One Dimensional Wave Equation

[1] Consider the initial-boundary value problem for a finite vibrating string under the gravity with two fixed ends:

\[u_{tt} = \frac{T_0}{\rho} u_{xx} - g \quad 0 < x < L, t > 0, \]

\[u(0, t) = a, \quad u(L, t) = b \quad t > 0, \]

\[u(x, 0) = f(x), \quad u_t(x, 0) = g(x) \quad 0 \leq x \leq L. \]

(a) Show that the time-independent solution of this boundary value problem is

\[\phi(x) = \frac{\rho g}{2T_0} x(x - L) + \frac{b - a}{L} x + a. \]

and sketch the graph of \(\phi \) vs \(x \).

(b) Show that the transient solution \(v(x, t) = u(x, t) - \phi(x) \) satisfies the following initial-boundary value problem, in which both PDE and boundary conditions are homogeneous:

\[v_{tt} = \frac{T_0}{\rho} v_{xx} \quad 0 < x < L, t > 0, \]

\[v(0, t) = 0, \quad v(L, t) = 0 \quad t > 0, \]

\[v(x, 0) = f(x) - \phi(x), \quad v_t(x, 0) = g(x) \quad 0 \leq x \leq L. \]

[2] Rederive the wave equation for a vibrating string, when a distributed vertical force \(F(x, t) \) is acting on the string at position \(x \) and time \(t \). (Keep all other assumptions as we did in the class.) Show that the partial differential equation becomes:

\[u_{tt} = \frac{T_0}{\rho} u_{xx} + \frac{1}{\rho} F(x, t). \]

[3] Verify that the function

\[u(x, t) = \frac{1}{2} e^{-(x-ct)^2} + e^{-(x+ct)^2} \]

satisfies

\[u_{tt} = c^2 u_{xx}, \quad x \in \mathbb{R}, t \in \mathbb{R}. \]

Graph \(u(x, t) \) vs \(x \) for times \(t = -5/c, -4/c, \ldots, 5/c. \) (If you have animation software, produce the animation of \(u(x, t) \) vs \(x \), for \(-5/c \leq t \leq 5/c. \))

[4] Verify that the function

\[u(x, t) = \frac{1}{2} e^{-(x-ct)^2} - e^{-(x+ct)^2} \]

satisfies

\[u_{tt} = c^2 u_{xx}, \quad x \in \mathbb{R}, t \in \mathbb{R}. \]

Graph \(u(x, t) \) vs \(x \) for times \(t = -5/c, -4/c, \ldots, 5/c. \) (If you have animation software, produce the animation of \(u(x, t) \) vs \(x \), for \(-5/c \leq t \leq 5/c. \))