y_c(t) + y_p(t).\)
- Find complementary solutions \(y_c(t):\)
 \[3y''_c + y'_c - 2y_c = 0 \quad \text{(the corresponding homog eq)}\]
 \[3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \ \lambda_2 = \frac{2}{3} \Rightarrow y_c = C_1e^{-t} + C_2e^{\frac{2}{3}t}\]
- To find \(y_p(t),\) set the trial function
 \[y_p(t) = ae^{4t} \quad \text{(form copied from} \ f(t) = 10e^{4t})\]
 where \(a\) is the undetermined coefficient.
- Substitute \(y_p(t)\) in the nonhomog eq:
 \[3(ae^{4t})'' + (ae^{4t})' - 2ae^{4t} = 10e^{4t}\]
 \[= 3(16ae^{4t}) + (4ae^{4t}) - 2ae^{4t}\]
 \[= 50ae^{4t}\]
- Compare the coefficients of the two sides:
 \[50a = 10 \Rightarrow a = \frac{1}{5}\]
Example 1: Solve $3y'' + y' - 2y = 10e^{4t}$, $y(0) = -1, y'(0) = 3$.

- General solutions $y(t) = y_c(t) + y_p(t)$.

- Find complementary solutions $y_c(t)$:

 $3y''_c + y'_c - 2y_c = 0$ \quad (the corresponding homog eq)

 $3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = \frac{2}{3} \Rightarrow y_c = C_1e^{-t} + C_2e^{\frac{2}{3}t}$

- To find $y_p(t)$, set the trial function

 $y_p(t) = ae^{4t}$ \quad (form copied from $f(t) = 10e^{4t}$)

 where a is the undetermined coefficient.

- Substitute $y_p(t)$ in the nonhomog eq:

 $3(ae^{4t})'' + (ae^{4t})' - 2ae^{4t} = 10e^{4t}$

 $= 3(16ae^{4t}) + (4ae^{4t}) - 2ae^{4t}$

 $= 50ae^{4t}$

- Compare the coefficients of the two sides:

 $50a = 10 \Rightarrow a = \frac{1}{5} \Rightarrow y_p(t) = \frac{1}{5}e^{4t}$
Example 1 (continued): Solve
\[3y'' + y' - 2y = 10e^{4t}, \quad y(0) = -1, y'(0) = 3.\]

Combine \(y_c\) and \(y_p\) to get

Gen Sols of Nonhomg Eq: \[y(t) = \frac{1}{5}e^{4t} + C_1e^{-t} + C_2e^{\frac{2}{3}t}.\]
Example 1 (continued): Solve
\[3y'' + y' - 2y = 10e^{4t}, \quad y(0) = -1, y'(0) = 3. \]

▷ Combine \(y_c \) and \(y_p \) to get

\[
\text{Gen Sols of Nonhomg Eq: } \quad y(t) = \frac{1}{5}e^{4t} + C_1 e^{-t} + C_2 e^{\frac{2}{3}t}.
\]

▷ Use initial conditions:

\[
y(0) = -1 \quad \Rightarrow \quad \frac{1}{5} + C_1 + C_2 = -1
\]
\[
y'(t) = \frac{4}{5}e^{4t} - C_1 e^{-t} + \frac{2}{3}C_2 e^{\frac{2}{3}t}, \quad y'(0) = 3 \quad \Rightarrow \quad \frac{4}{5} - C_1 + \frac{2}{3}C_2 = 3
\]
Example 1 (continued): Solve
\[3y'' + y' - 2y = 10e^{4t}, \quad y(0) = -1, y'(0) = 3. \]

Combine \(y_c \) and \(y_p \) to get

\[
\text{Gen Sols of Nonhomg Eq: } \quad y(t) = \frac{1}{5}e^{4t} + C_1 e^{-t} + C_2 e^{\frac{2}{3}t}.
\]

Use initial conditions:

\[
y'(t) = \frac{4}{5}e^{4t} - C_1 e^{-t} + \frac{2}{3}C_2 e^{\frac{2}{3}t}, \quad y'(0) = 3 \quad \Rightarrow \quad \frac{4}{5} - C_1 + \frac{2}{3}C_2 = 3
\]

Solve this:

\[
\begin{cases}
C_1 = -\frac{9}{5} \\
C_2 = \frac{3}{5}
\end{cases}
\]
Example 1 (continued): Solve
3y'' + y' - 2y = 10e^{4t}, \quad y(0) = -1, y'(0) = 3.

- Combine y_c and y_p to get

Gen Sols of Nonhomg Eq:
\[y(t) = \frac{1}{5}e^{4t} + C_1 e^{-t} + C_2 e^{\frac{2}{3}t}. \]

- Use initial conditions:

\[y(0) = -1 \quad \Rightarrow \quad \frac{1}{5} + C_1 + C_2 = -1 \]
\[y'(t) = \frac{4}{5}e^{4t} - C_1 e^{-t} + \frac{2}{3}C_2 e^{\frac{2}{3}t}, \quad y'(0) = 3 \quad \Rightarrow \quad \frac{4}{5} - C_1 + \frac{2}{3}C_2 = 3 \]

Solve this:
\[\begin{cases}
C_1 = -\frac{9}{5} \\
C_2 = \frac{3}{5}
\end{cases} \]

- The solution of the initial value problem:

\[y(t) = \frac{1}{5}e^{4t} - \frac{9}{5} e^{-t} + \frac{3}{5} e^{\frac{2}{3}t}. \]
Nonhomogeneous Linear Equations:

\[a_2 y''(t) + a_1 y'(t) + a_0 y(t) = f(t), \]

Towards the Rules of Setting Up the Trial Function:

\[
\begin{array}{c|c}
 f(t) & y_p(t) \\
 \hline
 k e^{rt} & A e^{rt} \\
 \hline
 \ldots & \ldots \\
\end{array}
\]

(to be continued)
Example 2: Solve \(3y'' + y' - 2y = -8te^{-2t}\).
Example 2: Solve \(3y'' + y' - 2y = -8te^{-2t}\).

Complementary solutions \(y_c(t)\):

\[
3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{2/3t}
\]
Example 2: Solve $3y'' + y' - 2y = -8te^{-2t}$.

- Complementary solutions $y_c(t)$:

 \[3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{2/3t}\]

- To find $y_p(t)$, set the trial function

 \[y_p(t) = At e^{-2t}.\]
Example 2: Solve $3y'' + y' - 2y = -8te^{-2t}$.

- Complementary solutions $y_c(t)$:
 \[3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1e^{-t} + C_2e^{\frac{2}{3}t}\]

- To find $y_p(t)$, set the trial function
 \[y_p(t) = Ae^{-2t}.\]

- Substitute $y_p(t)$ in the nonhomog eq:
 \[-8te^{-2t} = 3(Ate^{-2t})'' + (Ate^{-2t})' - 2Ate^{-2t}\]
 \[= 3(-4Ae^{-2t} + 4Ate^{-2t}) + (Ae^{-2t} - 2Ate^{-2t}) - 2Ate^{-2t}\]
 \[= -11Ae^{-2t} + 8Ate^{-2t}\]
Example 2: Solve $3y'' + y' - 2y = -8te^{-2t}$.

- Complementary solutions $y_c(t)$:

 $$3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1e^{-t} + C_2e^{2/3t}$$

- To find $y_p(t)$, set the trial function

 $$y_p(t) = Ae^{-2t}.$$

- Substitute $y_p(t)$ in the nonhomog eq:

 $$-8te^{-2t} = 3(Ae^{-2t})'' + (Ae^{-2t})' - 2Ae^{-2t}$$

 $$= 3(-4Ae^{-2t} + 4Ate^{-2t}) + (Ae^{-2t} - 2Ate^{-2t}) - 2Ate^{-2t}$$

 $$= -11Ae^{-2t} + 8Ate^{-2t}$$

- Compare the coefficients of the two sides:

 $$\begin{cases}
 -11A = 0 \\
 8A = -8
 \end{cases} \Rightarrow \text{Impossible!}$$
Example 2: Solve $3y'' + y' - 2y = -8te^{-2t}$.

- Complementary solutions $y_c(t)$:

 $$3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1e^{-t} + C_2e^{2t/3}$$

- To find $y_p(t)$, set the trial function

 $$y_p(t) = Ate^{-2t}.$$ \textbf{Wrong!}

- Substitute $y_p(t)$ in the nonhomog eq:

 $$-8te^{-2t} = 3(Ate^{-2t})'' + (Ate^{-2t})' - 2Ate^{-2t}$$

 $$= 3(-4Ae^{-2t} + 4Ate^{-2t}) + (Ae^{-2t} - 2Ate^{-2t}) - 2Ate^{-2t}$$

 $$= -11Ae^{-2t} + 8Ate^{-2t}$$

- Compare the coefficients of the two sides:

 $$\left\{ \begin{array}{l}
 -11A = 0 \\
 8A = -8
 \end{array} \right. \Rightarrow \text{Impossible!}$$

 The choice of the trial function $y_p(t) = Ate^{-2t}$ was \textbf{WRONG}!
Example 2 (continued): Solve $3y'' + y' - 2y = -8te^{-2t}$.

The correct point of view:

$$f(t) = -8te^{-2t} = (a \text{ polynomial of degree one})e^{-2t}.$$
Example 2 (continued): Solve $3y'' + y' - 2y = -8te^{-2t}$.

- The correct point of view:

 \[f(t) = -8te^{-2t} = (\text{a polynomial of degree one})e^{-2t}. \]

- The correct trial function:

 \[y_p(t) = (A + Bt)e^{-2t}. \]
Example 2 (continued): Solve $3y'' + y' - 2y = -8te^{-2t}$.

- **The correct point of view:**
 \[f(t) = -8te^{-2t} = (\text{a polynomial of degree one})e^{-2t}. \]

- **The correct trial function:**
 \[y_p(t) = (A + Bt)e^{-2t}. \]

- **Substitute** $y_p(t)$ **in the nonhomog eq:**
 \[
 -8te^{-2t} = 3[(A + Bt)e^{-2t}]'' + [(A + Bt)e^{-2t}]' - 2(A + Bt)e^{-2t}
 = 3(4A - 4B + 4Bt)e^{-2t} + (-2A + B - 2Bt)e^{-2t}
 + (-2A - 2Bt)e^{-2t}
 = (8A - 11B)e^{-2t} + 8Bte^{-2t}
 \]
Example 2 (continued): Solve $3y'' + y' - 2y = -8te^{-2t}$.

- The correct point of view:

 $$f(t) = -8te^{-2t} = (\text{a polynomial of degree one})e^{-2t}.$$

- The correct trial function:

 $$y_p(t) = (A + Bt)e^{-2t}.$$

- Substitute $y_p(t)$ in the nonhomog eq:

 \begin{align*}
 -8te^{-2t} &= 3[(A + Bt)e^{-2t}]'' + [(A + Bt)e^{-2t}]' - 2(A + Bt)e^{-2t} \\
 &= 3(4A - 4B + 4Bt)e^{-2t} + (-2A + B - 2Bt)e^{-2t} \\
 &\quad + (-2A - 2Bt)e^{-2t} \\
 &= (8A - 11B)e^{-2t} + 8Bte^{-2t}
 \end{align*}

- Compare the coefficients of the two sides:

\[
\begin{cases}
 8A - 11B = 0 \\
 8B = -8
\end{cases} \quad \Rightarrow \quad \begin{cases}
 A = -\frac{11}{8} \\
 B = -1
\end{cases} \quad \Rightarrow \quad y_p(t) = \left(-\frac{11}{8} - t\right)e^{-2t}
Example 2 (continued): Solve $3y'' + y' - 2y = -8te^{-2t}$.

- The correct point of view:

 \[f(t) = -8te^{-2t} = \text{(a polynomial of degree one)}e^{-2t}. \]

- The correct trial function:

 \[y_p(t) = (A + Bt)e^{-2t}. \]

- Substitute $y_p(t)$ in the nonhomog eq:

 \[
 -8te^{-2t} = 3[(A + Bt)e^{-2t}]'' + [(A + Bt)e^{-2t}]' - 2(A + Bt)e^{-2t}
 = 3(4A - 4B + 4Bt)e^{-2t} + (-2A + B - 2Bt)e^{-2t}
 + (-2A - 2Bt)e^{-2t}
 = (8A - 11B)e^{-2t} + 8Bte^{-2t}
 \]

- Compare the coefficients of the two sides:

 \[
 \begin{cases}
 8A - 11B = 0 \\
 8B = -8
 \end{cases} \quad \Rightarrow \quad \begin{cases}
 A = -\frac{11}{8} \\
 B = -1
 \end{cases} \quad \Rightarrow \quad y_p(t) = \left(-\frac{11}{8} - t \right) e^{-2t}
 \]

- The General Solutions of the Nonhomogeneous Equation:

 \[y(t) = y_p(t) + y_c(t) = \left(-\frac{11}{8} - t \right) e^{-2t} + C_1e^{-t} + C_2e^{\frac{3}{2}t}. \]
Example 3: Solve $3y'' + y' - 2y = -12t^2$.
Example 3: Solve $3y'' + y' - 2y = -12t^2$.

- Complementary solutions $y_c(t)$:

 $3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{2/3 t}$
Example 3: Solve $3y'' + y' - 2y = -12t^2$.

- Complementary solutions $y_c(t)$:
 \[3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1e^{-t} + C_2e^{2/3t}\]

- To find $y_p(t)$, set the trial function
 \[y_p(t) = At^2.\]
Example 3: Solve $3y'' + y' - 2y = -12t^2$.

- Complementary solutions $y_c(t)$:

 $3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{2/3 t}$

- To find $y_p(t)$, set the trial function

 $y_p(t) = At^2$. This does not work!
Example 3: Solve $3y'' + y' - 2y = -12t^2$.

- Complementary solutions $y_c(t)$:
 \[3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{2/3 t}\]

- To find $y_p(t)$, set the trial function
 \[y_p(t) = At^2. \quad \text{This does not work!}\]

- The correct trial function:
 \[y_p(t) = A + Bt + Ct^2.\]
Example 3: Solve $3y'' + y' - 2y = -12t^2$.

- Complementary solutions $y_c(t)$:

 $$3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{\frac{2}{3}t}$$

- To find $y_p(t)$, set the trial function

 $$y_p(t) = At^2.$$

 This does not work!

- The correct trial function:

 $$y_p(t) = A + Bt + Ct^2.$$

- Substitute $y_p(t)$ in the nonhomog eq:

 $$-12t^2 = 3(2C) + (B + 2Ct) - 2(A + Bt + Ct^2)$$

 $$= (-2A + B + 6C) + (-2B + 2C)t - 2Ct^2$$
Example 3: Solve $3y'' + y' − 2y = −12t^2$.

- Complementary solutions $y_c(t)$:

 $3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1e^{-t} + C_2e^{2/3t}$

- To find $y_p(t)$, set the trial function

 $y_p(t) = At^2$. This does not work!

- The correct trial function:

 $y_p(t) = A + Bt + Ct^2$.

- Substitute $y_p(t)$ in the nonhomog eq:

 $-12t^2 = 3(2C) + (B + 2Ct) - 2(A + Bt + Ct^2)$

 $= (-2A + B + 6C) + (-2B + 2C)t - 2Ct^2$

- Compare the coefficients of the two sides:

 $\begin{cases} -2A + B + 6C = 0 \\ -2B + 2C = 0 \Rightarrow B = 6 \Rightarrow y_p(t) = 21 + 6t + 6t^2 \end{cases}$
Example 3: Solve $3y'' + y' - 2y = -12t^2$.

- Complementary solutions $y_c(t)$:
 \[3\lambda^2 + \lambda - 2 = 0 \implies \lambda_1 = -1, \lambda_2 = 2/3 \implies y_c = C_1 e^{-t} + C_2 e^{2/3 t} \]

- To find $y_p(t)$, set the trial function
 \[y_p(t) = At^2. \] This does not work!

- The correct trial function:
 \[y_p(t) = A + Bt + Ct^2. \]

- Substitute $y_p(t)$ in the nonhomog eq:
 \[
 -12t^2 = 3(2C) + (B + 2Ct) - 2(A + Bt + Ct^2)
 = (-2A + B + 6C) + (-2B + 2C)t - 2Ct^2
 \]

- Compare the coefficients of the two sides:
 \[
 \begin{cases}
 -2A + B + 6C = 0 & A = 21 \\
 -2B + 2C = 0 & B = 6 \implies y_p(t) = 21 + 6t + 6t^2 \\
 -2C = -12 & C = 6
 \end{cases}
 \]

- The General Solutions of the Nonhomogeneous Equation:
 \[y(t) = y_p(t) + y_c(t) = 21 + 6t + 6t^2 + C_1 e^{-t} + C_2 e^{2/3 t}. \]
Nonhomogeneous Linear Equations:

\[a_2 y''(t) + a_1 y'(t) + a_0 y(t) = f(t), \]

Towards the Rules of Setting Up the Trial Function:

<table>
<thead>
<tr>
<th>(f(t))</th>
<th>(y_p(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_N(t)) (a polynomial of deg (N))</td>
<td>(A_0 + A_1 t + \cdots + A_N t^N)</td>
</tr>
<tr>
<td>(ke^{rt})</td>
<td>(Ae^{rt})</td>
</tr>
<tr>
<td>(p_N(t)e^{rt})</td>
<td>((A_0 + A_1 t + \cdots + A_N t^N)e^{rt})</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
</tbody>
</table>

(to be continued)
Example 4: Find a particular solution of $3y'' + y' - 2y = 5 \cos(2t)$.
Example 4: Find a particular solution of $3y'' + y' - 2y = 5 \cos(2t)$.

- Complementary solutions $y_c(t)$:

 $3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{2/3 t}$
Example 4: Find a particular solution of $3y'' + y' - 2y = 5 \cos(2t)$.

- Complementary solutions $y_c(t)$:

 $3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{2t/3}$

- To find $y_p(t)$, set the trial function

 $y_p(t) = A \cos(2t)$.

Example 4: Find a particular solution of $3y'' + y' - 2y = 5 \cos(2t)$.

- Complementary solutions $y_c(t)$:

 \[3 \lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{\frac{2}{3}t}\]

- To find $y_p(t)$, set the trial function

 \[y_p(t) = A \cos(2t)\]

- Substitute $y_p(t)$ in the nonhomog eq:

 \[
 5 \cos(2t) = 3[A \cos(2t)]'' + [A \cos(2t)]' - 2A \cos(2t) \\
 = 3(-4A \cos(2t)) - 2A \sin(2t) - 2A \cos(2t) \\
 = -14A \cos(2t) - 2A \sin(2t)
 \]
Example 4: Find a particular solution of $3y'' + y' - 2y = 5 \cos(2t)$.

- Complementary solutions $y_c(t)$:

 \[3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{2/3 t}\]

- To find $y_p(t)$, set the trial function

 \[y_p(t) = A \cos(2t)\]

- Substitute $y_p(t)$ in the nonhomog eq:

 \[5 \cos(2t) = 3[A \cos(2t)]'' + [A \cos(2t)]' - 2A \cos(2t)\]

 \[= 3(-4A \cos(2t)) - 2A \sin(2t) - 2A \cos(2t)\]

 \[= -14A \cos(2t) - 2A \sin(2t)\]

- Compare the coefficients of the two sides:

 \[
 \begin{cases}
 -14A = 5 \\
 -2A = 0 \end{cases} \Rightarrow \text{Impossible!}
 \]
Example 4: Find a particular solution of $3y'' + y' - 2y = 5 \cos(2t)$.

- Complementary solutions $y_c(t)$:

 $3\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 2/3 \Rightarrow y_c = C_1 e^{-t} + C_2 e^{\frac{2}{3}t}$

- To find $y_p(t)$, set the trial function

 $y_p(t) = A \cos(2t)$.

- Substitute $y_p(t)$ in the nonhomogeneous equation:

 $5 \cos(2t) = 3[A \cos(2t)]'' + [A \cos(2t)]' - 2A \cos(2t)$

 $= 3(-4A \cos(2t)) - 2A \sin(2t) - 2A \cos(2t)$

 $= -14A \cos(2t) - 2A \sin(2t)$

- Compare the coefficients of the two sides:

 \[
 \begin{cases}
 -14A = 5 \\
 -2A = 0
 \end{cases} \Rightarrow \text{Impossible!}

 The choice of the trial function $y_p(t) = A \cos(2t)$ was **Wrong**!
Example 4 (continued): Find a particular solution of
$3y'' + y' - 2y = 5 \cos(2t)$.

The correct trial function:

$$y_p(t) = A \cos(2t) + B \sin(2t).$$
Example 4 (continued): Find a particular solution of
$3y'' + y' - 2y = 5 \cos(2t)$.

The correct trial function:
\[y_p(t) = A \cos(2t) + B \sin(2t). \]

Substitute $y_p(t)$ in the nonhomog eq:
\[
5 \cos(2t) = 3[A \cos(2t) + B \sin(2t)]'' + [A \cos(2t) + B \sin(2t)]'
- 2[A \cos(2t) + B \sin(2t)]
\]
\[
= 3[-4A \cos(2t) - 4B \sin(2t)] + [-2A \sin(2t) + 2B \cos(2t)]
- 2[A \cos(2t) + B \sin(2t)]
\]
\[
= (-14A + 2B) \cos(2t) + (-2A - 14B) \sin(2t).
\]
Example 4 (continued): Find a particular solution of
\(3y'' + y' - 2y = 5 \cos(2t)\).

- The correct trial function:
 \[y_p(t) = A \cos(2t) + B \sin(2t)\].

- Substitute \(y_p(t)\) in the nonhomog eq:
 \[
 5 \cos(2t) = 3[A \cos(2t) + B \sin(2t)]'' + [A \cos(2t) + B \sin(2t)]'
 - 2[A \cos(2t) + B \sin(2t)] \\
 = 3[-4A \cos(2t) - 4B \sin(2t)] + [-2A \sin(2t) + 2B \cos(2t)]
 - 2[A \cos(2t) + B \sin(2t)] \\
 = (-14A + 2B) \cos(2t) + (-2A - 14B) \sin(2t).
 \]

- Compare the coefficients of the two sides:
 \[
 \begin{cases}
 -14A + 2B = 5 \\
 -2A - 14B = 0
 \end{cases}
 \Rightarrow
 \begin{cases}
 A = -\frac{7}{20} \\
 B = \frac{1}{20}
 \end{cases}
 \]
Example 4 (continued): Find a particular solution of \(3y'' + y' - 2y = 5 \cos(2t)\).

- **The correct trial function:**
 \[y_p(t) = A \cos(2t) + B \sin(2t).\]

- **Substitute** \(y_p(t)\) in the nonhomog eq:
 \[
 5 \cos(2t) = 3[A \cos(2t) + B \sin(2t)]'' + [A \cos(2t) + B \sin(2t)]'
 - 2[A \cos(2t) + B \sin(2t)]
 = 3[-4A \cos(2t) - 4B \sin(2t)] + [-2A \sin(2t) + 2B \cos(2t)]
 - 2[A \cos(2t) + B \sin(2t)]
 = (-14A + 2B) \cos(2t) + (-2A - 14B) \sin(2t).

- **Compare the coefficients of the two sides:**
 \[
 \begin{cases}
 -14A + 2B = 5 \\
 -2A - 14B = 0
 \end{cases}
 \Rightarrow
 \begin{cases}
 A = -\frac{7}{20} \\
 B = \frac{1}{20}
 \end{cases}

- **A Particular Solution of the Nonhomogeneous Equation:**
 \[y_p(t) = -\frac{7}{20} \cos(2t) + \frac{1}{20} \sin(2t).\]
Nonhomogeneous Linear Equations:

\[a_2y''(t) + a_1y'(t) + a_0y(t) = f(t) \]

Towards the Rules of Setting Up the Trial Function:

<table>
<thead>
<tr>
<th>(f(t))</th>
<th>(y_p(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_N(t)) (a polynomial of deg (N))</td>
<td>(A_0 + A_1t + \cdots + A_Nt^N)</td>
</tr>
<tr>
<td>(p_N(t)e^{rt})</td>
<td>((A_0 + A_1t + \cdots + A_Nt^N)e^{rt})</td>
</tr>
<tr>
<td>(\left{ \begin{array}{l} p_N(t) \cos(\omega t) \ p_N(t) \sin(\omega t) \end{array} \right})</td>
<td>(\left{ \begin{array}{l} (A_0 + A_1t + \cdots + A_Nt^N)\cos(\omega t) \ + (B_0 + B_1t + \cdots + B_Nt^N)\sin(\omega t) \end{array} \right})</td>
</tr>
<tr>
<td>(\left{ \begin{array}{l} p_N(t)e^{rt} \cos(\omega t) \ p_N(t)e^{rt} \sin(\omega t) \end{array} \right})</td>
<td>(\left{ \begin{array}{l} (A_0 + A_1t + \cdots + A_Nt^N)e^{rt}\cos(\omega t) \ + (B_0 + B_1t + \cdots + B_Nt^N)e^{rt}\sin(\omega t) \end{array} \right})</td>
</tr>
</tbody>
</table>

(to be continued)
Example 5: Find a particular solution of

\[3y'' + y' - 2y = 10e^{4t} - 8te^{-2t} - 12t^2 + 5 \cos(2t) + 17e^{-t} \cos t + 34e^{-t} \sin t\]
Example 5: Find a particular solution of

$$3y'' + y' - 2y = 10e^{4t} - 8te^{-2t} - 12t^2 + 5 \cos(2t) + 17e^{-t} \cos t + 34e^{-t} \sin t$$

We give two methods.
Example 5: Find a particular solution of

$$3y'' + y' - 2y = 10e^{4t} - 8te^{-2t} - 12t^2 + 5\cos(2t) + 17e^{-t}\cos t + 34e^{-t}\sin t$$

We give two methods.

Method 1:
Solve $3y''_1 + y'_1 - 2y_1 = 10e^{4t}$ to get a particular solution $y_1(t)$.
Solve $3y''_2 + y'_2 - 2y_2 = -8te^{-2t}$ to get a particular solution $y_2(t)$.
Solve $3y''_3 + y'_3 - 2y_3 = -12t^2$ to get a particular solution $y_3(t)$.
Solve $3y''_4 + y'_4 - 2y_4 = 5\cos(2t)$ to get a particular solution $y_4(t)$.
Solve $3y''_5 + y'_5 - 2y_5 = 17e^{-t}\cos t + 34e^{-t}\sin t$ to get a particular solution $y_5(t)$. (Set $y_5(t) = Ae^{-t}\cos t + Be^{-t}\sin t$)
Example 5: Find a particular solution of

\[3y'' + y' - 2y = 10e^{4t} - 8te^{-2t} - 12t^2 + 5 \cos(2t) + 17e^{-t} \cos t + 34e^{-t} \sin t \]

We give two methods.

Method 1:
Solve \(3y''_1 + y'_1 - 2y_1 = 10e^{4t} \) to get a particular solution \(y_1(t) \).
Solve \(3y''_2 + y'_2 - 2y_2 = -8te^{-2t} \) to get a particular solution \(y_2(t) \).
Solve \(3y''_3 + y'_3 - 2y_3 = -12t^2 \) to get a particular solution \(y_3(t) \).
Solve \(3y''_4 + y'_4 - 2y_4 = 5 \cos(2t) \) to get a particular solution \(y_4(t) \).
Solve \(3y''_5 + y'_5 - 2y_5 = 17e^{-t} \cos t + 34e^{-t} \sin t \) to get a particular solution \(y_5(t) \). (Set \(y_5(t) = Ae^{-t} \cos t + Be^{-t} \sin t \))

A particular solution to the original equation:

\[
y_p(t) = y_1(t) + y_2(t) + y_3(t) + y_4(t) + y_5(t) = \frac{1}{5}e^{2t} + \left(-\frac{11}{8} - t \right) e^{-2t} + 21 + 6t + 6t^2 - \frac{7}{20} \cos(2t) + \frac{1}{20} \sin(2t) + \frac{7}{2}e^{-t} \cos t - \frac{11}{2}e^{-t} \sin t.
\]
Example 5 (continued): Find a particular solution of
\[3y'' + y' - 2y = 10e^{4t} - 8te^{-2t} - 12t^2 + 5\cos(2t) + 17e^{-t}\cos t + 34e^{-t}\sin t \]

Method 2:

- Set a **BIIIIIG** trial function:
 \[y_p(t) = A_0 e^{4t} + (A_1 + A_2t)e^{-2t} + (A_3 + A_4t + A_5t^2) \]
 \[+ [A_6 \cos(2t) + A_7 \sin(2t)] + (A_8 e^{-t}\cos t + A_9 e^{-t}\sin t), \]
 with undetermined coefficients \(A_0, A_1, \cdots, A_9 \).
Example 5 (continued): Find a particular solution of

$$3y'' + y' - 2y = 10e^{4t} - 8te^{-2t} - 12t^2 + 5\cos(2t) + 17e^{-t}\cos t + 34e^{-t}\sin t$$

Method 2:

- Set a **BIIIIIIG** trial function:

 $$y_p(t) = A_0e^{4t} + (A_1 + A_2t)e^{-2t} + (A_3 + A_4t + A_5t^2)$$

 $$+ [A_6 \cos(2t) + A_7 \sin(2t)] + (A_8 e^{-t}\cos t + A_9 e^{-t}\sin t),$$

 with undetermined coefficients A_0, A_1, \ldots, A_9.

- Substitute this in the original equation.
Example 5 (continued): Find a particular solution of
\[3y'' + y' - 2y = 10e^{4t} - 8te^{-2t} - 12t^2 + 5 \cos(2t) + 17e^{-t} \cos t + 34e^{-t} \sin t\]

Method 2:

- Set a BIG trial function:
 \[y_p(t) = A_0 e^{4t} + (A_1 + A_2 t)e^{-2t} + (A_3 + A_4 t + A_5 t^2) + [A_6 \cos(2t) + A_7 \sin(2t)] + (A_8 e^{-t} \cos t + A_9 e^{-t} \sin t),\]
 with undetermined coefficients \(A_0, A_1, \cdots, A_9\).

- Substitute this in the original equation.

- Compare the coefficients of the two sides
 \[\Rightarrow\] Linear equations for \(A_0, A_1, \cdots A_9\).
Example 5 (continued): Find a particular solution of

\[3y'' + y' - 2y = 10e^{4t} - 8te^{-2t} - 12t^2 + 5\cos(2t) + 17e^{-t}\cos t + 34e^{-t}\sin t \]

Method 2:

- Set a \textbf{BIIIIIG} trial function:
 \[y_p(t) = A_0e^{4t} + (A_1 + A_2t)e^{-2t} + (A_3 + A_4t + A_5t^2) \]
 \[+ [A_6\cos(2t) + A_7\sin(2t)] + (A_8e^{-t}\cos t + A_9e^{-t}\sin t), \]
 with undetermined coefficients \(A_0, A_1, \cdots, A_9 \).

- Substitute this in the original equation.

- Compare the coefficients of the two sides
 \[\Rightarrow \text{Linear equations for } A_0, A_1, \cdots A_9. \]

- Solve \(A_0, A_1, \cdots A_9 \).
Example 5 (continued): Find a particular solution of

\[3y'' + y' - 2y = 10e^{4t} - 8te^{-2t} - 12t^2 + 5\cos(2t) + 17e^{-t}\cos t + 34e^{-t}\sin t\]

Method 2:

- Set a \textbf{BIG} trial function:

 \[y_p(t) = A_0e^{4t} + (A_1 + A_2t)e^{-2t} + (A_3 + A_4t + A_5t^2)\]
 \[+ [A_6\cos(2t) + A_7\sin(2t)] + (A_8e^{-t}\cos t + A_9e^{-t}\sin t),\]

 with undetermined coefficients \(A_0, A_1, \ldots, A_9\).

- Substitute this in the original equation.

- Compare the coefficients of the two sides
 \[\Rightarrow\] Linear equations for \(A_0, A_1, \ldots A_9\).

- Solve \(A_0, A_1, \ldots A_9\).

- Finally obtain the particular solution

 \[y_p(t) = \frac{1}{5}e^{2t} + \left(-\frac{11}{8} - t\right)e^{-2t} + 21 + 6t + 6t^2\]
 \[-\frac{7}{20}\cos(2t) + \frac{1}{20}\sin(2t) + \frac{7}{2}e^{-t}\cos t - \frac{11}{2}e^{-t}\sin t.\]

(Computational details skipped here.)
Example 6: Find general solutions of $y'' - y' - 2y = 36e^{3t} + 2e^{2t}$.
Example 6: Find general solutions of $y'' - y' - 2y = 36e^{3t} + 2e^{2t}$.

Complementary solutions $y_c(t)$:

$\lambda^2 - \lambda - 2 = 0 \Rightarrow \lambda_1 = 2, \lambda_2 = -1 \Rightarrow y_c = C_1 e^{2t} + C_2 e^{-t}$
Example 6: Find general solutions of \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions \(y_c(t) \):
 \[\lambda^2 - \lambda - 2 = 0 \implies \lambda_1 = 2, \lambda_2 = -1 \implies y_c = C_1 e^{2t} + C_2 e^{-t} \]

- To find \(y_p(t) \), set the trial function
 \[y_p(t) = Ae^{3t} + Be^{2t}. \]
Example 6: Find general solutions of \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions \(y_c(t) \):
 \[\lambda^2 - \lambda - 2 = 0 \Rightarrow \lambda_1 = 2, \lambda_2 = -1 \Rightarrow y_c = C_1 e^{2t} + C_2 e^{-t} \]

- To find \(y_p(t) \), set the trial function
 \[y_p(t) = Ae^{3t} + Be^{2t} \]

- Substitute \(y_p(t) \) in the nonhomog eq:
 \[
 36e^{3t} + 2e^{2t} = (Ae^{3t} + Be^{2t})'' - (Ae^{3t} + Be^{2t})' - 2(Ae^{3t} + Be^{2t}) \\
 = (9Ae^{3t} + 4Be^{2t}) - (3Ae^{3t} + 2Be^{2t}) - 2(Ae^{3t} + Be^{2t}) \\
 = 4Ae^{3t}
 \]
Example 6: Find general solutions of \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions \(y_c(t) \):
 \[
 \lambda^2 - \lambda - 2 = 0 \implies \lambda_1 = 2, \lambda_2 = -1 \implies y_c = C_1 e^{2t} + C_2 e^{-t}
 \]

- To find \(y_p(t) \), set the trial function
 \[
 y_p(t) = Ae^{3t} + Be^{2t}.
 \]

- Substitute \(y_p(t) \) in the nonhomog eq:
 \[
 36e^{3t} + 2e^{2t} = (Ae^{3t} + Be^{2t})'' - (Ae^{3t} + Be^{2t})' - 2(Ae^{3t} + Be^{2t})
 \]
 \[
 = (9Ae^{3t} + 4Be^{2t}) - (3Ae^{3t} + 2Be^{2t}) - 2(Ae^{3t} + Be^{2t})
 \]
 \[
 = 4Ae^{3t}
 \]

- Compare the coefficients of the two sides:
 \[
 \begin{cases}
 4A = 36 \\
 0 = 2
 \end{cases} \implies \text{Impossible!}
 \]
Example 6: Find general solutions of \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions \(y_c(t) \):
 \[
 \lambda^2 - \lambda - 2 = 0 \Rightarrow \lambda_1 = 2, \lambda_2 = -1 \Rightarrow y_c = C_1e^{2t} + C_2e^{-t}
 \]

- To find \(y_p(t) \), set the trial function
 \[
 y_p(t) = Ae^{3t} + Be^{2t}.
 \]

 Wrong!

- Substitute \(y_p(t) \) in the nonhomog eq:
 \[
 36e^{3t} + 2e^{2t} = \left(Ae^{3t} + Be^{2t} \right)'' - \left(Ae^{3t} + Be^{2t} \right)' - 2\left(Ae^{3t} + Be^{2t} \right) = (9Ae^{3t} + 4Be^{2t}) - (3Ae^{3t} + 2Be^{2t}) - 2\left(Ae^{3t} + Be^{2t} \right) = 4Ae^{3t}
 \]

- Compare the coefficients of the two sides:
 \[
 \begin{cases}
 4A = 36 \\
 0 = 2
 \end{cases} \Rightarrow \text{Impossible!}
 \]

The trial function \(y_p(t) = Ae^{3t} + Be^{2t} \) was BAD!
Example 6 (continued): \[y'' - y' - 2y = 36e^{3t} + 2e^{2t}. \]

- Complementary solutions: \(y_c = C_1 e^{2t} + C_2 e^{-t} \)
- The **BAD** trial function: \(y_p(t) = Ae^{3t} + Be^{2t}. \)
Example 6 (continued): \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions: \(y_c = C_1e^{2t} + C_2e^{-t} \)
- The BAD trial function: \(y_p(t) = Ae^{3t} + Be^{2t} \).
- The Reason of the Failure:
Example 6 (continued): \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions: \(y_c = C_1e^{2t} + C_2e^{-t} \)
- The BAD trial function: \(y_p(t) = Ae^{3t} + Be^{2t} \).
- The Reason of the Failure:
 - When \(y_p(t) \) is plugged in the nonhomog eq, we wish the left hand side would match the right hand side \(36e^{3t} + 2e^{2t} \).
Example 6 (continued): $y'' - y' - 2y = 36e^{3t} + 2e^{2t}$.

- Complementary solutions: $y_c = C_1e^{2t} + C_2e^{-t}$
- The BAD trial function: $y_p(t) = Ae^{3t} + Be^{2t}$.
- The Reason of the Failure:
 - When $y_p(t)$ is plugged in the nonhomog eq, we wish the left hand side would match the right hand side $36e^{3t} + 2e^{2t}$.
 - The Be^{2t} part of the trial function satisfies the homog eq. That is, $(Be^{2t})'' - (Be^{2t})' - 2Be^{2t} = 0$.
Example 6 (continued): $y'' - y' - 2y = 36e^{3t} + 2e^{2t}$.

- Complementary solutions: $y_c = C_1e^{2t} + C_2e^{-t}$
- The BAD trial function: $y_p(t) = Ae^{3t} + Be^{2t}$.
- The Reason of the Failure:
 - When $y_p(t)$ is plugged in the nonhomog eq, we wish the left hand side would match the right hand side $36e^{3t} + 2e^{2t}$.
 - The Be^{2t} part of the trial function satisfies the homog eq.
 That is, $(Be^{2t})'' - (Be^{2t})' - 2Be^{2t} = 0$.
 - In other words, when plugged in the nonhomog equation, this Be^{2t} produces many terms, but the sum of those terms will simplify to zero!
Example 6 (continued): \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions: \(y_c = C_1e^{2t} + C_2e^{-t} \)
- The BAD trial function: \(y_p(t) = Ae^{3t} + Be^{2t} \).
- **The Reason of the Failure:**
 - When \(y_p(t) \) is plugged in the nonhomog eq, we wish the left hand side would match the right hand side \(36e^{3t} + 2e^{2t} \).
 - The \(Be^{2t} \) part of the trial function satisfies the homog eq. That is, \((Be^{2t})'' - (Be^{2t})' - 2Be^{2t} = 0 \).
 - In other words, when plugged in the nonhomog equation, this \(Be^{2t} \) produces many terms, but the sum of those terms will simplify to zero!
 - Thus, impossible to balance the two sides of the nonhomog equation.
Example 6 (continued): \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions: \(y_c = C_1e^{2t} + C_2e^{-t} \)
- The BAD trial function: \(y_p(t) = Ae^{3t} + Be^{2t} \).

- The Reason of the Failure:
 - When \(y_p(t) \) is plugged in the nonhomog eq, we wish the left hand side would match the right hand side \(36e^{3t} + 2e^{2t} \).
 - The \(Be^{2t} \) part of the trial function satisfies the homog eq. That is, \((Be^{2t})'' - (Be^{2t})' - 2Be^{2t} = 0 \).
 - In other words, when plugged in the nonhomog equation, this \(Be^{2t} \) produces many terms, but the sum of those terms will simplify to zero!
 - Thus, impossible to balance the two sides of the nonhomog equation.

- In short, the failure was due to the fact that \(y_p(t) \) has overlap(s) with \(y_c(t) \).
Example 6 (continued): \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions: \(y_c = C_1e^{2t} + C_2e^{-t} \)
- The BAD trial function: \(y_p(t) = Ae^{3t} + Be^{2t} \).
- **The Reason of the Failure:**
 - When \(y_p(t) \) is plugged in the nonhomog eq, we wish the left hand side would match the right hand side \(36e^{3t} + 2e^{2t} \).
 - The \(Be^{2t} \) part of the trial function satisfies the homog eq. That is, \((Be^{2t})'' - (Be^{2t})' - 2Be^{2t} = 0 \).
 - In other words, when plugged in the nonhomog equation, this \(Be^{2t} \) produces many terms, but the sum of those terms will simplify to zero!
 - Thus, impossible to balance the two sides of the nonhomog equation.

- In short, the failure was due to the fact that \(y_p(t) \) has overlap(s) with \(y_c(t) \).
- This kind of cases are called **resonance**.
 - The term \(2e^{2t} \) in \(f(t) \) is called a **resonant term**.
Example 6 (continued): \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions: \(y_c(t) = C_1 e^{2t} + C_2 e^{-t} \)
- The **NAIVE** trial function: \(y_p(t) = Ae^{3t} + Be^{2t} \).
 This failed, since it has a term \(Be^{2t} \) overlapping \(y_c(t) \).
Example 6 (continued): \[y'' - y' - 2y = 36e^{3t} + 2e^{2t}. \]

- Complementary solutions: \(y_c(t) = C_1 e^{2t} + C_2 e^{-t} \)
- The \textbf{NAIVE} trial function: \(y_p(t) = Ae^{3t} + Be^{2t}. \) This failed, since it has a term \(Be^{2t} \) overlapping \(y_c(t) \).
- The \textbf{CORRECT} trial function: \(y_p(t) = Ae^{3t} + Bte^{2t}. \)
Example 6 (continued): \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions: \(y_c(t) = C_1e^{2t} + C_2e^{-t} \)

- The **NAIVE** trial function: \(y_p(t) = Ae^{3t} + Be^{2t} \).
 This failed, since it has a term \(Be^{2t} \) overlapping \(y_c(t) \).

- The **CORRECT** trial function: \(y_p(t) = Ae^{3t} + Bte^{2t} \).

- **The Method of Correction:** In the naive trial function, multiply the bad term \(Be^{2t} \) by \(t^k \), where \(k \) is the smallest positive integer to ensure that \(y_p \) does not overlap \(y_c \).
Example 6 (continued): \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions: \(y_c(t) = C_1e^{2t} + C_2e^{-t} \)

- The NAIVE trial function: \(y_p(t) = Ae^{3t} + Be^{2t} \).
 This failed, since it has a term \(Be^{2t} \) overlapping \(y_c(t) \).

- The CORRECT trial function: \(y_p(t) = Ae^{3t} + Bte^{2t} \).

- The Method of Correction: In the naive trial function, multiply the bad term \(Be^{2t} \) by \(t^k \), where \(k \) is the smallest positive integer to ensure that \(y_p \) does not overlap \(y_c \).

- Substitute \(y_p(t) \) in the nonhomog eq:

\[
36e^{3t} + 2e^{2t} = (Ae^{3t} + Bte^{2t})'' - (Ae^{3t} + Bte^{2t})' - 2(Ae^{3t} + Bte^{2t})
\]
\[
= (9Ae^{3t} + 4Be^{2t} + 4Bte^{2t}) - (3Ae^{3t} + Be^{2t} + 2Bte^{2t}) - 2(Ae^{3t} + Bte^{2t})
\]
\[
= 4Ae^{3t} + 3Be^{2t}
\]
Example 6 (continued): $y'' - y' - 2y = 36e^{3t} + 2e^{2t}$.

- **Complementary solutions:** $y_c(t) = C_1e^{2t} + C_2e^{-t}$
- **The NAIVE trial function:** $y_p(t) = Ae^{3t} + Be^{2t}$.
 This failed, since it has a term Be^{2t} overlapping $y_c(t)$.
- **The CORRECT trial function:** $y_p(t) = Ae^{3t} + Bte^{2t}$.
- **The Method of Correction:** In the naive trial function, multiply the bad term Be^{2t} by t^k, where k is the smallest positive integer to ensure that y_p does not overlap y_c.
- **Substitute $y_p(t)$ in the nonhomog eq:**
 $$36e^{3t} + 2e^{2t} = (Ae^{3t} + Bte^{2t})'' - (Ae^{3t} + Bte^{2t})' - 2(Ae^{3t} + Bte^{2t})$$
 $$= (9Ae^{3t} + 4Be^{2t} + 4Bte^{2t}) - (3Ae^{3t} + Be^{2t} + 2Bte^{2t})$$
 $$- 2(Ae^{3t} + Bte^{2t})$$
 $$= 4Ae^{3t} + 3Be^{2t}$$
- **Compare the coefficients of the two sides:**
 $$\begin{align*}
 4A &= 36 \\
 3B &= 2 \\
\end{align*}$$
 $$\Rightarrow \begin{align*}
 4A &= 36 \\
 3B &= 2 \\
 3B &= 2/3 \\
 A &= 9 \\
 B &= 2/3 \\
\end{align*}$$
 $$\Rightarrow y_p(t) = 9e^{3t} + \frac{2}{3}te^{2t}$$
Example 6 (continued): \(y'' - y' - 2y = 36e^{3t} + 2e^{2t} \).

- Complementary solutions: \(y_c(t) = C_1e^{2t} + C_2e^{-t} \)
- The **NAIVE** trial function: \(y_p(t) = Ae^{3t} + Be^{2t} \).
 This failed, since it has a term \(Be^{2t} \) overlapping \(y_c(t) \).
- The **CORRECT** trial function: \(y_p(t) = Ae^{3t} + Bte^{2t} \).
- The **Method of Correction**: In the naive trial function, multiply the bad term \(Be^{2t} \) by \(t^k \), where \(k \) is the smallest positive integer to ensure that \(y_p \) does not overlap \(y_c \).
- Substitute \(y_p(t) \) in the nonhomog eq:
 \[
 36e^{3t} + 2e^{2t} = (Ae^{3t} + Bte^{2t})'' - (Ae^{3t} + Bte^{2t})' - 2(Ae^{3t} + Bte^{2t})
 = (9Ae^{3t} + 4Be^{2t} + 4Bte^{2t}) - (3Ae^{3t} + Be^{2t} + 2Bte^{2t})
 - 2(Ae^{3t} + Bte^{2t})
 = 4Ae^{3t} + 3Be^{2t}
 \]
- Compare the coefficients of the two sides:
 \[
 \begin{align*}
 4A &= 36 \\
 3B &= 2
 \end{align*}
 \Rightarrow
 \begin{align*}
 A &= 9 \\
 B &= 2/3
 \end{align*}
 \Rightarrow
 y_p(t) = 9e^{3t} + \frac{2}{3}te^{2t}
 \]
- The general solutions
 \[
 y(t) = y_p(t) + y_c(t) = 9e^{3t} + \frac{2}{3}te^{2t} + C_1e^{2t} + C_2e^{-t}
 \]
Example 7: Find a particular solution of
\[y'' + 4y' + 4y = 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t. \]
Example 7: Find a particular solution of
\[y'' + 4y' + 4y = 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t. \]

Complementary solutions:
\[\lambda^2 + 4\lambda + 4 = 0 \Rightarrow \lambda_1 = \lambda_2 = -2 \Rightarrow y_c = C_1 e^{-2t} + C_2 te^{-2t} \]
Example 7: Find a particular solution of
\[y'' + 4y' + 4y = 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t. \]

- Complementary solutions:
 \[\lambda^2 + 4\lambda + 4 = 0 \Rightarrow \lambda_1 = \lambda_2 = -2 \Rightarrow y_c = C_1 e^{-2t} + C_2 te^{-2t} \]

- The trial function:
 \[y_p(t) = ae^{4t} + (b_0 + b_1 t + b_2 t^2)e^{-2t} + (A \cos t + B \sin t). \]
Example 7: Find a particular solution of
\(y'' + 4y' + 4y = 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t. \)

- Complementary solutions:
 \(\lambda^2 + 4\lambda + 4 = 0 \Rightarrow \lambda_1 = \lambda_2 = -2 \Rightarrow y_c = C_1 e^{-2t} + C_2 te^{-2t} \)

- The trial function:
 \(y_p(t) = a e^{4t} + (b_0 + b_1 t + b_2 t^2)e^{-2t} + (A \cos t + B \sin t). \)
 This would fail, since the part \((b_0 + b_1 t)e^{-2t}\) overlaps \(y_c(t).\)
Example 7: Find a particular solution of
\[y'' + 4y' + 4y = 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t. \]

- Complementary solutions:
 \[\lambda^2 + 4\lambda + 4 = 0 \Rightarrow \lambda_1 = \lambda_2 = -2 \Rightarrow y_c = C_1 e^{-2t} + C_2 te^{-2t} \]

- The trial function:
 \[y_p(t) = ae^{4t} + (b_0 + b_1 t + b_2 t^2)e^{-2t} + (A \cos t + B \sin t). \]
 This would fail, since the part \((b_0 + b_1 t)e^{-2t}\) overlaps \(y_c(t)\).

- The modified trial function:
 \[y_p(t) = ae^{4t} + t (b_0 + b_1 t + b_2 t^2)e^{-2t} + (A \cos t + B \sin t). \]
Example 7: Find a particular solution of
\[y'' + 4y' + 4y = 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t.\]

- Complementary solutions:
 \[\lambda^2 + 4\lambda + 4 = 0 \Rightarrow \lambda_1 = \lambda_2 = -2 \Rightarrow y_c = C_1 e^{-2t} + C_2 te^{-2t}\]

- The trial function:
 \[y_p(t) = ae^{4t} + (b_0 + b_1t + b_2t^2)e^{-2t} + (A \cos t + B \sin t).\]
 This would fail, since the part \((b_0 + b_1t)e^{-2t}\) overlaps \(y_c(t)\).

- The modified trial function:
 \[y_p(t) = ae^{4t} + t^2(b_0 + b_1t + b_2t^2)e^{-2t} + (A \cos t + B \sin t).\]
Example 7: Find a particular solution of
\[y'' + 4y' + 4y = 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t. \]

- Complementary solutions:
 \[\lambda^2 + 4\lambda + 4 = 0 \implies \lambda_1 = \lambda_2 = -2 \implies y_c = C_1e^{-2t} + C_2te^{-2t} \]

- The trial function:
 \[y_p(t) = ae^{4t} + (b_0 + b_1t + b_2t^2)e^{-2t} + (A \cos t + B \sin t). \]
 This would fail, since the part \((b_0 + b_1t)e^{-2t}\) overlaps \(y_c(t)\).

- The modified trial function:
 \[y_p(t) = ae^{4t} + t^2(b_0 + b_1t + b_2t^2)e^{-2t} + (A \cos t + B \sin t). \]

- Substitute this correct \(y_p(t)\) in the nonhomog eq:
 \[
 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t \quad = y_p'' + 4y_p' + 4y_p \quad = \cdots \cdots \]
 \[
 = 36ae^{4t} + (2b_0 + 6b_1t + 12b_2t^2)e^{-2t} + (3A + 4B)\cos t + (-4A + 3B)\sin t
 \]
Example 7: Find a particular solution of
\[y'' + 4y' + 4y = 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t. \]

- Complementary solutions:
 \[\lambda^2 + 4\lambda + 4 = 0 \Rightarrow \lambda_1 = \lambda_2 = -2 \Rightarrow y_c = C_1 e^{-2t} + C_2 te^{-2t} \]

- The trial function:
 \[y_p(t) = ae^{4t} + (b_0 + b_1 t + b_2 t^2)e^{-2t} + (A \cos t + B \sin t). \]
 This would fail, since the part \((b_0 + b_1 t)e^{-2t}\) overlaps \(y_c(t)\).

- The modified trial function:
 \[y_p(t) = ae^{4t} + t^2(b_0 + b_1 t + b_2 t^2)e^{-2t} + (A \cos t + B \sin t). \]

- Substitute this correct \(y_p(t)\) in the nonhomo eq:
 \[9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t = y'' + 4y' + 4y = \cdots \cdots = 36ae^{4t} + (2b_0 + 6b_1 t + 12b_2 t^2)e^{-2t} + (3A + 4B) \cos t + (-4A + 3B) \sin t \]

- Compare the coefficients of the two sides:
 \[\begin{cases} 36a = 9 \\ 2b_0 = 3, \ 6b_1 = -2, \ 12b_2 = -1 \Rightarrow \begin{cases} a = \frac{1}{4} \\ b_0 = \frac{3}{2}, \ b_1 = -\frac{1}{3}, \ b_2 = -\frac{1}{12} \end{cases} \\ 3A + 4B = 1, \ -4A + 3B = 0 \Rightarrow \begin{cases} A = \frac{3}{25}, \ B = \frac{4}{25} \end{cases} \end{cases} \]
Example 7: Find a particular solution of
\[y'' + 4y' + 4y = 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t. \]

- Complementary solutions:
 \[\lambda^2 + 4\lambda + 4 = 0 \Rightarrow \lambda_1 = \lambda_2 = -2 \Rightarrow y_c = C_1 e^{-2t} + C_2 t e^{-2t} \]

- The trial function:
 \[y_p(t) = ae^{4t} + (b_0 + b_1 t + b_2 t^2)e^{-2t} + (A \cos t + B \sin t). \]
 This would fail, since the part \((b_0 + b_1 t)e^{-2t}\) overlaps \(y_c(t)\).

- The modified trial function:
 \[y_p(t) = ae^{4t} + t^2(b_0 + b_1 t + b_2 t^2)e^{-2t} + (A \cos t + B \sin t). \]

- Substitute this correct \(y_p(t)\) in the nonhomog eq:
 \[
 9e^{4t} + (3 - 2t - t^2)e^{-2t} + \cos t = y_p'' + 4y_p' + 4y_p = \cdots \cdots
 = 36ae^{4t} + (2b_0 + 6b_1 t + 12b_2 t^2)e^{-2t} + (3A + 4B) \cos t + (-4A + 3B) \sin t
 \]

- Compare the coefficients of the two sides:
 \[
 \begin{align*}
 36a &= 9 \\
 2b_0 &= 3, \quad 6b_1 &= -2, \quad 12b_2 &= -1 \\
 3A + 4B &= 1, \quad -4A + 3B &= 0
 \end{align*}
 \]
 \[
 \begin{align*}
 a &= \frac{1}{4} \\
 b_0 &= \frac{3}{2}, \quad b_1 &= -\frac{1}{3}, \quad b_2 &= -\frac{1}{12} \\
 A &= \frac{3}{25}, \quad B &= \frac{4}{25}
 \end{align*}
 \]

- The particular solution
 \[y_p(t) = \frac{1}{4} e^{4t} + t^2 \left(\frac{3}{2} - \frac{1}{3} t - \frac{1}{12} t^2 \right) e^{-2t} + \frac{3}{25} \cos t + \frac{4}{25} \sin t. \]
Example 8: Find a particular solution of
\[y'' + 2y' + 10y = e^{-t} + \cos(3t) + e^{-t} \sin(3t). \]
Example 8: Find a particular solution of
\[y'' + 2y' + 10y = e^{-t} + \cos(3t) + e^{-t} \sin(3t). \]

Complementary solutions: \(\lambda^2 + 2\lambda + 10 = 0 \Rightarrow \lambda_{1,2} = -1 \pm 3i \)
\[y_c = C_1 e^{-t} \cos(3t) + C_2 e^{-t} \sin(3t) \]
Example 8: Find a particular solution of \(y'' + 2y' + 10y = e^{-t} + \cos(3t) + e^{-t} \sin(3t) \).

Complementary solutions: \(\lambda^2 + 2\lambda + 10 = 0 \Rightarrow \lambda_{1,2} = -1 \pm 3i \)

\(\Rightarrow y_c = C_1 e^{-t} \cos(3t) + C_2 e^{-t} \sin(3t) \)

The trial function: \(y_p(t) = ae^{-t} + [b_1 \cos(3t) + b_2 \sin(3t)] \)
\(+ [Ate^{-t} \cos(3t) + Bte^{-t} \sin(3t)] \)
Example 8: Find a particular solution of
\[y'' + 2y' + 10y = e^{-t} + \cos(3t) + e^{-t} \sin(3t).\]

Complementary solutions: \[\lambda^2 + 2\lambda + 10 = 0 \Rightarrow \lambda_{1,2} = -1 \pm 3i\]
\[\Rightarrow y_c = C_1 e^{-t} \cos(3t) + C_2 e^{-t} \sin(3t)\]

The trial function:
\[y_p(t) = ae^{-t} + [b_1 \cos(3t) + b_2 \sin(3t)] + [Ate^{-t} \cos(3t) + Bte^{-t} \sin(3t)]\]

Substitute \(y_p(t)\) in the nonhomog eq and simplify:
\[e^{-t} + \cos(3t) + e^{-t} \sin(3t) = y_p'' + 2y_p' + 10y_p = \cdots \cdots\]
\[= 9ae^{-t} + (b_1 + 6b_2) \cos(3t) + (-6b_1 + b_2) \sin(3t)\]
\[+6Be^{-t} \cos(3t) - 6Ae^{-t} \sin(3t).\]
Example 8: Find a particular solution of
\[y'' + 2y' + 10y = e^{-t} + \cos(3t) + e^{-t} \sin(3t). \]

- Complementary solutions: \(\lambda^2 + 2\lambda + 10 = 0 \Rightarrow \lambda_{1,2} = -1 \pm 3i \)
 \[\Rightarrow y_c = C_1 e^{-t} \cos(3t) + C_2 e^{-t} \sin(3t) \]

- The trial function:
 \[y_p(t) = ae^{-t} + [b_1 \cos(3t) + b_2 \sin(3t)] + [Ate^{-t} \cos(3t) + Bte^{-t} \sin(3t)] \]

- Substitute \(y_p(t) \) in the nonhomog eq and simplify:
 \[e^{-t} + \cos(3t) + e^{-t} \sin(3t) = y'' + 2y' + 10y_p = \cdots \cdots \]
 \[= 9ae^{-t} + (b_1 + 6b_2) \cos(3t) + (-6b_1 + b_2) \sin(3t) \]
 \[+ 6Be^{-t} \cos(3t) - 6Ae^{-t} \sin(3t) \]

- Compare the coefficients of the two sides:
 \[\begin{cases}
 9a = 1 \\
 b_1 + 6b_2 = 1, \quad -6b_1 + b_2 = 0 \\
 6B = 0, \quad -6A = 1
\end{cases} \quad \Rightarrow \quad \begin{cases}
 a = 1/9 \\
 b_1 = 1/37, \quad b_2 = 6/37 \\
 A = -1/6, \quad B = 0
\end{cases} \]
Example 8: Find a particular solution of
\[y'' + 2y' + 10y = e^{-t} + \cos(3t) + e^{-t} \sin(3t). \]

- Complementary solutions: \(\lambda^2 + 2\lambda + 10 = 0 \Rightarrow \lambda_{1,2} = -1 \pm 3i \)
 \[y_c = C_1 e^{-t} \cos(3t) + C_2 e^{-t} \sin(3t) \]

- The trial function: \(y_p(t) = ae^{-t} + [b_1 \cos(3t) + b_2 \sin(3t)] \)
 \[+ [Ate^{-t} \cos(3t) + Bte^{-t} \sin(3t)] \]

- Substitute \(y_p(t) \) in the nonhomog eq and simplify:
 \[e^{-t} + \cos(3t) + e^{-t} \sin(3t) = y'' + 2y' + 10y_p = \cdots \cdots \]
 \[= 9ae^{-t} + (b_1 + 6b_2) \cos(3t) + (-6b_1 + b_2) \sin(3t) \]
 \[+ 6Be^{-t} \cos(3t) - 6Ae^{-t} \sin(3t). \]

- Compare the coefficients of the two sides:
 \[\begin{align*}
 9a &= 1 \\
 b_1 + 6b_2 &= 1, \quad -6b_1 + b_2 &= 0 \\
 6B &= 0, \quad -6A &= 1
 \end{align*} \]
 \[\Rightarrow \begin{align*}
 a &= 1/9 \\
 b_1 &= 1/37, \quad b_2 &= 6/37 \\
 A &= -1/6, \quad B = 0
 \end{align*} \]

- The particular solution
 \[y_p(t) = \frac{1}{10} e^{-2t} + \frac{1}{37} \cos(3t) + \frac{6}{37} \sin(3t) - \frac{1}{6} te^{-t} \cos(3t). \]
Summary of the Method of Undetermined Coefficients

Nonhomog Linear Equations: \(a_2 y''(t) + a_1 y'(t) + a_0 y(t) = f(t) \)

How to set up the trial function?

<table>
<thead>
<tr>
<th>(f(t))</th>
<th>(y_p(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_N(t)) (a polynomial of deg (N))</td>
<td>(A_0 + A_1 t + \cdots + A_N t^N)</td>
</tr>
<tr>
<td>(p_N(t)e^{rt})</td>
<td>((A_0 + A_1 t + \cdots + A_N t^N)e^{rt})</td>
</tr>
<tr>
<td>(\left{ \begin{array}{l} p_N(t) \cos(\omega t) \ \text{and/or} \ p_N(t) \sin(\omega t) \end{array} \right})</td>
<td>(\left{ \begin{array}{l} (A_0 + A_1 t + \cdots + A_N t^N) \cos(\omega t) \ \text{and/or} \ (B_0 + B_1 t + \cdots + B_N t^N) \sin(\omega t) \end{array} \right})</td>
</tr>
<tr>
<td>(\left{ \begin{array}{l} p_N(t)e^{rt} \cos(\omega t) \ \text{and/or} \ p_N(t)e^{rt} \sin(\omega t) \end{array} \right})</td>
<td>(\left{ \begin{array}{l} (A_0 + A_1 t + \cdots + A_N t^N)e^{rt} \cos(\omega t) \ \text{and/or} \ (B_0 + B_1 t + \cdots + B_N t^N)e^{rt} \sin(\omega t) \end{array} \right})</td>
</tr>
</tbody>
</table>

In the case of resonance:
- First pick a naive trial function as in the above table.
- Then multiply the resonant term(s) by \(t^k \), where \(k \) is the smallest positive integer to ensure that \(y_p \) does not overlap \(y_c \).
Bad News
The method of undetermined coefficients does **NOOOOOOT** work, when the equation has variable coefficients:

\[
a_2(t)y'' + a_1(t)y' + a_0(t)y = f(t)
\]

Example: \((t - 1)y'' - ty' + y = e^{2t}\) cannot be solved by the m.u.c.
Bad News

The method of undetermined coefficients does NOOOOOOT work, when the equation has variable coefficients:

\[a_2(t)y'' + a_1(t)y' + a_0(t)y = f(t) \]

Example: \((t - 1)y'' - ty' + y = e^{2t}\) cannot be solved by the m.u.c.

Even for the equations of constant coefficients:

\[a_2y'' + a_1y' + a_0y = f(t), \]

the m.u.c. does NOOOOOOT always work.

It only works when \(f(t)\) is a linear combination of the functions that appear in the table of the last page.

Examples for which the m.u.c. fails:

\[y'' + y = \tan t, \quad y'' + 2y' + y = e^{t^2}, \quad y'' - y = \frac{1}{1+t}, \quad \cdots \]
Bad News

- The method of undetermined coefficients does **NOT** work, when the equation has variable coefficients:
 \[a_2(t)y'' + a_1(t)y' + a_0(t)y = f(t) \]

 Example: \((t - 1)y'' - ty' + y = e^{2t}\) cannot be solved by the m.u.c.

- Even for the equations of constant coefficients:
 \[a_2y'' + a_1y' + a_0y = f(t), \]
 the m.u.c. does **NOT** always work.

 It only works when \(f(t)\) is a linear combination of the functions that appear in the table of the last page.

 Examples for which the m.u.c. fails:
 \[y'' + y = \tan t, \quad y'' + 2y' + y = e^{t^2}, \quad y'' - y = \frac{1}{1+t}, \quad \ldots \]

Good News

- There is a more general method, the *variation of parameters*, that can solve any nonhomog linear differential equation, as long as \(y_c\) has been provided/prepared.