Math 2551 A1-3 Final

Section:

Name:
Student ID:
(1) Solve the initial value problem for \mathbf{r} as a vector function of t.

$$
\begin{gathered}
\frac{d^{2} \mathbf{r}}{d t^{2}}=-32 \mathbf{j} \\
\mathbf{r}(0)=2 \mathbf{j} \text { and }\left.\frac{d \mathbf{r}}{d t}\right|_{t=0}=50 \sqrt{2} \mathbf{i}+50 \sqrt{2} \mathbf{j}
\end{gathered}
$$

(2) Find \mathbf{T}, \mathbf{N} and curvature k of the curve
$\mathbf{r}(t)=(\cos t+t \sin t) \mathbf{i}+(\sin t-t \cos t) \mathbf{j}+3 \mathbf{k}, \quad t>0$.
(3) (a) Find $\partial z / \partial y$ at the point $(x, y, z)=(0, \pi, 0)$ assuming that the equation $\sin (2 x+y)+\sin (y+3 z)+\sin (x+$ $z)=0$ defines z as a differentiable function of x and y near the point.

$$
\text { (b) } F(x)=\int_{0}^{x^{4}} \sqrt{t^{4}+x^{3}} d t \text {, find } \frac{d F}{d x} \text {. }
$$

(c) Find the linearization $L(x, y, x)$ of $f(x, y, z)=e^{x}+$ $\sin (y+z)$ at $\left(0, \frac{\pi}{2}, 0\right)$.
(4) Suppose that the Celsius temperature at the point (x, y, z) on the sphere $x^{2}+y^{2}+z^{2}=1$ is $T=400 x y z^{2}$. Locate the highest and lowest temperatures on the sphere.
(5) Let D be the smaller cap cut from a solid ball of radius 2 units by a plane $\sqrt{2}$ units from the center of the sphere. Express the volume of D as an iterated triple integral in (a) spherical, (b) cylindrical, and (c) rectangular coordinates.
(6) Determine whether the vector field \mathbf{F} is conservative or not, and find a potential function f for \mathbf{F} if it's conservative.

$$
\mathbf{F}=(y \sin z) \mathbf{i}+(x \sin z) \mathbf{j}+(x y \cos z) \mathbf{k}
$$

(7) (a) Find the counterclockwise circulation for the field $\mathbf{F}=(x+y) \mathbf{i}-\left(x^{2}+y^{2}\right) \mathbf{j}$ along the curve C : The triangle bounded by $y=0, x=1$, and $y=x$.
(b) Find the area of the region enclosed by the curve $C_{1}: \mathbf{r}(t)=(2+\cos t) \mathbf{i}+\left(2+\sin ^{3} t\right) \mathbf{j}, 0 \leq t \leq 2 \pi$.
(8) Let S be the portion of the cylinder $y=\ln x$ in the first octant whose projection parallel to the y-axis onto the $x z$-plane is the rectangle $R_{x z}: 1 \leq x \leq e, 0 \leq z \leq 1$. Let n be the unit vector normal to S that points away from the $x z$-plane. Find the flux of $\mathbf{F}=2 y \mathbf{j}+z \mathbf{k}$ through S in the direction of $\mathbf{n}: \iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.

