## Math 2551 A1-3 Final (for Practice)

## Section:

Name:
Student ID:
(1) Solve the initial value problem for $\mathbf{r}$ as a vector function of $t$.

$$
\begin{gathered}
\frac{d^{2} \mathbf{r}}{d t^{2}}=-(\mathbf{i}+\mathbf{j}+\mathbf{k}), \\
\mathbf{r}(0)=10 \mathbf{i}+10 \mathbf{j}+10 \mathbf{k} \text { and }\left.\frac{d \mathbf{r}}{d t}\right|_{t=0}=\mathbf{0} .
\end{gathered}
$$

(2) Find an equation for the circle of curvature of the circle $\mathbf{r}(t)=2 \ln t \mathbf{i}-(t+1 / t) \mathbf{j}, e^{-2} \leq t \leq e^{2}$, at the point $(0,-2)$, where $t=1$.
(3) Let

$$
f(x, y)= \begin{cases}\frac{x y^{2}}{x^{2}+y^{4}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

Show that $f_{x}(0,0)$ and $f_{y}(0,0)$ exist, but $f$ is not differentiable at $(0,0)$.
(4) Let $w=f(u)+g(v)$, where $u=x+i y, v=x-i y$ and $i=\sqrt{-1}$. Does $w$ satisfy the Laplace equation $w_{x x}+w_{y y}=$ 0 if all necessary functions are differentiable? Justify your answer.
(5) Find the absolute maxima and minima of the function on the given domain. $f(x, y)=4 x-8 x y+2 y+1$ on the triangular plate bounded by the lines $x=0, y=0$, $x+y=1$ in the first quadrant.
(6) Find the volume of the region that lies inside the sphere $x^{2}+y^{2}+z^{2}=2$ and outside the cylinder $x^{2}+y^{2}=1$.
(7) Find the counterclockwise circulation and outward flux for the field $\mathbf{F}$ and curve $C$.

$$
\mathbf{F}=\left(y^{2}-x^{2}\right) \mathbf{i}+\left(x^{2}+y^{2}\right) \mathbf{j} .
$$

$C$ : The triangle bounded by $y=0, x=3$, and $y=x$.
(8) Find the flux $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$ across the surface in the specified direction. Here $\mathbf{F}=-x \mathbf{i}-y \mathbf{j}+z^{2} \mathbf{k}$ outward (normal away from the $z$-axis) through the portion of the corn $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=1$ and $z=2$.

