Nonlinear System of DDE's
\[\frac{dx}{dt} = f(x) \]
with equilibrium \(x = \bar{a} \)

Lin. Approx. System near \(x \approx \bar{a} \)
\[\frac{dx}{dt} = \begin{bmatrix} \text{Jacobian} \end{bmatrix}_{\text{evaluated at } x = \bar{a}}(x - \bar{a}) \]

- The two local dynamics near \(x \approx \bar{a} \) are equivalent, provided that \(\begin{bmatrix} \text{Jacobian} \end{bmatrix} \) has no neutral eigenvalues (i.e. All eigenvalues of \(\begin{bmatrix} \text{Jacobian} \end{bmatrix} \) have \(\text{Re} \lambda \neq 0 \))

- In case \(\begin{bmatrix} \text{Jacobian} \end{bmatrix} \) has neutral eigenvalues, (i.e. \(\text{Re} \lambda = 0 \) for some \(\lambda \))
 the two local dynamics near \(x \approx \bar{a} \)
 may be equivalent / may be non-equivalent.
 - In most cases with neutral eigenvalues, they are Non-Equivalent
 - Need to use other methods to determine
Nonlinear Diff Eq.
\[
\frac{dy}{dt} = f(y)
\]
with equilibrium \(y = b\)

Lin. Approx. Diff Eq Near \(y \approx b\)
\[
\frac{dy}{dt} = f'(y-b)
\]
where \(f'(y)\) = \(\left\frac{df}{dy}\right\) evaluated at \(y = b\)

- The two local dynamics near \(y \approx b\) are equivalent, provided that \(f'(y) \neq 0\).

- In case \(f'(y) = 0\), the two local dynamics near \(y \approx b\) may be equivalent / may be non-equivalent.
- In most cases of \(f'(y) = 0\), they are non-equivalent.
- Need to use other methods to determine
Example Nonlinear Diff Eq \(\frac{dy}{dt} = -y^3 + y^2 + 2y \). \(f(y) = -y^3 + y^2 + 2y \)

• Equilibrium: \(-y^3 + y^2 + 2y = 0 \), \(-y(y^2 - y - 2) = -y(y - 2)(y + 1) \)
 \(y = 0 \), \(y = 2 \), \(y = -1 \).

• Near \(y \approx 0 \): \(\frac{df}{dy} = -3y^2 + 2y + 2 \), \(\frac{df}{dy} \bigg|_{y=0} = 2 \).

Lin. Approx. Diff Eq. Near \(y \approx 0 \): \(\frac{dy}{dt} = 2y \)
In this Lin. Approx. Eq, \(y = 0 \) is repulsive & unstable
Hence, in the nonlinear diff eq \(\frac{dy}{dt} = f(y) \),
\(y = 0 \) is repulsive & unstable

• Near \(y \approx 2 \): \(\frac{df}{dy} \bigg|_{y=2} = -6 \)
Lin. Approx. Diff Eq. Near \(y \approx 2 \): \(\frac{dy}{dt} = -6(y - 2) \)
In this Lin. Approx Eq, \(y = 2 \) is attractive & asymp. stable
Hence, in the nonlin. diff eq \(\frac{dy}{dt} = f(y) \),
\(y = 2 \) is attractive & asymp. stable.
Near \(y \approx -1 \):

\[
\left. \frac{df}{dy} \right|_{y=-1} = \left. (-3y^2 + 2y + 2) \right|_{y=-1} = -3
\]

Lin. Approx. Diff Eq. Near \(y \approx -1 \):

\[
\frac{dy}{dt} = -3(y + 1)
\]

In this Lin. Approx Eq., \(y = -1 \) is attractive & asymp. stable.

In the Nonlin. Diff Eq

\[
\frac{dy}{dt} = -y^3 + y^2 + 2y
\]

\(y = -1 \) is attractive & asymp. stable.

- We can use the sign-changing method to verify the above:

 sign of \(f(y) = -y^3 + y^2 + 2y \):

 ![Sign diagram]

 \(-1\) \(0\) \(2\)
Example Nonlinear Diff Eq \(\frac{dy}{dt} = (y-1)^3 \) \(f(y) = (y-1)^3 \).

Equilibria: \((y-1)^3 = 0 \Rightarrow y = 1\).

Near \(y \approx 1\): \(\frac{df}{dy} = 3(y-1)^2 \), \(\frac{df}{dy} |_{y=1} = 0 \).

Lin. Approx. Diff Eq. Near \(y \approx 1\): \(\frac{dy}{dt} = 0(y-1) \), i.e. \(\frac{dy}{dt} = 0 \).

In this Lin. Approx. Eq. \(y = 1 \) is a stable equilibrium, but not asymptotically stable.

What about the Nonlinear Diff \(\frac{dy}{dt} = (y-1)^3 \) near \(y \approx 1\)?

sign of \(f(y)\)

\[\begin{array}{c|c}
\text{---} & +++ \\
1 & \rightarrow y
\end{array}\]

\(y = 1\) is unstable.

The two local dynamics near \(y \approx 1\) are different.