Math 2551 A1-3 Final Total: 40 points

Section:

Name:

Student Number:

For problems (1)-(4), fill in the blanks. (One point for each blank).
(1) $\mathbf{r}(t)=\frac{\sqrt{2}}{2} t \mathbf{i}+\left(\frac{\sqrt{2}}{2} t-16 t^{2}\right) \mathbf{j}$ is the position of a particle at time t. The angle between the velocity and acceleration vectors at the time $t=0$ is ().
(2) Given that $\frac{d^{2} \mathbf{r}}{d t^{2}}=-(\mathbf{i}+\mathbf{j}+\mathbf{k})$ and $\mathbf{r}(0)=10 \mathbf{i}+10 \mathbf{j}+10 \mathbf{k}$ and $\left.\frac{d \mathbf{r}}{d t}\right|_{t=0}=0$, $\mathbf{r}(t)=($
(3) The length of the curve $\mathbf{r}(t)=\sqrt{2} t \mathbf{i}+\sqrt{2} t \mathbf{j}+\left(1-t^{2}\right) \mathbf{k}$ from $(0,0,1)$ to $(\sqrt{2}, \sqrt{2}, 0)$ is (\quad). (There is no need to evaluate the definite integral).
(4) $\mathbf{r}(t)=6 \sin (2 t) \mathbf{i}+6 \cos (2 t) \mathbf{j}+5 t \mathbf{k}$, then $\mathbf{T}=(\quad), \mathbf{N}=(\quad)$, and the curvature $k=(\quad)$.

For problems (5)-(31), mark "true" or "false" for each statment. (One point for each statement).
(5) If the acceleration of a particle is always orthogonal to its velocity, then the speed of the particle is a constant.
(6) A normal vector of the level surface of

$$
g(x, y, z)=\int_{x}^{y} \frac{y d t}{1+t^{2}}+\int_{0}^{z} \frac{d \theta}{\sqrt{4-\theta^{2}}}
$$

at $(0,1, \sqrt{3})$ is $(-1,1 / 2,1)$.

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(1, \pi / 6)} \frac{x \sin y}{x^{2}+1}=1 / 4 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(0,0)} x \cos (1 / y)=0 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}=1 \tag{9}
\end{equation*}
$$

(10) Let $A(c, h, k, m, q)=\frac{k m}{q}+c m+\frac{h q}{2}$, then $\frac{\partial A}{\partial q}=-\frac{k m}{q^{2}}+c m+\frac{h}{2}$.

Let

$$
f(x, y)= \begin{cases}0, & x^{2}<y<2 x^{2} \\ 1, & \text { otherwise }\end{cases}
$$

Then (11) $f_{x}(0,0)=1$.
(12) f is differentiable at $(0,0)$.
(13) Let $w=2 y e^{x}-\ln z, x=\ln \left(t^{2}+1\right), y=\cos t$, and $z=e^{t}$, then $\left.\frac{d w}{d t}\right|_{t=0}=-1$
(14) $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-1=0$. Then $\left.\frac{\partial z}{\partial x}\right|_{(2,3,6)}=-9$.
(15) Let $F(x)=\int_{x^{2}}^{1} \sqrt{t^{3}+x^{2}} d t$, then $F^{\prime}(1)=-2 \sqrt{2}$.
(16) The derivative of $h(x, y, z)=\cos (x y)+e^{y z}+\ln (z x)$ at the point $(1,0,1 / 2)$ in the direction of $\mathbf{u}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ is 8 .
(17) Let $f(x, y)=\frac{x-y}{x+y}$. The unit vector for which $f_{\mathbf{u}}^{\prime}\left(-\frac{1}{2}, \frac{3}{2}\right)$ is smallest is $\mathbf{u}=-\frac{1}{\sqrt{10}}(3,1)$.
(18) An equation for the plane that is tangent to the surface $z=\sqrt{y-x}$ at $(1,2,1)$ is $(x-1)-(y-2)-2(z-1)=0$.
(19) The quadratic approximation of $f(x, y)=\sin x \cos y$ at the origin by Taylor's formula is x.

$$
\begin{equation*}
\int_{0}^{3} \int_{\sqrt{x / 3}}^{1} e^{y^{3}} d y d x=e \tag{20}
\end{equation*}
$$

$$
\begin{align*}
& \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{2}{\left(1+x^{2}+y^{2}\right)^{2}} d y d x=\int_{0}^{1} \int_{0}^{2 \pi} \frac{2}{\left(1+r^{2}\right)^{2}} d \theta d r \tag{21}\\
& \int_{0}^{2} \int_{0}^{4-x^{2}} \int_{0}^{x} \frac{\sin 2 z}{4-z} d y d z d x=\int_{0}^{4} \int_{0}^{2} \int_{y}^{\sqrt{4-z}} \frac{\sin 2 z}{4-z} d x d y d z \tag{22}
\end{align*}
$$

(23) A solid region in the first octant is bounded by the coordinate planes and the plane $x+y+z=2$. The density of the solid is $\delta(x, y, z)=2 x$. The mass of the solid is $4 / 3$.
(24) The volume of the solid bounded below by the sphere $\rho=2 \cos \phi$ and above by the cone $z=\sqrt{x^{2}+y^{2}}$ is $\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{2} \cos \phi \rho^{2} \sin \phi d \rho d \phi d \theta$.
(25) Along the curve $C: \mathbf{r}(t)=4 \cos t \mathbf{i}+4 \sin t \mathbf{j}+3 t \mathbf{k},-2 \pi \leq t \leq 2 \pi$, $\int_{C} \sqrt{x^{2}+y^{2}} d s=80 \pi$
(26) For the vector field $\mathbf{F}=x^{2} \mathbf{i}-y \mathbf{j}$ along the curve $C: x=y^{2}$ from (4,2) to $(1,-1), \int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{2}^{-1}\left(2 y^{5}+y\right) d y$
(27) Let C be the line segment from $(1,1,1)$ to $(1,2,1)$, and to $(-1,1,0)$. Then

$$
\int_{C} e^{x} \ln y d x+\left(\frac{e^{x}}{y}+\sin z\right) d y+y \cos z d z=\sin 1
$$

(28) Let C be the boundary of the region $0 \leq x \leq \pi, 0 \leq y \leq \sin x$ in counterclockwise direction. The $\int_{C} 3 y d x+2 x d y=-2$
(29) Let C be the boundary of a polygonal domain D in counterclockwise direction. Then the area of D is equal to $\int_{C}(-y) d x$.
(30) Let C be a simple closed smooth curve in the plane $2 x+2 y+z=2$. Then $\int_{C} 2 y d x+3 z d y-x d z= \pm A$, where A is the area of the region enclosed by C.
(31) The outward flux of the position vector field $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ through a smooth closed surface S is three thimes the volume of the region enclosed by the surface.
(32) The point closest to the origin on the curve of intersection of the plane $2 y+4 z=5$ and the cone $z^{2}=4 x^{2}+4 y^{2}$ must satisfy the equations $\nabla\left(z^{2}-\right.$ $\left.\left(4 x^{2}+4 y^{2}\right)\right)=\lambda \nabla(2 y+4 z-5)$ for some scalar λ.

For problems (33)-(35), please write down your procedure as much as possible. (Two points for each).
(33) Determine whether the function $f(x, y)=x^{4} y^{2} /\left(x^{6}+y^{4}\right)$ has limit or not as $(x, y) \rightarrow(0,0)$.
(34) Let

$$
f(x, y)= \begin{cases}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & \text { if }(x, y) \neq 0 \\ 0, & \text { if }(x, y)=0\end{cases}
$$

Find $\frac{\partial^{2} f}{\partial y \partial x}(0,0)$.
(35) Find all the local maxima, local minima and saddle points of the function $f(x, y)=\ln (x+y)+x^{2}-y$.

