Math 2551 A1-3 Midterm 1

Section:

Name:

Student ID:

(1) Find the parametric equation for the line that is tangent to the curve $\mathbf{r}(t)=t^{2} \mathbf{i}+(2 t-1) \mathbf{j}+t^{3} \mathbf{k}$ at the given parameter value $t=2$.
(2) Solve the following initial value problem for \mathbf{r} as a vector function of t.

Differential equation: $\frac{d \mathbf{r}}{d t}=\left(t^{3}+4 t\right) \mathbf{i}+t \mathbf{j}+2 t^{2} \mathbf{k}$
Initial condition: $\mathbf{r}(0)=\mathbf{i}+\mathbf{j}$
(3) Find the length of the indicated portion of the curve $\mathbf{r}(t)=(6 \sin (2 t)) \mathbf{i}+(6 \cos (2 t)) \mathbf{j}+5 t \mathbf{k}, 0 \leq t \leq \pi$.
(4) Find \mathbf{T}, \mathbf{N} and k for the space curve $\mathbf{r}(t)=(6 \sin (2 t)) \mathbf{i}+$ $(6 \cos (2 t)) \mathbf{j}+5 t \mathbf{k}$. Then find the equation for the osculating plane at $t=0$.

