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Abstract

The classical Fokker–Planck equation is a linear parabolic equation which
describes the time evolution of the probability distribution of a stochastic process
defined on a Euclidean space. Corresponding to a stochastic process, there often
exists a free energy functional which is defined on the space of probability distri-
butions and is a linear combination of a potential and an entropy. In recent years,
it has been shown that the Fokker–Planck equation is the gradient flow of the free
energy functional defined on the Riemannian manifold of probability distributions
whose inner product is generated by a 2-Wasserstein distance. In this paper, we
consider analogous matters for a free energy functional or Markov process defined
on a graph with a finite number of vertices and edges. If N � 2 is the number of
vertices of the graph, we show that the corresponding Fokker–Planck equation is
a system of N nonlinear ordinary differential equations defined on a Riemannian
manifold of probability distributions. However, in contrast to stochastic processes
defined on Euclidean spaces, the situation is more subtle for discrete spaces. We
have different choices for inner products on the space of probability distributions
resulting in different Fokker–Planck equations for the same process. It is shown that
there is a strong connection but there are also substantial discrepancies between the
systems of ordinary differential equations and the classical Fokker–Planck equation
on Euclidean spaces. Furthermore, both systems of ordinary differential equations
are gradient flows for the same free energy functional defined on the Riemannian
manifolds of probability distributions with different metrics. Some examples are
also discussed.

1. Introduction

In this paper, we are concerned with the relationships among three concepts
defined on graphs: the free energy functional, the Fokker–Planck equation and
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stochastic processes. We begin by recalling some of the well-known facts about
these concepts.

Consider a stochastic process defined by the following randomly perturbed
differential equation,

dx = −∇�(x)dt +√2βdWt , x ∈ R
N , (1)

where �(x) is a given scalar-valued potential function, β a positive constant, and
dWt the white noise. This stochastic differential equation (SDE) is one of the
primary tools in many practical problems that involve uncertainty or incomplete
information. Examples can be found in many different disciplines. Solutions of
SDEs are stochastic processes. The Fokker–Planck equation is a partial differential
equation describing the time evolution of the probability density function ρ(x, t)
of the trajectories of the SDE (1). It has the form

∂ρ(x, t)

∂t
= ∇ · (∇�(x)ρ(x, t)) + β�ρ(x, t), (2)

where ∇ · (∇�(x)ρ(x, t)) is called the drift term, and �ρ(x, t) is the diffusion
term generated by white noise. The Fokker–Planck equation plays a prominent
role in many disciplines and has been studied by many authors (see, for example,
[19,40,42]).

The notion of free energy is widely used in many disciplines, and it is related
to the maximal amount of work that can be extracted from a system ([30,43,52]
and references therein). For us, a free energy functional is a scalar-valued function
defined on the space of probability distributions and is composed of a potential
energy U and an entropy functional S, that is, the free energy is expressed as

F(ρ) = U (ρ) − βS(ρ), (3)

where β > 0 is a constant called temperature, and ρ is a probability density function
defined on a state space X , which may be “continuous” (for example X = R

N ), or
“discrete” (for example X = {a1, . . . , aN }). For a system with state space R

N , the
potential functional is defined by

U (ρ) :=
∫

RN
�(x)ρ(x)dx,

where �(x) is a given potential function. The entropy, also called Gibbs–Boltzmann
entropy, is given by

S(ρ) := −
∫

RN
ρ(x) log ρ(x)dx .

It is well known that the global minimizer of the free energy F is a probability
distribution, called the Gibbs distribution,

ρ∗(x) = 1

K
e−�(x)/β, where K =

∫

RN
e−�(x)/β dx . (4)
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We note that in order for equation (4) to be well-defined, � must satisfy some
growth conditions to ensure that K is finite. In this paper, we consider only poten-
tials satisfying this condition.

Although historical development of the free energy functional and that of the
Fokker–Planck equation are not directly related, there are many studies that reveal
some connection between them. The following two results about the relationship
between them are well known [15,16,19,25,26,33,40]:

1. The free energy (3) is a Lyapunov functional for the Fokker–Planck equation
(2), that is, if the probability density ρ(t, x) is a solution of (2), then F(ρ(t, x))

is a decreasing function of time.
2. The Gibbs distribution (4) is the global minimizer of the free energy (3) and is

the unique stationary solution of the Fokker–Planck equation (2).

In recent years, there have been many studies about the connection between the
free energy, the Fokker–Planck equation, the Ricci curvature, and optimal transpor-
tation in a continuous state space. For example, Jordan et al. [26] and Otto [33]
showed that the Fokker–Planck equation may be viewed as the gradient flow of the
free energy functional on a Riemannian manifold of probability measures with a
2-Wasserstein metric. More precisely, let the state space X be a “suitable” com-
plete metric space with distance d, and let P(X) be the space of Borel probability
measures on X . For any given two elements μ1, μ2 ∈ P(X), the 2-Wasserstein
distance between μ1 and μ2 is defined by

W2(μ1, μ2)
2 = inf

λ∈M (μ1,μ2)

∫

X×X
d(x, y)2dλ(x, y), (5)

where M (μ1, μ2) is the collection of Borel probability measures on X × X with
marginal measures μ1 and μ2 respectively. Then (P(X), W2) forms a Riemannian
manifold and the Fokker–Planck equation (2) can be derived by an implicit scheme
which can be reinterpreted as a gradient flow of the free energy (3) on this manifold.
Clearly, we have two metric spaces (X, d) and (P(X), W2), and there exists an
isometric embedding X → P(X) given by x → δx . For the notion of Wasserstein
distance, we refer to [13,47]. For theory and applications of the Wasserstein dis-
tance, we refer to the articles [2,7,8,10,17,18,28,34,48,49] and references therein.

We note that Otto and Westdickenberg [35] showed the relationship between
2-Wasserstein distance and minimal energy curves on X = R

N . Moreover, the con-
vexity of the entropy on (P(X), W2) is equivalent to the non-negativity of the Ricci
curvature, which induces the definition of the abstract Ricci curvature on length
spaces [11,44–46,50,51]. Furthermore, it is proved in [29] that if (X, d) is a length
space, then the manifold (P(X), W2) is also a length space.

We summarize the relationship among the free energy, the Fokker–Planck equa-
tion and stochastic processes in the state space R

N in Fig. 1. From the free energy
point of view, the Fokker–Planck equation is the gradient flow of the free energy
on the probability space with 2-Wasserstein metric. From the viewpoint of sto-
chastic processes, the Fokker–Planck equation describes the time evolution of the
probability density function.
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Fig. 1. Interrelations among the free energy, Fokker–Planck equation and the stochastic
differential equation in R

N

In this paper, we consider similar matters on a discrete state space which is a
finite graph. For a system with a discrete state space X = {a1, a2, . . . , aN }, we let
ρ = {ρi }N

i=1 be a probability distribution on X , that is,

N∑

i=1

ρi = 1 ρi � 0,

where ρi is the probability of state ai . Then the free energy functional has the
following expression:

F(ρ) =
N∑

i=1

�iρi + β

N∑

i=1

ρi log ρi , (6)

where �i is the potential at the state ai . Obviously, the potential and entropy func-
tionals are given, respectively, by

U (ρ) :=
N∑

i=1

�iρi , and S(ρ) := −
N∑

i=1

ρi log ρi .

The free energy functional has a global minimizer, the Gibbs density, given by

ρ∗
i = 1

K
e−�i /β, where K =

N∑

i=1

e−�i /β . (7)

Despite remarkable development in the theory related to the Fokker–Planck
equation in continuous state spaces, much less is known when the state space is
discrete and finite. There are results in mass transport theory for discrete spaces
[5,31,41]. However, to the best of our knowledge, the Fokker–Planck equation on
a graph has not been established. We know that a finite metric space with more
than one point is not a length space. This indicates that existing theory may not be
extended directly to a finite graph. In addition, the notion of “white noise” is also
not clear for a Markov process defined on a graph.

Based on recent results in continuous state spaces, it is natural to apply spatial
discretization schemes, such as the central difference scheme, to the Fokker–Planck
equation (2) to obtain their counterparts for discrete state spaces. The resulting
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equation for a discrete state space is a system of ordinary differential equations.
However, many problems arise with this approach. For instance, commonly used
linear discretization schemes often lead to steady states that are different from the
Gibbs density (7), which is the global minimizer of the free energy. In fact, we
prove rigorously that no linear discretization scheme could achieve the Gibbs dis-
tribution at its steady state for general potentials in Theorem 1. This suggests that
the equation obtained by a linear discretization scheme does not capture the real
energy landscape of the free energy on a discrete space, and it is not the desired
Fokker–Planck equation.

Inspired by Fig. 1, we define the Fokker–Planck equation on a graph X by
two different strategies. From the free energy viewpoint, since there is no ready
substitute for the Wasserstein metric on a graph, we first endow the probability
space P(X) with a Riemannian metric d, which depends on the potential as well
as the structure of the graph. Then, the Fokker–Planck equation can be derived as
the gradient flow of the free energy F on the Riemannian manifold (P(X), d).
From the stochastic process viewpoint, we introduce a new interpretation of white
noise perturbations to a Markov process on X , and derive another Fokker–Planck
equation as the time evolution equation for its probability density function. We
must note that unlike the continuous state space case, we obtain two different
Fokker–Planck equations on the graph following these approaches. It seems one of
the reasons that we obtain different Fokker–Planck equations is that finite graphs
are not length spaces, generally.

To be more precise on the approaches, we consider a graph G = (V, E), where
V = {a1, . . . , aN } is the set of vertices, and E the set of edges. We denote the
neighborhood of a vertex ai ∈ V by N (i):

N (i) = { j ∈ {1, 2, . . . , N }|{ai , a j } ∈ E}.
We further assume that the graph G is a simple graph (that is, there are no self loops
or multiple edges) with |V | � 2, and G is connected. We note that results in this
paper still hold after nominal modifications if the graph G is not simple.

Let � = (�i )
N
i=1 be a given potential function on V , where �i is the potential

on ai . β � 0 is the strength of “white noise”. Let

M =
{

ρ = (ρi )
N
i=1 ∈ R

N |
N∑

i=1

ρi = 1 and ρi > 0 for i = 1, 2, . . . , N

}

,

be the space of positive probability distributions on V . Then from the free energy
viewpoint, we obtain a Fokker–Planck equation on M (see Theorem 2):

dρi

dt
=

∑

j∈N (i),� j >�i

((� j + β log ρ j ) − (�i + β log ρi ))ρ j

+
∑

j∈N (i),� j <�i

((� j + β log ρ j ) − (�i + β log ρi ))ρi

+
∑

j∈N (i),� j =�i

β(ρ j − ρi ) (8)
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for i = 1, 2 . . . , N . If we take the stochastic process viewpoint, then we obtain a
different Fokker–Planck equation on M (see Theorem 3):

dρi

dt
=

∑

j∈N (i),�̄ j >�̄i

((� j + β log ρ j ) − (�i + β log ρi ))ρ j

+
∑

j∈N (i),�̄ j <�̄i

((� j + β log ρ j ) − (�i + β log ρi ))ρi , (9)

where �̄i = �i +β log ρi and i = 1, 2, . . . , N . For convenience, we call equations
(8) and (9) Fokker–Planck equation I (8) and II (9), respectively.

We will show that Fokker–Planck equation I (8) is the gradient flow of free
energy (6) on a Riemannian manifold (M , d�), where d� is a Riemannian met-
ric on M induced by �, and we will give the precise definition of (M , d�) in
Section 3. On the other hand, Fokker–Planck equation II (9) is derived from a
Markov process on G subject to a “white noise” perturbation, for which we will
give the definition in Section 5. In the continuous case, the Fokker–Planck equa-
tion obtained by these two different strategies coincides beautifully. However, in
the discrete case, there are substantial differences between them, although their
appearances seem to differ only a little. The connection of Fokker–Planck equation
I (8) to a Markov process on the graph is still unclear. Fokker–Planck equation II
(9) is not a gradient flow of the free energy on a smooth Riemannian manifold of
the probability space. However, it is a “gradient flow” of the free energy on another
metric space (M , d�̄), which is only piecewise smooth. More precisely, we will
show that M is divided into a finite number of segments, and d�̄ is smooth only
in the interior of each segment. We also note that the manner by which we derive
Fokker–Planck equation II (9) seems to be related to Onsager’s flux [37–39].

Although (8) and (9) are different, they share some similar properties for β > 0:

– Free energy F decreases along solutions of both equations.
– Both equations are gradient flows of the same free energy on the same proba-

bility space M , but with different metrics.
– The Gibbs distribution ρ∗ = (ρ∗

i )N
i=1 is the stable stationary solution of both

equations.
– Near the Gibbs distribution, the difference between the two equations is small.
– For both equations, given any initial condition ρ0 ∈ M , there exists a unique

solution ρ(t, ρ0) for t � 0, and ρ(t, ρ0) → ρ∗, as t → +∞.

Formally, if the graph is a lattice, both Fokker–Planck equations I (8) and II
(9) can be viewed as special upwind numerical schemes of the Fokker–Planck
equation on the continuous state space (2). However, they are both uncommonly
used schemes. In particular, the diffusion term is discretized by two surprisingly
consistent nonlinear schemes, which, to the best of our knowledge, have not been
considered by other authors. It is worth mentioning that most of the commonly
used consistent and stable linear schemes, such as the central difference scheme,
lead to unexpected problems as demonstrated in Section 2.

The results obtained in this paper are largely inspired by recent developments
in the Fokker–Planck equation and the 2-Wasserstein metric, especially the theory
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reported in [25,26,33]. Our results are also influenced by the upwind schemes
for shock capturing in conservation laws [6,27], as well as the recent studies
on Parrondo’s paradox [22,23] and flashing ratchet models for molecular motors
[1,14,24]. We will demonstrate a Parrondo’s paradox of free energy by applying
our Fokker–Planck equation (8) to a flashing ratchet model.

During the time when this paper was under review, we found that Mielke
introduced a Riemannian metric independently in [32], which is similar to our
Riemannian metric with a constant potential. More precisely, if we express a chem-
ical reaction system as a graph, then Mielke’s metric can be obtained by discret-
izing Otto’s calculus in a way similar to ours. Mielke studied reaction-diffusion
equations with his metric, showed that a reaction-diffusion equation with detailed
balance could be written as a gradient flow of relative entropy. More recently, Hao
et al. [21] gives an interesting physical explanation of the log-average term

ρi − ρ j

log ρi − log ρ j
,

which appears in both Mielke’s metric and in ours. We cite from [21] that the
log-average is the“conductance in the stoichiometric network theory of chemical
reactions”, and “the numerator is the flux and the denominator is the driving force
of a transition”. This new progress reveals some potential connections between our
work and chemical reactions.

This paper is organized as follows: In Section 2, we discuss why we must
use nonlinear Fokker–Planck equations in the discrete case. Some basic geometric
properties of M are shown in Section 3. In Section 4, we prove that Fokker–Planck
equation I (8) is the gradient flow of free energy, and show some related properties.
In Section 5, we show how we interpret “white noise” in the Markov process to
obtain Fokker–Planck equation II (9). In Section 6, we explain the upwind struc-
ture in Fokker–Planck equations I (8) and II (9). In the last section, we consider the
flashing ratchet model as an application.

2. Why Nonlinear Fokker–Planck Equations on Graphs

Comparing the Fokker–Planck equation (2) in the continuous state space with
our Fokker–Planck equations (8) and (9) on graphs, one immediately notices that our
equations are nonlinear while (2) is linear. It is natural to question the nonlinearity
in both equations. For example, can one just apply common discretization schemes,
such as the well known central difference, to (2) and obtain linear Fokker–Planck
equations in the discrete case? However, in our numerical studies, we encountered
many problems. For instance, steady state solutions of linear equations derived from
discretization are not the Gibbs distributions. Furthermore, the free energy does not
decay along the solutions. In this section, we prove that these problems occur for all
linear systems obtained from discretizing the continuous Fokker–Planck equation
(2) using consistent linear schemes.
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To be more precise, any given linear discretization of (2) can be written as

dρi

dt
=
∑

j

((
∑

k

ei
jk�k

)

+ ci
j

)

ρ j , for i = 1, 2, . . . , N , (10)

where � is the given potential and {ei
jk}N×N and {ci

j }N are some constants that are
not all zero. Assume that the Gibbs distribution (7) is the steady state solution of
(10), then we must have

∑

j

((
∑

k

ei
jk�k

)

+ ci
j

)

e− � j
β = 0, for i = 1, 2, . . . , N . (11)

Let us denote A as the collection of potentials � satisfying (11), that is

A = {(�1, . . . , �N ) ∈ R
N :
∑

j

((
∑

k

ei
jk�k) + ci

j )e
− � j

β = 0, for 1 � i � N }.

(12)

Theorem 1. The set A has zero measure in R
N , that is,

κ(A ) = 0,

where κ(·) is the Lebesgue measure on R
N .

To prove this theorem, we need the following lemma.

Lemma 1. Let g(x) be a function in C1(RN ). Denote B = {x ∈ R
N : g(x) = 0},

and B j = {x ∈ B : gx j (x) = 0} for j = 1, . . . , N. Then

κ(B j ) = κ(B). (13)

Proof. This lemma is a special case of a well known fact about functions in Sobolev
spaces, see for example, Lemma 7.7 in [20].

Now, we are ready to prove Theorem 1.

Proof. For convenience of notation, let us denote � = (�1, . . . , �N ) and

fi (�) =
∑

j

((
∑

k

ei
jk�k

)

+ ci
j

)

e− � j
β .

Clearly, we have fi ∈ C∞(RN ). Then, we can consider the sets, Aϑ , which collect
all potentials � ∈ A with vanishing ϑ-th derivatives of fi for all i = 1, . . . , N ,
that is,

Aϑ = {� ∈ A : Dϑ fi (�) = 0, for 1 � i � N },
where ϑ = (ϑ1, . . . , ϑN ) is a multiple non-negative integer index, and Dϑ is the
partial derivative operator. Obviously, A and Aϑ are closed subsets.
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Using Lemma 1 recursively, we have

κ(A ) = κ(Aϑ), (14)

for arbitrary multi-index ϑ . Next, we show κ(A ) = 0 by contradiction.
Assume that κ(A ) > 0, so we have κ(Aϑ) = κ(A ) > 0 for arbitrary multi-

index ϑ . This implies that there must exist a potential �0 ∈ A such that

fi (�
0) = 0 and Dϑ fi (�

0) = 0,

for arbitrary ϑ .
For any r ∈ {1, . . . , N } and s ∈ {1, . . . , N } with r �= s, we have

∂3 fi

∂�2
r ∂�s

(�) = ei
rs

β2 e− �r
β .

Therefore,

∂3 fi

∂�2
r ∂�s

(�0) = 0

implies ei
rs = 0 for r �= s. Thus, we must have

fi (�) =
∑

j

(ei
j j� j + c j )e

− � j
β .

It is easy to compute that for any j ∈ {1, . . . , N },
∂ l fi

∂�l
j

=
(

lei
j j

(−β)l−1 + (ei
j j� j + ci

j )

(−β)l

)

e− � j
β ,

for arbitrary l ∈ N. Using the fact that

∂ l fi

∂�l
j

(�0) = 0,

which is

−βlei
j j + (ei

j j�
0
j + ci

j ) = 0, for all l � 1.

This implies ei
j j = 0 and ci

j = 0, and it contradicts the fact that not all of ei
jk and

ci
j are zero. So we must have κ(A ) = 0.

Theorem 1 indicates that one cannot expect a linear system obtained by a
consistent discretization of the continuous Fokker–Planck equation (2) to achieve
the Gibbs distribution at its steady state for general potentials. It suggests that a
Fokker–Planck equation on a graph needs to be nonlinear, in general. However, this
does not imply that general linear systems cannot achieve the Gibbs distribution at
their steady states. In fact, it can be verified that for any given probability vector
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ρ∗, including the Gibbs distribution, there exists a “reaction matrix” A, such that
the solution of the ODE system

ρ′(t) = ρ A

tends to ρ∗ as time t → ∞. Furthermore, the choice of A is not unique. One may
choose any A with the property of eAt → P , where P = [ρ∗, ρ∗, . . . , ρ∗] is a rank
one matrix. For example, taking A = P − I will work in this situation. But such a
matrix A cannot be obtained by linearly discretizing the continuous Fokker–Planck
equation in a consistent way, as we explained in Theorem 1.

3. Metrics on M and Riemannian Manifolds

Given a graph G = (V, E) with V = {a1, a2, . . . , aN }, we consider all positive
probability distributions on V :

M =
{

ρ = (ρi )
N
i=1 ∈ R

N

∣
∣
∣
∣
∣

N∑

i=1

ρi = 1 and ρi > 0 for i ∈ {1, 2, . . . , N }
}

,

and its closure,

M =
{

ρ = (ρi )
N
i=1 ∈ R

N

∣
∣
∣
∣
∣

N∑

i=1

ρi = 1 and ρi � 0 for i ∈ {1, 2, . . . , N }
}

.

Let ∂M be the boundary of M , that is,

∂M =
{

ρ = {ρi }N
i=1 ∈ R

N

∣
∣
∣
∣
∣

N∑

i=1

ρi = 1, ρi � 0 and
N∏

i=1

ρi = 0

}

.

The tangent space TρM at ρ ∈ M is defined by

TρM =
{

σ = (σi )
N
i=1 ∈ R

N

∣
∣
∣
∣
∣

N∑

i=1

σi = 0

}

.

It is clear that the standard Euclidean metric on R
N , d, is also a Riemannian metric

on M .
Let

� : (M , d) → (RN , d) (15)

be an arbitrary smooth map given by:

�(ρ) = (�i (ρ))N
i=1, ρ ∈ M .

In the following, we will endow M with a metric d�, which depends on � and the
structure of G.
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For technical reasons, we first consider the function

r1 − r2

log r1 − log r2
,

where r1 > 0, r2 > 0 and r1 �= r2. We want to extend this to the closure of the first
quadrant in the plane. In fact, this can be easily achieved by the following function:

e(r1, r2) =

⎧
⎪⎨

⎪⎩

r1−r2
log r1−log r2

if r1 �= r2 and r1r2 > 0

0 if r1r2 = 0

r1 if r1 = r2

.

It is easy to check that e(r1, r2) is a continuous function on

{(r1, r2) ∈ R
2 : r1 � 0, r2 � 0}

and satisfies

min{r1, r2} � e(r1, r2) � max{r1, r2}.
For simplicity, we will use its original form instead of the function e(r1, r2) in this
paper.

Next, we introduce the following equivalence relation “∼” in R
N :

p ∼ q if and only if p1 − q1 = p2 − q2 = · · · = pN − qN ,

and let W be the quotient space R
N / ∼. In other words, for p ∈ R

N we consider
its equivalent class

[ p] = {(p1 + c, p2 + c, . . . , pN + c) : c ∈ R},
and all such equivalent classes form the vector space W .

For a given �, and [ p] = [(pi )
N
i=1] ∈ W , we define an identification τ�([ p]) =

(σi )
N
i=1 from W to TρM by,

σi =
∑

j∈N (i)

��
i j (ρ)(pi − p j ), (16)

where

��
i j (ρ) =

⎧
⎪⎨

⎪⎩

ρi if �i > � j , j ∈ N (i)
ρ j if � j > �i , j ∈ N (i)

ρi −ρ j
log ρi −log ρ j

if �i = � j , j ∈ N (i)
(17)

for i = 1, 2, . . . , N . With this identification, we can express σ ∈ TρM by [ p] :=
τ−1
� (σ ) ∈ W , and denote it by

σ 
 [(pi )
N
i=1].

We note that this identification depends on �, the probability distribution ρ and the
structure of the graph G. In the following lemma, we show that this identification
(16) is well-defined.
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Lemma 2. If each σi satisfies (16), then the map τ� : [(pi )
N
i=1] ∈ W �→ σ =

(σi )
N
i=1 ∈ TρM is a linear isomorphism.

Proof. It is clear that

τ� : [(pi )
N
i=1] ∈ W �→ τ�([(pi )

N
i=1]) = (σi )

N
i=1 ∈ TρM

is a well-defined linear map. Furthermore, both W and TρM are (N − 1)-dimen-
sional real linear spaces. Thus, in order to prove that the map τ� is an isomorphism,
it is sufficient to show that the map τ� is injective, which is equivalent to the fact
that if p = {pi }N

i=1 ∈ R
N satisfies

σi =
∑

j∈N (i)

��
i j (pi − p j ) = 0,⇐⇒ pi =

⎛

⎝
∑

j∈N (i)

��
i j p j

⎞

⎠
/
⎛

⎝
∑

j∈N (i)

��
i j

⎞

⎠

for i = 1, 2, . . . , N , then p1 = p2 = · · · = pN .
Assume this is not true, and let c = max{pi : i = 1, 2, . . . , N }. Then, there

must exist {a�, ak} ∈ E such that p� = c and pk < c, because the graph G is
connected. This gives

c = p� =
∑

j∈N (�) ��
�j p j

∑
j∈N (�) ��

�j
= c +

∑
j∈N (�) ��

�j (p j −c)
∑

j∈N (�) ��
�j

� c − ��
�k (c−pk )∑
j∈N (�) ��

�j
< c,

which is a contradiction. The proof is complete.

Definition 1. By the above identification (16), we define an inner product on TρM
by:

g�
ρ (σ 1, σ 2) =

N∑

i=1

p1
i σ 2

i =
N∑

i=1

p2
i σ 1

i .

It is easy to check that this definition is equivalent to

g�
ρ (σ 1, σ 2) =

∑

{ai ,a j }∈E

��
i j (p1

i − p1
j )(p2

i − p2
j ), (18)

where

��
i j (ρ) =

{
ρ j if {ai , a j } ∈ E,�i < � j ,

ρi −ρ j
log ρi −log ρ j

if {ai , a j } ∈ E,�i = � j ,
(19)

for σ 1 = (σ 1
i )N

i=1, σ
2 = (σ 2

i )N
i=1 ∈ TρM , and [(p1

i )N
i=1], [(p2

i )N
i=1] ∈ W satisfy-

ing

σ 1 
 [(p1
i )N

i=1] and σ 2 
 [(p2
i )N

i=1].
In particular,

g�
ρ (σ , σ ) =

∑

{ai ,a j }∈E

��
i j (ρ)(pi − p j )

2 (20)

for σ ∈ TρM , where σ 
 [(pi )
N
i=1].
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Since ρ ∈ M �→ g�
ρ is measurable, using the inner product g�

ρ , we can define
the distance between two points ρ1 and ρ2 in M by

d�(ρ1, ρ2) = inf
γ

L(γ (t)) (21)

where γ : [0, 1] → M ranges over all continuously differentiable curves with
γ (0) = ρ1, γ (1) = ρ2. The arc length of γ is given by

L(γ (t)) =
∫ 1

0

√
g�
γ (t)(γ̇ (t), γ̇ (t))dt.

Although g�
ρ may or may not be a smooth inner product with respect to ρ, the length

of any smooth curve is still well-defined because ρ ∈ M �→ g�
ρ is measurable.

It is shown by Lemma 3 that d� is a metric on M . Thus we have a metric space
(M , d�). In particular, if � is a constant map, then the metric d� is a Riemannian
metric on M , since the map ρ ∈ M �→ g�

ρ is smooth. Hence, (M , d�) is a
Riemannian manifold.

Remark 1. The identification (16) is motivated by a similar identification intro-
duced by Otto in [33] for the case of a continuous state space. We replace the
differential operator in [33] by a combination of finite differences because our state
space V is discrete. Since (16) adopts an upwind scheme and the structure of the
Kolmogorov equation (42) in Section 5, we call the inner product g�

ρ the upwind
inner product induced by �.

Next, we show that the metric d� is bounded. Given ρ = (ρi )
N
i=1 ∈ M , we

define matrices

A = [A(i, j)]N×N , Am = [Am(i, j)]N×N , and AM = [AM (i, j)]N×N

as follows. If i �= j , we have

A(i, j) =
{

−��
i j (ρ) if {ai , a j } ∈ E

0 otherwise
,

Am(i, j) =
{

− max{ρi , ρ j } if {ai , a j } ∈ E

0 otherwise

and

AM (i, j) =
{

− min{ρi , ρ j } if {ai , a j } ∈ E

0 otherwise
.

On the diagonal, i = j , we define
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A(i, i) = − ∑
k �=i

A(i, k)

Am(i, i) = − ∑
k �=i

Am(i, k)

AM (i, i) = − ∑
k �=i

AM (i, k)

.
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Thus the identification (16) can be expressed by

σ T = A pT ,

where σ = (σi )
N
i=1 ∈ TρM and p = (pi )

N
i=1 ∈ R

N .
We consider two new identifications

σ T = Am pT (22)

and

σ T = AM pT . (23)

Similar to the identification (16), identifications (22) and (23) are both linear iso-
morphisms between TρM and W . Furthermore, they induce inner products gm

ρ (·, ·)
and gM

ρ (·, ·) respectively on TρM . It is not hard to see that the maps ρ �→ gm
ρ and

ρ �→ gM
ρ are smooth. By using the inner products gm

ρ and gM
ρ , we can obtain dis-

tances dm(·, ·) and dM (·, ·) respectively on M . Then both (M , dm) and (M , dM )

are smooth Riemannian manifolds.

Lemma 3. For any smooth map � : (M , d) → (RN , d) and ρ1, ρ2 ∈ M ,

dm(ρ1, ρ2) � d�(ρ1, ρ2) � dM (ρ1, ρ2).

Proof. Let � : (M , d) → (RN , d) be a smooth map. Given ρ ∈ M , the identifi-
cation (16) can be expressed by

σ T = A pT ,

where σ = (σi )
N
i=1 ∈ TρM and p = (pi )

N
i=1 ∈ R

N . Since
∑N

i=1 σi = 0 for
(σi )

N
i=1 ∈ TρM , by deleting the last row and last column of the matrix A we

obtain a symmetric diagonally dominant (N − 1) × (N − 1)-matrix B. Thus, the
identification (16) becomes

σ T∗ = B pT∗

where σ∗ = (σi )
N−1
i=1 and p∗ = (pi − pN )N−1

i=1 .
Similarly we can get symmetric diagonally dominant matrices Bm and BM

from Am and AM respectively. Moreover, B, Bm and BM are all irreducible matri-
ces since the graph G is connected. They are all nonsingular and positive definite,
because they all have positive diagonal entries.

The inner products are given as

g�
ρ (σ , σ ) = σ pT = σ∗ pT∗ = σ∗ B−1σ T∗

gm
ρ (σ , σ ) = σ pT = σ∗ pT∗ = σ∗ B−1

m σ T∗
gM
ρ (σ , σ ) = σ pT = σ∗ pT∗ = σ∗ B−1

M σ T∗

for σ ∈ TρM . It is well known that a symmetric diagonally dominant real matrix
with nonnegative diagonal entries is positive semidefinite. Since Bm − B, B − BM
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are still symmetric diagonally dominant matrices with nonnegative diagonal entries,
we have Bm − B and B − BM are positive semidefinite. Now we claim that: for
every σ ∈ TρM , we have

gm
ρ (σ , σ ) � g�

ρ (σ , σ ) � gM
ρ (σ , σ ).

We first prove

gm
ρ (σ , σ ) � g�

ρ (σ , σ ).

Note that

g�
ρ (σ , σ ) − gm

ρ (σ , σ ) = σ∗(B−1 − B−1
m )σ T∗ .

Therefore, to show that

gm
ρ (σ , σ ) � g�

ρ (σ , σ ),

it is sufficient to show (B−1 − B−1
m ) is positive semi-definite.

Since B is a positive definite symmetric matrix, B−1 is also positive definite
symmetric. Combining this with the fact that (Bm − B) is positive semi-definite,
we know that (B−1 − B−1

m ) is positive semi-definite from the following equality

B−1 − B−1
m = B−1

m {(Bm − B)B−1(Bm − B)T + (Bm − B)}(B−1
m )T .

In a similar fashion, we prove g�
ρ (σ , σ ) � gM

ρ (σ , σ ).
Thus we obtain

dm(ρ1, ρ2) � d�(ρ1, ρ2) � dM (ρ1, ρ2)

for any ρ1, ρ2 ∈ M .

Now we consider two choices of the function � which are related to
Fokker–Planck equations I (8) and II (9), respectively. Let the potential � =
(�i )

N
i=1 on V be given and β � 0, where �i is the potential on vertex ai .

For Fokker–Planck equation I (8), we let

�(ρ) ≡ �,

where ρ ∈ M . The identification (16)

σ 
 [(pi )
N
i=1]

is given by

σi =
∑

j∈N (i)

(pi − p j )�
�
i j (ρ) (24)

and the corresponding norm (20) is

g�
ρ (σ , σ ) =

∑

{ai ,a j }∈E

��
i j (ρ)(pi − p j )

2, (25)
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for σ ∈ TρM with σ 
 [(pi )
N
i=1]. Note that the map ρ ∈ M �→ g�

ρ is smooth

and the inner product g� generates a Riemannian metric space (M , d�), where
d� comes from (21). Similar to the theory developed in [33], we will show in
Section 4 that Fokker–Planck equation I (8) is the gradient flow of free energy on
the Riemannian manifold (M , d�).

For Fokker–Planck equation II (9), we let

�(ρ) ≡ �̄(ρ),

where the new potential �̄(ρ) = (�̄i (ρ))N
i=1 is defined by

�̄i (ρ) = �i + β log ρi .

In this case, for a given ρ ∈ M , the identification (16) is given by

σi =
∑

j∈N (i)

(pi − p j )�
�̄
i j (ρ), (26)

and the inner product (18) on TρM is

g�̄
ρ (σ 1, σ 2) =

N∑

i=1

p1
i σ 2

i =
N∑

i=1

p2
i σ 1

i =
∑

{ai ,a j }∈E

��̄
i j (ρ)(p1

i − p1
j )(p2

i − p2
j ),

(27)

for σ 1 = (σ 1
i )N

i=1, σ
2 = (σ 2

i )N
i=1 ∈ TρM , and [(p1

i )N
i=1], [(p2

i )N
i=1] ∈ W satisfy-

ing σ 1 
 [(p1
i )N

i=1] and σ 2 
 [(p2
i )N

i=1]. In particular, we have

g�̄
ρ (σ , σ ) =

∑

{ai ,a j }∈E

��̄
i j (ρ)(pi − p j )

2, (28)

for σ ∈ TρM and σ 
 [(pi )
N
i=1].

The inner product g�̄
ρ induces a metric space (M , d�̄), where d�̄ comes from

(21). However, the map ρ ∈ M �→ g�̄
ρ is not continuous due to the fact that �̄

depends on ρ. Thus, (M , d�̄) is not a Riemannian manifold. On the other hand,

since g�̄
ρ is a piecewise smooth function with respect to ρ, the space (M , d�̄)

is a union of finitely many smooth Riemannian manifolds. More precisely, the
space M is divided into components whose boundaries are given by N (N − 1)/2
sub-manifolds

Sr,t = {(ρi )
N
i=1 ∈ M : �r + β log ρr = �t + β log ρt }, 1 � r < t � N .

The inner product g�̄
ρ is smooth in each component divided by {Sr,t }1�r<t�N ,

and gives a smooth Riemannian distance in each and every component. Moreover,
all sub-manifolds Sr,t intersect at one point which is the Gibbs distribution ρ∗ =
(ρ∗

i )N
i=1, as given in (7).

Fokker–Planck equation II (9) can also be seen as the “gradient flow” of free
energy on the metric space (M , d�̄), which will be shown in Section 5.

By Lemma 3, d� and d�̄ are bounded by dm and dM . The explicit expressions
of these distances d� , d�̄ , dm and dM are hard to obtain in general. In the following
example, we show one explicit expression of the distance function d� .
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Example. We consider a star graph G = (V, E) with

V = {a1, . . . , aN , aN+1},
and

E = {{ai , aN+1} : i = 1, 2, . . . , N }.
Let the potential � = (�i )

N+1
i=1 on V satisfy:

�i > �N+1, i = 1, . . . , N .

Then the identification (24) on the tangent space TρM is

σ1 = (p1 − pN+1)ρ1,

· · ·
σN = (pN − pN+1)ρN ,

σN+1 = −
N∑

i=1

(pi − pN+1)ρi ,

where σ = (σi )
N+1
i=1 ∈ TρM 
 [(pi )

N+1
i=1 ] ∈ W .

By this identification and (25), we obtain the norm

g�
ρ (σ , σ ) =

N∑

i=1

(pi − pN+1)
2ρi =

N∑

i=1

σ 2
i

ρi
,

where σ 
 [(pi )
N+1
i=1 ].

Given ρ1 = (ρ1
1 , . . . , ρ1

N+1), ρ
2 = (ρ2

1 , . . . , ρ2
N+1) ∈ M , we suppose that

γ (t) = (ρ1(t), . . . , ρN (t), ρN+1(t)) : [0, 1] → M

is a continuously differentiable curve from ρ1 to ρ2. Then

L(γ ) =
∫ 1

0

√
g�
γ (t)(γ̇ (t), γ̇ (t))dt =

∫ 1

0

√√
√
√

N∑

i=1

(ρ′
i (t))

2

ρi (t)
dt =

∫ 1

0

√√
√
√

N∑

i=1

(x ′
i (t))

2dt,

where we use the substitution xi (t) = 2
√

ρi (t) for i = 1, . . . , N . Let
α(t) = (x1(t), x2(t), . . . , xN (t)) for t ∈ [0, 1] and

D =
{

(x1, x2, . . . , xN ) ∈ R
N :

N∑

i=1

x2
i < 4 and xi > 0 for i = 1, 2, . . . , N

}

.

Then D is a convex subset of an open ball with radius 2 in R
N , and α is

a continuously differentiable curve in D from η1 = 2(

√
ρ1

1 , . . . ,

√
ρ1

N ) to

η2 = 2(

√
ρ2

1 , . . . ,

√
ρ2

N ). Clearly, we have

L(γ ) =
∫ 1

0

√√
√
√

N∑

i=1

(x ′
i (t))

2dt � ‖η1 − η2‖ = 2

√√
√
√

N∑

i=1

(√
ρ1

i −
√

ρ2
i

)2

,

where ‖ · ‖ is the Euclidean norm.
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On the other hand, we take

α∗(t) = (x∗
1 (t), . . . , x∗

N (t)) := tη1 + (1 − t)η2

for t ∈ [0, 1]. In fact, α∗ is the straight line segment in D from η1 to η2. Let
ρ∗

i (t) = (x∗
i (t))2/4 for i = 1, 2, . . . , N and ρ∗

N+1(t) = 1 − (
∑N

i=1 ρ∗
i (t)). Then

γ ∗(t) = (ρ∗
i (t))N+1

i=1 : [0, 1] → M

is a continuously differentiable curve from ρ1 to ρ2. This implies that

L(γ ∗) =
∫ 1

0

√√
√
√

N∑

i=1

((x∗
i (t))′)2dt = ‖η1 − η2‖ = 2

√√
√
√

N∑

i=1

(√
ρ1

i −
√

ρ2
i

)2

.

Thus,

d�(ρ1, ρ2) = inf
γ

L(γ ) = 2

√√
√
√

N∑

i=1

(√
ρ1

i −
√

ρ2
i

)2

for ρ1 = (ρ1
1 , . . . , ρ1

N+1), ρ
2 = (ρ2

1 , . . . , ρ2
N+1) ∈ M . Finally, we note that the

metric d� can be extended naturally to the space M , that is,

d�(ρ1, ρ2) = 2

√√
√
√

N∑

i=1

(√
ρ1

i −
√

ρ2
i

)2

for ρ1 = (ρ1
1 , . . . , ρ1

N+1), ρ
2 = (ρ2

1 , . . . , ρ2
N+1) ∈ M .

4. Fokker–Planck Equation I

In this section, we show that Fokker–Planck equation I (8) defined on a graph
G = (V, E) with potentials � = (�i )

N
i=1 on V and β � 0 is the gradient flow of

the free energy F on the Riemannian manifold (M , d�) introduced in Section 3.
We also show some basic properties of Fokker–Planck equation I (8).

Let β � 0 be fixed and the free energy functional F be defined on the space
M :

F(ρ) =
N∑

i=1

�iρi + β

N∑

i=1

ρi log ρi (29)

where ρ = {ρi }N
i=1 ∈ M . Thus, we have the gradient flow of F on (M , g�) given

by,

dρ

dt
= −gradF(ρ), (30)
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where gradF(ρ) is in the tangent space TρM . We show that equation (30) is the
Fokker–Planck equation I (8) on M first.

If the differential of F , which is in the cotangent space, is denoted by diff F ,
then (30) could be expressed as

g�
ρ

(
dρ

dt
, σ

)
= −diff F(ρ) · σ ∀σ ∈ TρM . (31)

It is clear that

diff F((ρi )
N
i=1) = (�i + β(1 + log ρi ))

N
i=1 (32)

for (ρi )
N
i=1 ∈ M . By (31) and the identification (24), we are able to obtain the

explicit expression of the vector field on M .
Now we are ready to show our first main result.

Theorem 2. Given a graph G = (V, E) with its vertex set V = {a1, a2, . . . , aN },
edge set E, a potential � = (�i )

N
i=1 on V and a constant β � 0, let the neighbor-

hood set of a vertex ai be

N (i) = { j ∈ {1, 2, . . . , N }|{ai , a j } ∈ E},
then

1. The gradient flow of free energy F,

F(ρ) =
N∑

i=1

�iρi + β

N∑

i=1

ρi log ρi

on the Riemannian manifold (M , d�) of probability densities ρ on V is

dρi

dt
=

∑

j∈N (i),� j >�i

(
(� j + β log ρ j ) − (�i + β log ρi )

)
ρ j

+
∑

j∈N (i),� j <�i

(
(� j + β log ρ j ) − (�i + β log ρi )

)
ρi

+
∑

j∈N (i),� j =�i

β(ρ j − ρi )

for i = 1, 2, . . . , N, which is Fokker–Planck equation I (8).
2. For all β > 0, Gibbs distribution ρ∗ = (ρ∗

i )N
i=1 given by

ρ∗
i = 1

K
e−�i /β with K =

N∑

i=1

e−�i /β

is the unique stationary distribution of equation (8) in M . Furthermore, the
free energy F attains its global minimum at the Gibbs distribution.
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3. For all β > 0, there exists a unique solution

ρ(t) : [0,∞) → M

of equation (8) with initial value ρ0 ∈ M , and ρ(t) satisfies:
(a) the free energy F(ρ(t)) decreases as time t increases,
(b) ρ(t) → ρ∗ under the Euclidean metric of R

N as t → +∞.

As a direct consequence, we have the following result.

Corollary 1. Given the graph G = (V, E) with V = {a1, a2, . . . , aN } and poten-
tial � = (�i )

N
i=1 on V , we have

1. If the noise level β = 0, then Fokker–Planck equation I (8) for the discrete state
space is

dρi

dt
=

∑

j∈N (i),� j >�i

(� j − �i )ρ j +
∑

j∈N (i),� j <�i

(� j − �i )ρi (33)

for i = 1, 2, . . . , N.
2. In a special case when the potential is a constant at each vertex, this equation

is the master equation:

dρi

dt
=
∑

j∈N (i)

β(ρ j − ρi ) (34)

for i = 1, 2, . . . , N.

Remark 2. Given ρ0 ∈ M and a continuous function

ρ(t) : [0, c) → M

for some 0 < c � +∞, we call such a function a generalized solution of equa-
tion (8) with initial value ρ0, if ρ(0) = ρ0 and ρ(t) ∈ M satisfy equation (8) for
t ∈ (0, c). In Appendix A, we give an example of a graph G and free energy to show
that a generalized solution to (8) may not exist for some ρ0 ∈ ∂M := M \M . We
also note that the equation (8) is not well-defined on the boundary ∂M := M \M .

Remark 3. Equation (33) describes the time evolution of the probability distribu-
tion due to the potential energy and is also the probability distribution of a time
homogeneous Markov process on the graph G. The master equation is a first order
differential equation that describes the time evolution of the probability distribu-
tion at every vertex in the discrete state space. Its entropy increases along with the
master equation. In this sense, Fokker–Planck equation I (8) is a generalization of
the master equation. We refer to [12] for more details on the master equation.

Proof of Theorem 2. (1). We know that the gradient flow of free energy F on
(M , d�) is given by equation (31),

g�
ρ

(
dρ

dt
, σ

)
= −diff F(ρ) · σ ∀σ ∈ TρM .
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The left-hand side of equation (31) is

g�
ρ

(
dρ

dt
, σ

)
=

N∑

i=1

dρi

dt
pi (35)

where σ = (σi )
N
i=1 
 [(pi )

N
i=1]. By (32), the right-hand side of equation (31) is

− diff F(ρ) · σ = −
N∑

i=1

(�i + β(1 + log ρi ))σi . (36)

Using the identification (24), we have

N∑

i=1

(�i + β(1 + log ρi ))σi =
N∑

i=1

(�i + β log ρi )σi

=
N∑

i=1

(�i + β log ρi )

⎛

⎝
∑

j∈N (i)

��
i j (ρ)(pi − p j )

⎞

⎠

=
∑

{ai ,a j }∈E,�i <� j

{(�i − � j ) + β(log ρi − log ρ j )}ρ j (pi − p j )

+β
∑

{ai ,a j }∈E,�i =� j

(ρi − ρ j )(pi − p j )

=
N∑

i=1

{ ∑

j∈N (i),� j >�i

(
(�i − � j )ρ j + β(log ρi − log ρ j )ρ j

)

+
∑

j∈N (i),� j <�i

(
(�i − � j )ρi + β(log ρi − log ρ j )ρi

)

+β
∑

j∈N (i),� j =�i

(ρi − ρ j )

}
pi .

Combining this equation with equations (31), (35) and (36), we have

N∑

i=1

dρi

dt
pi =

N∑

i=1

{ ∑

j∈N (i),� j >�i

(
(� j − �i )ρ j + β(log ρ j − log ρi )ρ j

)

+
∑

j∈N (i),� j <�i

(
(� j − �i )ρi + β(log ρ j − log ρi )ρi

)

+β
∑

j∈N (i),� j =�i

(ρ j − ρi )

}
pi .

Since the above equality stands for any (pi )
N
i=1 ∈ R

N , we obtain Fokker–Planck
equation I (8). This completes the proof of (1).
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(2). It is well known that F attains its minimum at Gibbs density. By a direct
computation, we have that the Gibbs distribution is a stationary solution. Let ρ =
(ρi )

N
i=1 be a stationary solution of equation (8) in M . For σ = (σi )

N
i=1 ∈ TρM ,

we let σ 
 [(pi )
N
i=1] for some (pi )

N
i=1 ∈ R

N . Since ρ is the stationary solution, it
implies that

N∑

i=1

(�i + β(1 + log ρi ))σi

=
N∑

i=1

{ ∑

j∈N (i),� j >�i

(
(�i − � j )ρ j + β(log ρi − log ρ j )ρ j

)

+
∑

j∈N (i),� j <�i

(
(�i − � j )ρi + β(log ρi − log ρ j )ρi

)

+
∑

j∈N (i),� j =�i

β(ρi − ρ j )

}
pi

= 0.

We note that for any (σi )
N−1
i=1 ∈ R

N−1, if we take

σN = −
N−1∑

i=1

σi

then (σi )
N
i=1 ∈ TρM . Thus one has

N−1∑

i=1

{(�i + β(1 + log ρi )) − (�N + β(1 + log ρN ))}σi = 0

for any (σi )
N−1
i=1 ∈ R

N−1. This implies

(�i + β log ρi ) − (�N + β log ρN ) = 0,

which is

ρi = e
�N −�i

β ρN

for i = 1, 2, . . . , N − 1.
Combining this fact with

∑N
i=1 ρi = 1, we have ρi = 1

K e−�i /β = ρ∗
i for

i = 1, 2, . . . , N , where K =∑N
i=1 e− �i

β . This completes the proof of (2).
(3). Let a continuous function

ρ(t) : [0, c) → M

for some 0 < c � +∞ be a solution of equation (8) with initial value ρ0 ∈ M .
For any ρ0 ∈ M , there exists a maximal interval of existence [0, c(ρ0)) and
0 < c(ρ0)) � +∞. We will show that for any ρ0, c(ρ0) = +∞. In fact, this
follows from the following claim.
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Claim. Given ρ0 ∈ M , there exists a compact subset B of M with respect to the
Euclidean metric such that ρ0 ∈ int(B), where int(B) is the interior of B in M . If

ρ(t) : [0, c(ρ0)) → M

is the solution of equation (8) with initial value ρ0 on its maximal interval of
existence, then c(ρ0) = +∞ and ρ(t) ∈ int(B) for t > 0.

Proof of Claim. Let ρ0 = (ρ0
i )N

i=1 ∈ M be fixed and ρ(t) : [0, c(ρ)) → M be
the solution to equation (8) with initial value ρ0 on its maximal interval of exis-
tence. First, we construct a compact subset B of M with respect to the Euclidean
metric such that ρ0 ∈ int(B). Then we show that c(ρ0) = +∞ and ρ(t) ∈ int(B)

for all t > 0.
Let us denote

M = max{e2|�i | : i = 1, 2, . . . , N },
ε0 = 1,

and

ε1 = 1

2
min

{
ε0

(1 + (2M)
1
β )

, min{ρ0
i : i = 1, . . . , N }

}

.

For � = 2, 3, . . . , N − 1, we let

ε� = ε�−1

1 + (2M)
1
β

.

We define

B =
{

ρ = (ρi )
N
i=1 ∈ M :

�∑

r=1
ρir � 1 − ε� where � ∈ {1, . . . , N − 1},

1 � i1 < · · · < i� � N

}
.

Then B is a compact subset of M with respect to the Euclidean metric,

int(B) =
{

ρ = (ρi )
N
i=1 ∈ M :

�∑

r=1
ρir < 1 − ε�, where � ∈ {1, . . . , N − 1},

1 � i1 < · · · < i� � N

}
,

and ρ0 ∈ int(B).
Let t0 ∈ [0, c(ρ0)) with ρ(t0) ∈ int(B). Then for any � ∈ {1, 2, . . . , N − 1}

and 1 � i1 < i2 < · · · i� � N , one has

�∑

r=1

ρir (t0) < 1 − ε�.
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Moreover,

�∑

r=1

ρir (t) < 1 − ε�

for small enough t > t0 by continuity. Thus ρ(t) ∈ int(B) for small enough t > t0.
With the above discussion and the compactness of B, we are ready to prove

that c(ρ0) = +∞. To show this, it is sufficient to prove that ρ(t) ∈ int(B) for
all t > 0. Let us assume this is not true, which means the solution ρ(t) hits the
boundary. In this case, there exists t1 > 0 such that ρ(t1) ∈ ∂ B and ρ(t) ∈ int(B)

for all t ∈ [0, t1). Since ρ(t1) ∈ ∂ B, we can find 1 � i1 < · · · < il � N such that
1 � l � N − 1 and

l∑

r=1

ρir (t1) = 1 − εl . (37)

Let A = {i1, i2, . . . , i�} and Ac = {1, 2, . . . , N } \ A. Then for any j ∈ Ac,

ρ j (t1) � 1 −
(

�∑

r=1

ρir (t1)

)

= ε�. (38)

Since ρ(t1) ∈ B, we have

�−1∑

j=1

ρs j (t1) � 1 − ε�−1,

for any 1 � s1 < s2 < · · · < s�−1 � N . Hence for each i ∈ A,

ρi (t1) � 1 − ε� − (1 − ε�−1) = ε�−1 − ε�. (39)

Combining equations (38), (39) and the fact

ε� � ε�−1

1 + (2M)
1
β

,

one has, for any i ∈ A, j ∈ Ac,

� j − �i + β(log ρ j − log ρi ) � � j − �i + β(log ε� − log(ε�−1 − ε�))

� − log 2. (40)

Since the graph G is connected, there exists i∗ ∈ A, j∗ ∈ Ac such that {ai∗ , a j∗} ∈
E . Thus

∑

i∈A, j∈Ac,{ai ,a j }∈E

��
i j (ρ(t1)) � ��

i∗ j∗(ρ(t1)) > 0. (41)
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Now, by (40) and (41), one has

d

dt

�∑

r=1

ρir (t) |t=t1 =
∑

i∈A

∑

j∈N (i)

��
i j (ρ(t1))

(
� j −�i + β(log ρ j (t1)−log ρi (t1))

)

=
∑

i∈A

⎧
⎨

⎩

∑

j∈A∩N (i)

��
i j (ρ(t1))

(
� j −�i +β(log ρ j (t1)−log ρi (t1))

)

+
∑

j∈Ac∩N (i)

��
i j (ρ(t1))

(
� j −�i +β(log ρ j (t1)−log ρi (t1))

)
⎫
⎬

⎭

=
∑

i∈A

∑

j∈Ac∩N (i)

��
i j (ρ(t1))

(
� j −�i +β(log ρ j (t1)−log ρi (t1))

)

� − log 2
∑

i∈A

∑

j∈Ac∩N (i)

��
i j (ρ(t1))

= − log 2
∑

i∈A, j∈Ac,{ai ,a j }∈E

��
i j (ρ(t1))

� − log 2��
i∗ j∗(ρ(t1)) < 0.

Combining this with (37), it is clear that

l∑

i=1

ρir (t1 − δ) > 1 − εl

for sufficiently small δ > 0. This implies ρ(t1 − δ) /∈ B, and it contradicts the fact
that ρ(t) ∈ int(B) for t ∈ [0, t1). This completes the proof of the Claim.

Given ρ0 ∈ M , by the above Claim, there exists a unique solution

ρ(t) : [0,∞) → M

to equation (8) with initial value ρ0, and we can find a compact subset B of M
with respect to the Euclidean metric such that {ρ(t) : t ∈ [0,+∞)} ⊂ B. For
t ∈ (0,+∞),

dF(ρ(t))

dt
= diff F(ρ(t)) · dρ

dt
(t) = −g�

ρ(t)

(
dρ

dt
(t),

dρ

dt
(t)

)
� 0

and thus

dF(ρ(t))

dt
= 0 if and only if

dρ(t)

dt
= 0.

This is equivalent to ρ(t) = (ρ∗
i )N

i=1 by (2). This implies that the free energy
F(ρ(t)) decreases as time t increases.

Finally, we show that ρ(t) → ρ∗ under the Euclidean metric of R
N as t → +∞.

We let

ω(ρ0)=
{
ρ ∈ R

N : ∃ ti → +∞ such that lim
i→+∞ ρ(ti )=ρ in Euclidean metric

}
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be the ω-limit set of ρ0. Clearly, ω(ρ0) ⊂ B is a compact set of R
N with respect

to the Euclidean metric.
To show ρ(t) → ρ∗ under the Euclidean metric of R

N when t → +∞, it is suf-
ficient to show that ω(ρ0) = {ρ∗}. Since ω(ρ0) is a compact set and the free energy
F is continuous on M , we can find ρ1 ∈ ω(ρ0) such that F(ρ1) = max{F(ρ) :
ρ ∈ ω(ρ0)}. Then there exists ti → +∞ such that limi→+∞ ρ(ti ) = ρ1 and
limi→+∞ ρ(ti − 1) = ρ2 for some ρ2 ∈ M . If we let ρ2(t) be the solution to
equation (8) with initial value ρ2, then ρ2(0) = ρ2 and ρ2(1) = ρ1. Note that

dF(ρ2(t))

dt
= diff F(ρ2(t)) · dρ2

dt
(t) = −g�

ρ2(t)

(
dρ2

dt
(t),

dρ2

dt
(t)

)
� 0

and thus

dF(ρ2(t))

dt
= 0 if and only if

dρ2(t)

dt
= 0,

which is equivalent to ρ2(t) = ρ∗ by (2). Hence if ρ1 �= ρ∗, then F(ρ2) > F(ρ1),
which is a contradiction with F(ρ1) = max{F(ρ) : ρ ∈ ω(ρ0)}. So we must have
ρ1 = ρ∗. Thus,

max{F(ρ) : ρ ∈ ω(ρ0)} = F(ρ∗).

It is well known that ρ∗ is the unique minimal value point of F . This implies
ω(ρ0) = {ρ∗}. This completes the proof of (3).

There are many reasons why we consider Fokker–Planck equation I (8) on the
manifold M instead of its closure. One of the main reasons is that M is a manifold
with boundary and its tangent space is only well-defined in its interior. Another
reason is that the free energy is not differentiable when ρi = 0 for some i , and
it is also not clear how the Riemannian metric d� on M can be extended to M .
Moreover, even if the distance is well-defined on M , there may not be a solution
to the equation (8) with initial value on the boundary ∂ M (see the example in
Appendix A).

Theorem 2 (3) guarantees that the solution of (8) can never attain the boundary
∂M if the initial value is in M . In practice, we still need an equation to describe
the transient process if the initial value is on the boundary. However, we think that
the study of this important aspect is beyond the scope of this paper. The discussion
on it will be given in a sequel paper.

5. Fokker–Planck Equation II

Given a graph G = (V, E), we consider a time homogeneous Markov pro-
cess X (t) on the set V . We assume that X (t) is generated by a potential function
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� = (�i )
N
i=1 on V as a “gradient flow”. If the process starts at a vertex ai at time

t , then the transition probability to the vertex a j at time t + h is given by

Pr(X (t + h) = a j |X (t) = ai )

=

⎧
⎪⎪⎨

⎪⎪⎩

(�i − � j )h + o(h) if j ∈ N (i),� j < �i ,

1 − ∑

k∈N (i),�k<�i

(�i − �k)h + o(h) if j = i,

0 otherwise,

where o(h)/|h| → 0 as h → 0.
The generating matrix Q = [Qi j ]N×N for the Markov process can be defined

by

Qi j =
{

�i − � j if {ai , a j } ∈ E, � j < �i ,

0 otherwise,

which is the transition rate from i to j , and Qii = −∑ j �=i Qi j .

Let ρ(t) = (ρi (t))N
i=1, where ρi (t) = Pr(X (t) = ai ) for i = 1, 2, . . . , N . The

time evolution of probability distribution ρ(t) is given by a forward Kolmogorov
equation:

{
∂ρ
∂t (t) = ρ(t)Q

ρ(0) = {ρ0
i }N

i=1,

or in an explicit form,

dρi

dt
=

∑

j∈N (i),� j >�i

(� j − �i )ρ j +
∑

j∈N (i),� j <�i

(� j − �i )ρi (42)

for i = 1, 2, . . . , N .
We can consider X (t) as an analog of the following gradient flow in Euclidean

space:

dx

dt
= −∇�(x), x ∈ R

N (43)

and the forward Kolmogorov equation (42) is an analog of the corresponding degen-
erate Fokker–Planck equation without noise,

∂ρ

∂t
= ∇ · (∇�ρ). (44)

For this reason, we call the Markov process X (t) the gradient Markov process
generated by discrete potential function � on the graph G. Equation (42) can also
be considered as a discretization of equation (44) with an upwind scheme [27].

An important observation is that in the continuous state space R
N , Fokker–

Planck equation (2) can be obtained by adding “white noise” to the degenerate
Fokker–Planck equation (44). As an analog, we will obtain the Fokker–Planck
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equation on a discrete space by adding “white noise” with strength
√

2β to equa-
tion (42).

Suppose we rewrite Fokker–Planck equation (2) in the following degenerate
fashion:

ρt = ∇ · (∇�ρ) + β�ρ = ∇ · [∇(� + β log ρ)ρ],
and its corresponding free energy in the following:

F =
∫

RN
(� + β log ρ)ρdx .

This indicates that if white noise
√

2βdWt is added to system (43) on R
N , it is

equivalent to considering a new potential

�̄(x, t) = �(x) + β log ρ(x, t)

in the gradient flow (44).

Remark 4. This new potential function �+β log ρ(x, t) is called Onsager’s poten-
tial, and its derivative is called the Onsager thermodynamic flux [4,37].

As an analog, adding “white noise” to a time homogeneous Markov process
X (t) on a graph is equivalent to “changing the potential” to a new potential defined
by:

�̄i (t) = �i + β log ρi (t)

for i = 1, 2, . . . , N . For this modified potential �̄ we have a new Markov process
Xβ(t), which is time inhomogeneous and may be considered as a “white noise”
perturbation from the original homogeneous Markov process X (t). More precisely,
the conditional distribution of a j at time t + h given ai at time t is given by

Pr(Xβ(t + h) = a j |Xβ(t) = ai )

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(�̄i (t)−�̄ j (t))h+o(h), if j ∈ N (i), �̄ j (t) < �̄i (t),

1 − ∑

k∈N (i),�̄k (t)<�̄i (t)
(�̄i (t) − �̄k(t))h + o(h) if j = i,

0, otherwise.

The time evolution of probability distribution (ρi (t))N
i=1 of Xβ(t) satisfies the fol-

lowing forward Kolmogorov equation:

dρi

dt
=

∑

j∈N (i),�̄ j >�̄i

((� j + β log ρ j ) − (�i + β log ρi ))ρ j

+
∑

j∈N (i),�̄ j <�̄i

((� j + β log ρ j ) − (�i + β log ρi ))ρi ,

which is exactly Fokker–Planck equation II (9). On the other hand, we can also
consider Fokker–Planck equation II (9) as a gradient flow of the free energy on the
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space M with an appropriate inner product. Let us define the inner product g�̄
ρ

based on the new potential �̄i (t), and use it to induce a distance d�̄ as shown in
Section 3. The free energy F on the space M is given by:

F(ρ) =
N∑

i=1

�iρi + β

N∑

i=1

ρi log ρi

where ρ = (ρi )
N
i=1 ∈ M .

Since ρ ∈ M �→ g�̄
ρ may not be continuous, there may not exist a gradient

flow of F on (M , d�̄). However, we can consider a generalized gradient flow
of F on (M , d�̄) because of the special relationship between M and its tangent
spaces. More precisely, the derivative dρ(t)

dt ∈ Tρ(t)M is the same as the one com-
puted using Euclidean metric. Thus, we can consider the following equation as our
generalized gradient flow:

g�̄
ρ

(
dρ

dt
(t), σ

)
= −diff F(ρ(t)) · σ ∀σ ∈ TρM , (45)

where diff F is the differential of F (see (32)). This also implies:

dF(ρ(t))

dt
= diff F(ρ(t)) · dρ(t)

dt
= −g�̄

ρ(t)

(
dρ(t)

dt
,

dρ(t)

dt

)
. (46)

We have the following theorem:

Theorem 3. Given the graph G = (V, E) with V = {a1, a2, . . . , aN }, potential
� = (�i )

N
i=1 on V and β � 0, we consider the gradient Markov process X (t)

generated by the potential �. Then we have

1. Fokker–Planck equation II (9)

dρi

dt
=

∑

j∈N (i),�̄ j >�̄i

((� j + β log ρ j ) − (�i + β log ρi ))ρ j

+
∑

j∈N (i),�̄ j <�̄i

((� j + β log ρ j ) − (�i + β log ρi ))ρi

describes the time evolution of probability distribution of Xβ(t), where Xβ(t)
is the time inhomogeneous Markov process perturbed by “white noise” from
the original Markov process X (t).

2. Fokker–Planck equation II (9) is the generalized gradient flow (45) of the free
energy F on the metric space (M , d�̄) of probability densities ρ on V .

3. For all β > 0, Gibbs distribution ρ∗ = (ρ∗
i )N

i=1

ρ∗
i = 1

K
e−�i /β with K =

N∑

i=1

e−�i /β

is the unique stationary distribution of equation (9) in M , and the free energy
F attains a minimum at the Gibbs distribution.
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4. For all β > 0, there exists a unique solution ρ(t) : [0,∞) → M to equation
(9) with initial value ρ0 ∈ M , and ρ(t) satisfies
(a) The free energy F(ρ(t)) decreases when time t increases.
(b) ρ(t) → ρ∗ under the Euclid metric of R

N when t → +∞.

Proof. (1) The result in (1) comes from the discussion in the beginning of this
section.

(2) A continuously differentiable function ρ(t) : [0, c) → M for some c > 0
or c = +∞ is called a solution of equation (9) with initial value ρ ∈ M , if
ρ(0) = ρ and ρ(t) satisfies equation (9) for t ∈ [0, c). Since the Fokker–Planck
equation II (9) is Lipschitz continuous, by the existence and uniqueness theorem
of ordinary differential equations, it is clear that for any ρ ∈ M , there exists a
maximal interval [0, c(ρ)) in which the solution to equation (9) with initial value
ρ is uniquely defined with c(ρ) > 0 or c(ρ) = +∞.

Let ρ(t) : [0, c) → M be a solution of (9). For σ = (σi )
N
i=1 ∈ Tρ(t)M , we

take (pi )
N
i=1 ∈ R

N such that σ 
 [(pi )
N
i=1]. Then by (32), we have

N∑

i=1

(�i + β(1 + log ρi ))σi =
N∑

i=1

(�i + β log ρi )σi

=
N∑

i=1

(�i + β log ρi )

⎛

⎝
∑

j∈N (i)

��
i j (ρ)

⎞

⎠ (pi − p j )

=
∑

{ai ,a j }∈E,�̄i <�̄ j

{(�i − � j ) + β(log ρi − log ρ j )}ρ j (pi − p j )

+β
∑

{ai ,a j }∈E,�̄i =�̄ j

(�̄i − �̄ j )(pi − p j )

=
∑

i

{ ∑

j∈N (i),�̄ j >�̄i

(
(�i − � j )ρ j + β(log ρi − log ρ j )ρ j

)

+
∑

j∈N (i),�̄ j <�̄i

(
(�i − � j )ρi + β(log ρi − log ρ j )ρi

)
}

pi . (47)

Combining this equation with Fokker–Planck equation II (9), and by identifications
(26) and (28), we have

diff F(ρ(t)) · σ =
N∑

i=1

(�i + β(1 + log ρi ))σi

=
N∑

i=1

{ ∑

j∈N (i),�̄ j >�̄i

(
(�i − � j )ρ j + β(log ρi − log ρ j )ρ j

)
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Fig. 2. “Gradient-like” transition graph

+
∑

j∈N (i),�̄ j <�̄i

(
(�i − � j )ρi + β(log ρi − log ρ j )ρi

)
}

pi

= −
N∑

i=1

dρi

dt
pi = −g�̄

ρ(t)

(
dρ(t)

dt
, σ

)
.

Hence (45) is true, and this finishes the proof of (2).
(3) Using (47) and replacing identification (24) by identification (26), the proof

of (3) is completely similar to the proof of (2) in Theorem 2.
(4) Using (46) and replacing ��

i j (ρ) by ��̄
i j (ρ) in the proof of (3) in Theorem

2, we get the proof of (4) in a similar way.

Remark 5. We note that Fokker–Planck equation I and Fokker–Planck equation II
are very different even though they differ only by one term. In fact, Fokker–Planck
equation II is not a gradient flow of the free energy on a smooth Riemannian
manifold of the probability space, but it is a gradient flow if we allow the Rie-
mannian manifold of probability space to be piecewise smooth. More importantly,
Fokker–Planck equation II is based on two important concepts, white noise and the
“nonlinear” Laplace operator for Markov processes on graphs.

Remark 6. In the above discussion, a time-homogeneous Markov process is given
as the gradient Markov process generated by a potential � on a graph G = (V, E).
On the other hand, if the potential is not given but a time-homogeneous Markov
process is given, then we may reconstruct its potential function under some condi-
tions. Let G be a weighted directed simple graph without self-loop or multi-edge.
Suppose we have a time-homogeneous Markov process on G; the Markov process
is called gradient-like if every directed loop from ai to itself has zero total weight.
In this case, a potential energy function can be defined on this graph, and it is unique
up to a constant. To better illustrate this, we use the following example.

Example. We consider a graph G = (V, E) with a time-homogeneous Markov
process as shown in Fig. 2, which is directed and weighted. In this graph, V =
{a1, a2, a3, a4, a5} and the number on each directed edge is the transition rate.
Since the underlying weighted directed graph is gradient-like, we may associate
the potential energy on each vertex as in Fig. 3. With this potential function, we
can find its free energy and the Fokker–Planck equation.
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Fig. 3. Associated potential function

The transition probability rate matrix Q of this Markov process induced by
Fig. 2 is:

Q =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
0 0 0 0 0
0 2 0 0 1
0 0 1 0 2
0 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

6. Connections to Upwind Schemes

From discussions in previous sections, it is clear that Fokker–Planck equations
I (8) and II (9) on a graph are not typical discretizations of the Fokker–Planck
equation in continuous state space. Moreover, one cannot obtain a Fokker–Planck
equation in discrete state space with the desired properties by simply discretizing
the Fokker–Planck equation in continuous state space with commonly used finite
difference schemes. However, it is worth mentioning that Fokker–Planck equations
(8) and (9) are motivated by the well-known strategies in finite difference methods,
namely the upwind schemes for hyperbolic equations. In this section, we explain
these connections in detail, and show that our discrete Fokker–Planck equations
are actually consistent with the Fokker–Planck equation in continuous state space,
provided that the discrete spaces are discretizations of the continuous state space.

For simplicity, let us demonstrate the connections on a 1-D lattice G = (V, E)

with vertex set V = {a1, . . . , aN } (N � 3) and E = {{ai , ai+1} : i = 1, 2, . . . ,

N − 1}. We view the lattice as equal partition points of the interval [0, 1] with
mesh size h. We also assume that the potential function on V does not have equal
values on adjacent points. Then our discrete Fokker–Planck equation I at vertex ai ,
i ∈ {2, 3, . . . , N − 1}, is given by,

dρi

dt
= ((�i+1 − �i )ρi+1 − (�i − �i−1)ρi )

+β((log ρi+1 − log ρi )ρi+1 − (log ρi − log ρi−1)ρi )

if �i+1 > �i > �i−1,

dρi

dt
= ((�i+1 − �i )ρi − (�i − �i−1)ρi−1)

+β((log ρi+1 − log ρi )ρi − (log ρi − log ρi−1)ρi−1)

if �i+1 < �i < �i−1,
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dρi

dt
= ((�i+1 − �i )ρi+1 − (�i − �i−1)ρi−1)

+β((log ρi+1 − log ρi )ρi+1 − (log ρi − log ρi−1)ρi−1)

if �i+1 > �i , �i−1 > �i ,

dρi

dt
= ((�i+1 − �i )ρi − (�i − �i−1)ρi )

+β((log ρi+1 − log ρi )ρi − (log ρi − log ρi−1)ρi )

if �i+1 < �i , �i−1 < �i .

First, we consider the drift terms, that is, those involving the potentials, on the
right-hand sides of the equations. It is obvious that when the potential is increasing
at vertex ai , which corresponds to the first scenario as �i+1 > �i > �i−1, the
term (�i+1 −�i )ρi+1 − (�i −�i−1)ρi involves density values ρi+1 and ρi , which
are from the right-hand side of position i . If one views the differences in potentials
(�i −�i−1) and (�i+1 −�i ), which are all positive, as the convection coefficient,
then it indicates that the characteristic line goes from right to the left. In other
words, in this situation the information propagates to the left, which is like “wind
blowing” toward the left. Thus the right-hand side of the equation involves infor-
mation only from the upwind (higher potential in this case) direction. Similarly, the
upwind direction for the decreasing potential case with �i+1 < �i < �i−1 is from
the left to the right. And the Fokker–Planck equation relies only on the values ρi

and ρi−1, which are from its upwind direction. In the other two cases, there are no
clear upwind directions and therefore central differences are used. Moreover, one
can see that the evolution of ρi depends only on its neighboring values with higher
potentials, and this is also true for general graphs.

The appearance of upwind directions in Fokker–Planck equations I and II
becomes natural if we take a closer look at the working mechanism of the drift
terms. If we ignore the diffusion terms by taking β = 0, then the probability den-
sity ρi evolves according to the gradient descent direction. The consequence is
that the probability is clustered on local minima of the potentials, and, therefore,
their corresponding density functions are combinations of Dirac Delta functions
sitting on the minima. This is very similar to the shock (discontinuities in solu-
tions) formation in nonlinear hyperbolic conservation laws, in which the upwind
idea is considered as a fundamental strategy in designing shock capturing schemes.
On the other hand, if one uses central differences in shock formation, numerical
oscillations, which are called Gibbs’ phenomena, are inevitable. For more discus-
sions on numerical schemes for nonlinear conservation laws, readers are referred
to books such as [6,27].

7. Parrondo’s Paradox

It is known in game theory that it is possible to construct a winning strategy by
playing two losing strategies alternately. This is often referred as Parrondo’s paradox
[1,22–24,36,38,39]. In this section, we explain, by using a discrete Fokker–Planck
equation, the paradox of free energy for the flashing ratchet model [1,3,24,38,39]
on a simple graph.
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Fig. 4. Potential function � A

Table 1. Potential function � A

ai 1 2 3 4 5 6 7 8 9 10 11 12
� A

i 5 3.4 2.2 2.5 2.8 3.1 1.9 2.2 2.5 2.8 1.6 1.9

ai 13 14 15 16 17 18 19 20 21 22 23
� A

i 2.2 2.5 1.3 1.6 1.9 2.2 1 1.3 1.6 1.9 4

We consider a graph G = (V, E) having 23 vertices:

V = {a1, a2, . . . , a23} and E = {{ai , ai+1} : i = 1, . . . , 22},
with two different potential functions � A and �B given on the graph. � A is defined
as shown in Fig. 4 and �B

i = 0 for i = 1, 2, . . . , 23. The values of � A are listed
in Table 1.

Here we fix the temperature β = 0.05. For any probability density ρ = (ρi )
23
i=1

on V , we consider two free energy functionals:

FA(ρ) =
23∑

i=1

� A
i ρi + 0.05

23∑

i=1

ρi log ρi

FB(ρ) =
23∑

i=1

�B
i ρi + 0.05

23∑

i=1

ρi log ρi = 0.05
23∑

i=1

ρi log ρi .

Free energy FA(ρ) induces a Markov process called Process A. Using Theorem 2
(1) with � A, we obtain a discrete Fokker–Planck equation, denoted as Equation A
for Process A. (Here we omit the detailed expression of Equation A for simplicity.)
Similarly, free energy FB(ρ) induces another Markov process called Process B,
and its Fokker–Planck equation is given by
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Fig. 5. Initial distribution

Fig. 6. Final distribution

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dρ1

dt
= 0.05(ρ2 − ρ1)

dρi

dt
= 0.05(ρi+1 + ρi−1 − 2ρi ), 1 < i < 23

dρ23

dt
= 0.05(ρ22 − ρ23)

.

We call this Equation B.
By Theorem 2 (3), free energy functionals FA and FB decrease monotonically

along the solutions of Equations A and B, respectively, as time increases. Both
processes are energy dissipative. However, if we apply processes A and B alternat-
ingly, which is the classical flashing ratchet model, then we will observe an energy
gaining process. In another word, in this viewpoint, the flashing ratchet is also a
Parrondo’s paradox of free energy.

More precisely, we choose an initial distribution ρ0 as shown in Fig. 5. The
peak of ρ0 is on the right. We choose time interval length T = 0.3, and we use
Equation A when 0 � t < T , and Equation B when T � t < 2T . Then we repeat
the processes. After taking AB AB AB . . . for 400-times, the peak of probability
distribution moves to the left-hand side (Fig. 6). This indicates a directed motion
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Fig. 7. First 10 process

Fig. 8. The free energy at the end of Process A for the first 400 iterations

from the lower potential places to higher potential regions. This can be used to
explain the directed motions by molecular motors.

To better illustrate this process, we show the free energy changes in Figs. 7 and
8. Figure 7 shows the free energy in the first 10 iterations. Process A ends at time
T , and Process B begins. At time 2T , Process B ends, and another Process A starts.
These steps are repeated. Although the free energy functionals decrease on each
process A and B, the free energy function FA(ρ) at time 3T is still higher than
that at time T . So applying the two processes A and B alternatingly, we observe
an energy gaining process at the end of process A, that is, at times T , 3T , 5T, . . ..
We show this energy gaining phenomenon in Fig. 8. For a similar example in a
continuous state space, see [9].
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Appendix A. A Counterexample

Applying Theorem 2 (1) to a graph G with � and β > 0, we obtain Fokker–
Planck equation (8) on M . For ρ0 ∈ M , a continuous function ρ(t) : [0, c) → M
for some c > 0 or c = +∞ is defined to be a solution of equation (8) with initial
value ρ0 if ρ(0) = ρ0 and ρ(t) ∈ M satisfies equation (8) for t ∈ (0, c). In the
following, we present an example, for which there does not exist a solution, of
equation (8) for an initial value ρ0 ∈ ∂M := M \ M .

Example. We consider a graph with 3 vertices:

V = {a1, a2, a3} and E = {{a1, a3}, {a2, a3}}.

In this case, we have

M = {ρ = (ρi )
3
i=1 ∈ R

3 : ρ1 + ρ2 + ρ3 = 1 and ρi > 0 for i = 1, 2, 3}

and

M = {ρ = (ρi )
3
i=1 ∈ R

3 : ρ1 + ρ2 + ρ3 = 1 and ρi � 0 for i = 1, 2, 3}.

We assign potential � = (�i )
3
i=1 on V with �1 > �3 and �2 > �3, and

fix β > 0. Applying Theorem 2 (1) for G, �i and β, we obtain Fokker–Planck
equation I (8) on M as follow:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dρ1

dt
= (�3 − �1 + β(log ρ3 − log ρ1)) ρ1

dρ2

dt
= (�3 − �2 + β(log ρ3 − log ρ2)) ρ2

dρ3

dt
=∑2

i=1 (�i − �3 + β(log ρi − log ρ3)) ρi

(A.48)

Now let ρ0 = (0, 1, 0) ∈ ∂M . Then we claim that there is no solution to equation
(A.48) with initial value ρ0.

In fact, if the claim is not true, then there exists a continuous function

ρ(t) = (ρ1(t), ρ2(t), ρ3(t)) : [0, c) → M
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for some c > 0 or c = +∞ such that ρ(0) = ρ0 and ρ(t) ∈ M satisfying equation
(A.48) for t ∈ (0, c). By (A.48), one has

d log ρ1(t)

dt
= (�3 − �1) + β(log ρ3(t) − log ρ1(t))

d log ρ2(t)

dt
= (�3 − �2) + β(log ρ3(t) − log ρ2(t))

for t ∈ (0, c). Let x(t) = log ρ1(t) − log ρ2(t) for t ∈ (0, c), then one gets

dx(t)

dt
= �2 − �1 − βx(t)

for t ∈ (0, c). Fix T ∈ (0, c). It is clear that for any 0 < s < T ,

eβT x(T ) = eβs x(s) +
∫ T

s
e(�2−�1)t dt. (A.49)

Since lims↘0 eβs x(s) = −∞ and lims↘0
∫ T

s e(�2−�1)t dt = ∫ T
0 e(�2−�1)t dt , if

one lets s ↘ 0 in (A.49), then one has eβT x(T ) = −∞, that is, ρ1(T ) = −∞.
This is a contradiction to (ρ1(T ), ρ2(T ), ρ3(T )) ∈ M .
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