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Abstract This paper contains rigorous results for a simple stochastic model of heat con-
duction similar to the KMP (Knipnis–Marchiori–Presutti) model but with possibly energy-
dependent interaction rates. We prove the existence and uniqueness of nonequilibrium
steady states, their relation to Lebesgue measure, and exponential convergence to steady
states from suitable initial conditions.
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1 Introduction

A number of mathematical models of 1-D heat conduction have been introduced in recent
years. Some of these models are defined by purely deterministic dynamics (1, 5, 7, 8, 11,
12, 14, 15, 21, 22, 24, 26, 27, 33–35), some are deterministic systems perturbed by noise
([2, 3, 25]), and others are stochastic models ([10, 12, 16, 20, 30]). These setups provide
useful frameworks for studying nonequilibrium phenomena such as conductivity, energy
and density profiles, Fourier Law, fluctuations and large deviations, see e.g., [4, 9, 23]. From
a mathematical point of view, among the most basic questions are the existence and unique-
ness of nonequilibrium steady states when the chain is connected to unequal heat baths,
and the rates of convergence to steady states. Fundamental as they are, these questions are
very difficult for Hamiltonian systems. The only situation for which there is a complete un-
derstanding is that of chains of anharmonic oscillators, a summary of the results for which
is given in [31]. Stochastic models are generally simpler; still, answers have been elusive,
especially with regard to questions of existence of invariant measures.

LSY was supported in part by NSF Grant DMS-1101594.

Y. Li · L.-S. Young (B)
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
e-mail: lsy@cims.nyu.edu

Y. Li
e-mail: yaoli@cims.nyu.edu

mailto:lsy@cims.nyu.edu
mailto:yaoli@cims.nyu.edu


Nonequilibrium Steady States 1171

The purpose of this paper is to illustrate, using a simple stochastic model, how these
questions can sometimes be settled using certain known techniques. Inspired by the KMP-
model [20], we consider here a model consisting of a chain of N sites each of which is
described by a single quantity, namely its energy. When the clock between two adjacent sites
rings, the energies of the two sites are pooled together and randomly repartitioned. A similar
operation is performed between the end sites and the baths: i.i.d. sequences of energies that
are exponentially distributed are drawn from the baths and mixed with energies from the end
sites. Unlike the KMP-model, where all the clocks have rate 1, we permit energy-dependent
rates of interactions. This may be both more realistic and more natural for particle systems:
one can speed up the dynamics by speeding up individual particles, and in a chain that is out
of equilibrium, particles are likely to move at different speeds in different parts of the chain.
For a class of models with these properties (see Sect. 2.1 for a precise description), we prove
the existence and uniqueness of nonequilibrium steady states, their absolute continuity with
respect to Lebesgue measure, and the exponential convergence to steady states starting from
suitable initial conditions. Precise results are stated in Sect. 3. Generalized KMP processes
have also been considered recently in the physics literature; see e.g. [29].

Conceptually, the following are the main issues: For the existence of invariant measures,
one needs to control the amount of energy that flows into and out of a chain. This can
be problematic because interaction with heat baths is determined by the dynamics near
the ends of the chain, and they may not adequately reflect what goes on in the interior.
Pathologies such as the hoarding of energy, which leads to a chain’s heating up, or the re-
verse, leading to its freezing [13], can in principle happen; it is one thing to say they should
not happen for models that are “sufficiently physical”, another to mathematically rule them
out. As for uniqueness of the invariant measure, and its absolute continuity with respect to
Lebesgue measure, the main difficulty is that in systems with nearest-neighbor interactions,
such as what we have here, transition probabilities corresponding to individual interactions
are highly degenerate, as they involve only two out of the N variables (or sets of variables)
where N is the length of the chain.

With regard to technical proofs, for the type of problems considered here one generally
uses either operator based or probabilistic arguments. In a spectral approach, the existence
of invariant measures is obtained by solving an eigenvalue problem, and exponential conver-
gence corresponds to a spectral gap. For the nonequilibrium results on anharmonic chains,
the existence and uniqueness of invariant measures was first proved in [14] using these tech-
niques (though the authors did not prove a spectral gap). In more probabilistic approaches,
Lyapunov functions are often used to ensure tightness, and coupling (see e.g. [28]) is by
now a standard tool for studying the speed of convergence. For anharmonic chains, these
ideas were used in [27] to show exponential convergence to steady state; this paper also
contains a second proof of existence. We have elected to go the probabilistic route, which
avoids technical choices of functions spaces. While the present model is simple enough that
both methods are likely workable, we think that the Lyapunov-function-coupling approach,
which is “softer”, may be easier to apply to larger classes of nonequilibrium stochastic mod-
els. Finally, the systems considered in [8, 14, 27] are defined by SDEs, for which Hörman-
der’s conditions can be used to give hypoellipticity. That in turn implies that every invariant
measure has a density supported on the entire space, from which the uniqueness of invariant
measure follows. These ideas are used in the papers cited. Our model is not described by an
SDE, and we know of no such ready-made tools applicable to Markov jump processes of
the type considered here; hence we have to prove these results “by hand”.

The organization of this paper is straightforward: Model description is given in Sect. 2,
followed by statements of results in Sect. 3. Background material is reviewed in Sect. 4;
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main ingredients of the proofs are contained in Sects. 5 and 6, and the proofs are completed
in Sect. 7.

2 Model Description

2.1 Heat Transport Model of KMP Type

We consider in this paper a heat transport model having a setup similar to that in [20] but
with a more general, possibly energy-dependent, interaction rate.

Let N ≥ 1 be a fixed integer. We consider N linearly ordered sites labeled 1,2, . . . ,N ,
each storing a finite amount of energy xi > 0, so that the states of the model are represented
by vectors x = (x1, x2, . . . , xN) ∈ R

N+ . Energy exchanges take place between adjacent sites,
and the two ends of the chain are coupled to two heat baths, which we think of as located at
sites 0 and N + 1. The temperatures of the heat baths are set at TL and TR . Without loss of
generality, we assume 0 < TL,TR < 1.

More precisely, the system is equipped with independent exponential clocks, c0, c1,

. . . , cN . For 0 < i < N , ci determines the times of energy exchange between sites i and
i + 1: When it goes off, xi and xi+1 are updated instantaneously to x̂i and x̂i+1 where

x̂i = p(xi + xi+1) and x̂i+1 = (1 − p)(xi + xi+1),

p being a uniformly distributed random variable on [0,1] that is independent of everything
else. Similarly, c0 and cN signal the times of energy exchange between the two baths and
the sites closest to each. When c0 rings, x1 is updated to x̂1 = p(x1 + y) where y is drawn
randomly from an exponential distribution of mean TL; the choice of y is independent of
history or anything else. Likewise, when cN rings, xN is updated to x̂N = p(xN + z) where
z is drawn randomly and independently from an exponential distribution of mean TR .

In the original KMP model introduced in [20], all N + 1 clocks ring at rate 1. Here we
relax this condition to permit energy-dependent rates of interaction. We assume that ηi , the
rate of clock ci , varies with time and is a function of the energies of the associated sites
at that moment, i.e., for 0 < i < N , ηi = f (xi, xi+1) for a function f for which certain
technical conditions will be imposed. For the rates of interaction with baths, we assume
η0 = f (TL, x1) and ηN = f (xN,TR).

We assume the following conditions are satisfied by the function f :R2+ → (0,∞):

Assumptions (H)

(1) There is a nondecreasing function h(·) and a constant C such that

h
(
max{x, y}) ≤ f (x, y) ≤ Ch

(
max{x, y});

(2) h(·) has sublinear growth rate, i.e., h(αz) ≤ αh(z) for all α ≥ 1.

Notice that by setting h ≡ 1 and C = 1, we recover the case of ηi ≡ 1. Our motivation for
relaxing to energy-dependent rates of interaction comes from several examples of Hamilto-
nian (particle) systems (see e.g. [6, 12, 15, 34]), in which these rates are clearly affected
by the energies of the particles in the relevant sites though the situation is nowhere near as
simple as that described above.
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2.2 Mathematical Framework

The model described in Sect. 2.1 is a continuous-time Markov chain on R
N+ . The state of the

system at time t is denoted by

x(t) = (
x1(t), x2(t), . . . , xN(t)

) ∈R
N
+ := (0,∞)N .

Let B = B(RN+) be the Borel σ -algebra on R
N+ . Throughout this paper, we will refer to this

Markov chain as Φt, t ≥ 0, and its Markov transition kernel as P t(x,A). This implies in
particular that for t ≥ 0, P t(x, ·) is a probability measure on (RN+ ,B) for every x ∈ R

N+ , and
P t(·,A) is a measurable function for every A ∈ B.

Formally, Φt is defined by the infinitesimal generator G acting on bounded measurable
functions ξ on R

N+ as follows:

(Gξ)(x)

=
N−1∑

i=1

f (xi, xi+1)

∫ 1

0

[
ξ
(
x1, . . . , p(xi + xi+1), (1 − p)(xi + xi+1), . . . , xN

) − ξ(x)
]
dp

+ f (TL, x1)

∫ ∞

0

∫ 1

0

[
ξ
(
p(x1 + y), x2, . . . , xN

) − ξ(x)
]
βLe−βLydpdy

+ f (xN,TR)

∫ ∞

0

∫ 1

0

[
ξ
(
x1, x2, . . . , p(xN + y)

) − ξ(x)
]
βRe−βRydpdy,

where βL = (TL)−1 and βR = (TR)−1.
Given � > 0, the time-� sample chain of Φt is the discrete-time Markov chain Φ�

n ,
n = 0,1,2, . . . , whose transition probabilities are given by P �(x, ·). For � = 1, we omit
the superscript �, and write simply Φn and P (x, ·).

The left operator associated with the Markov transition kernel P t(x,A) acting on the set
of probability measures on (RN+ ,B) is given by

(
μP t

)
(A) =

∫

R
N+

P t(x,A)μ(dx); (2.1)

the right operator acting on the set of bounded measurable functions on (RN+ ,B) is given by

(
P tξ

)
(x) =

∫

R
N+

ξ(y)P t (x,dy). (2.2)

Left and right operators associated with the time-1 chain Φn are defined similarly.
A probability measure μ on (RN+ ,B) is said to be invariant under the Markov chain Φt

(resp. Φn) if μP t = μ for all t ≥ 0 (resp. μP = μ).

2.3 Justification of Rate Function

While it is not unnatural to assume that higher energy leads to faster clock rates, it is not true
that the rates of interaction between adjacent sites carrying energies x and y can always be
represented as a function of max{x, y}. We provide here an example (see Fig. 1) that lends
some justification to the form of f (x, y) in Assumptions (H).
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Fig. 1 A heat transport model
with m internal states in each site

We assume that (i) within each site there are m internal states, labeled l1, l2, . . . , lm; (ii) in
site i a particle carrying energy xi hops from one internal state to another, its destination
chosen randomly and independently of anything else, and the times between hops are expo-
nentially distributed with mean

√
xi ; (iii) energy exchange between sites i and i + 1 occurs

at the first instant when the particles in the two sites find themselves in the same internal
state; and (iv) after an exchange, the process continues with the particles hopping at rates
determined by their new energies.

For argument sake, we assume that at time 0, the particles in sites i and i + 1 have inter-
nal states lσ (i) 	= lσ (i+1). We let vi = √

xi , vi+1 = √
xi+1, vmax = max{vi, vi+1}, and assume

vi ≥ vi+1. In a small time interval [0, ε], the probability that energy is exchanged is larger
than the probability that the particle in site i hops to lσ (i+1) while the particle in site i + 1
does not move. Hence

f (x, y) ≥ lim
ε→0

1
m
(1 − e−vi ε)e−vi+1ε

ε
= lim

ε→0

vi

m
e−vi+1ε = 1

m
vmax.

On the other hand the probability that no energy is exchanged during the time period [0, ε]
is larger than the probability that neither particle changed their internal states. Hence

f (x, y) ≤ lim
ε→0

1 − e−vi εe−vi+1ε

ε
≤ 2vmax.

Hence the assumptions in Assumptions (H) are satisfied with h(z) = 1
m

√
z and C = 2.

3 Statement of Main Results

We begin by defining, in a general setting, a few terms that appear in the statement of our
results. Let (X,A) be a measurable space, and let W : X → [1,∞) be a measurable function
on X. We define the W -weighted supremum norm of a measurable function ξ : X → R to be

‖ξ‖W = sup
x∈X

|ξ(x)|
W(x)

,

so that for W ≡ 1, ‖ξ‖ := ‖ξ‖1 = supx∈X |ξ(x)| is the usual supremum norm of ξ . We also
define the W -weighted variation norm of a signed measure μ on (X,A) to be

‖μ‖W =
∫

X

W(x)|μ|(dx),

and let LW(X,A), or simply LW(X), denote the set of probability measures μ on (X,A)

with μ(W) < ∞.



Nonequilibrium Steady States 1175

Given a Markov chain Ψt on X with Markovian transition kernel P̂ t , the time correlation
function of observables ξ and ζ with respect to a probability measure μ on (X,A) is defined
to be

C
μ

ξ,ζ (t) =
∫

X

(
P̂ t ζ

)
(x)ξ(x)μ(dx) −

∫

X

(
P̂ t ζ

)
(x)μ(dx)

∫

X

ξ(x)μ(dx).

The theorems below apply to the Markov chain Φt defined in Sect. 2.2; system size N

and bath temperatures TL,TR < 1 are to be regarded as fixed. The interaction rates f (x, y)

of the chain are assumed to satisfy the conditions in Assumptions (H). Let V : RN+ → [1,∞)

be given by

V (x) = 1 + V0(x) where V0(x) =
N∑

i=1

xi (3.1)

is the total energy of the state x. Lebesgue measure on R
N+ is denoted by λ.

Theorem 1 There exists a unique π ∈ LV (RN+ ,B) that is invariant under Φt .

Theorem 1 tells us where an invariant measure can be found; it does not guarantee that
Φt has no other invariant measure (outside of LV (RN+ ,B)), nor does it tell us if π has a
density. These two issues are not unrelated; we record the results in Theorem 2.

Theorem 2

(a) The measure π is absolutely continuous with respect to λ, with dπ
dλ

> 0 λ-a.e.
(b) It is the only Φt -invariant probability measure.

Having established the existence and uniqueness of nonequilibrium steady state, we pro-
ceed to describe its statistical properties. The ergodicity of (Φt ,π) is an immediate conse-
quence of Theorem 2(b). Our next results concern the speed of mixing.

Theorem 3 There exist constants c > 0 and 0 < ρ < 1 such that

(a) ‖P t(x, ·) − π‖V ≤ cV (x)ρt for every x ∈ R
N+ ;

(b) more generally, μ ∈ LV (RN+ ,B) implies μP t ∈ LV (RN+ ,B), and

∥∥μ1P
t − μ2P

t
∥∥

V
≤ c‖μ1 − μ2‖V ρt for all μ1,μ2 ∈ LV

(
R

N
+
)
.

Corollary 4 The Markov chain Φt has exponential decay of time correlations with respect
to the following measure and function classes: Let μ ∈ LV (RN+), and let ξ and ζ be measur-
able functions on (RN+ ,B) with ‖ξ‖ < ∞ and ‖ζ‖V < ∞. Then

∣
∣Cμ

ξ,ζ (t)
∣
∣ ≤ ‖ξ‖‖ζ‖V ‖μ‖V · 2cρt

where c and ρ are as in Theorem 3.

Remarks

(1) Tightness is needed to establish the existence of invariant measures, due to the noncom-
pactness of the domain R

N+ . For the case considered in [20], i.e., where all the clocks
have rate 1, this follows from a simple coupling argument: Observe first that when
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Fig. 2 Energy profile of a chain
with energy dependent
interactions. Here, N = 100,
TL = 0.2, TR = 1.0 and
f (x, y) = √

max{x, y}

TL = TR = T , the product measure ΠN
i=1βe−βxi , where β = T −1, is invariant. Given a

system with TL < TR , one can couple it to the system with T̄L = T̄R = TR as follows: No-
tice that each sample path is determined by (tk, ik,pk; eL

k , eR
k )k=1,2,... where t1 < t2 < · · ·

are the times at which mixing occurs, xik and xik+1 are mixed at time tk with propor-
tions pk and 1 − pk , and eL

k and eR
k are the kth energies drawn from the two baths. We

can couple the system with baths (TL,TR) to the one with baths (T̄L, T̄R) sample path
by sample path, i.e., start from identical initial distributions, and use for both the same
sequence (tk, ik,pk; ∗, eR

k ) except in the slot marked ∗, where we require each energy
drawn from the TL-bath be less than the corresponding energy drawn from the T̄L-bath.
This way, every xi in the (TL,TR)-system is smaller than the corresponding entry in the
(T̄L, T̄R)-system at all times, guaranteeing that its invariant measure is dominated by the
invariant measure of the (T̄L, T̄R)-system.

Notice that this argument fails when the rates of interactions are energy-dependent,
for when the clocks have variable rates, there is no natural coupling of sample paths
that will preserve the order of the interactions, and without this order preservation, the
energies {xi} of the two systems are not directly comparable.

(2) Even when the setups are similar, nonequilibrium steady states can be qualitatively quite
different for energy-dependent and energy-independent interactions. For example, for a
fixed N , let Ei be the mean of the ith marginal distribution of π , i.e., Ei = Eπ [xi].
We rescale this information onto (0,1) by defining EN(x) = Ei for x ∈ ( i−1

N
, i

N
) for

i = 1,2, . . . ,N . In the case where ηi ≡ 1, EN tends to a linear profile E∞(x) = TL +
(TR −TL)x; this is proved in [20]. In the case where higher energy leads to faster clocks,
we believe E∞ can be strictly concave for TR > TL, as the energy at site i is “more
influenced” by the distribution in site i +1 than the one in site i −1. A concrete example
is given in Fig. 2.

4 Method of Proof

4.1 Some Known Results

We review here some known results on discrete-time Markov chains on general spaces that
we will use. These results go back to Harris [18], who showed that unique ergodicity follows
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from the existence of “small sets” that are visited infinitely often, extending both the picture
for countable state Markov chains certain ideas of Doeblin to “unbounded” state spaces. This
“small set” condition is often established by finding a Lyapunov function whose level sets
have certain properties [19, 28]; a detailed exposition is contained in [28]. We will, however,
follow [17], which contains a more direct proof of these results and has a formulation well
suited for our purposes.

The setting is as follows: Let (X,A) be a measurable space, and let Ψn,n = 0,1,2, . . . ,
be an arbitrary Markov chain on X with Markov transition kernel P̂ (x, ·). As before, we
write

(P̂ ξ)(x) =
∫

X

P̂ (x,dy)ξ(y) and (μP̂ )(A) =
∫

X

P̂ (x,A)μ(dx).

Here ξ : X → R is a bounded measurable function and μ is a probability measure on (X,A).
Of interest are the following two conditions:

Assumption (A1) There exists a measurable function W0 : X → [0,∞) and constants 0 ≤
K < +∞, γ ∈ (0,1) such that

(P̂W0)(x) − W0(x) ≤ −γW0(x) + K for all x ∈ X.

Assumption (A2) Let D = {W0 ≤ 2K/γ }. Then there exist α ∈ (0,1) and a probability
measures ν on (X,A) such that

inf
x∈D

P̂ (x, ·) ≥ αν(·).

These assumptions carry the following intuitive meaning: Assumption (A1) asserts the
existence of a Lyapunov type function; the W0-value of a state is, on average, decreased
unless it is already below a certain value. This is clearly conducive to tightness. Assump-
tion (A2) asserts a Doeblin type condition for a set of the form {W0 ≤ R} for R large enough.
Starting from two initial distributions, these conditions say that the tendency of the chain is
to drive them – uniformly but in the sense of expectations only – into a set from which a
fraction of the measures can be coupled, setting the stage for exponential mixing.

In what follows, we let W = W0 + 1, and let ‖ξ‖W , ‖μ‖W and LW(X) be as defined in
the beginning of Sect. 3. It follows easily from Assumption (A1) that for μ ∈ LW(X), μP̂

is also in LW(X), because (μP̂ )(W) ≤ (1 − γ )μ(W) + K .
We recall the following results from [17]:

Theorem 4.1 (Theorems 1.2 and 1.3 in [17]) Assume Assumptions (A1) and (A2) hold for
the Markov chain Ψn. Then Ψn has a unique invariant probability measure μ∗ in LW(X).
Moreover, there exist ᾱ ∈ (0,1) and C1,C2 > 0 such that

(a) for all μ1,μ2 ∈ LW(X),

∥
∥μ1P̂

n − μ2P̂
n
∥
∥

W
≤ C1ᾱ

n‖μ1 − μ2‖W ;
(b) for every measurable function ξ with ‖ξ‖W < ∞,

∥∥P̂ nξ − μ∗(ξ)
∥∥

W
≤ C2ᾱ

n
∥∥ξ − μ∗(ξ)

∥∥
W

.
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Remarks

(1) In [17], a family of norms parameterized by β > 0 is introduced using Wβ = 1 + βW0

in the place of W . The authors of [17] showed that for suitable choices of β , the action
of P̂ is a contraction on LWβ

(X), i.e., for μ1,μ2 ∈ LWβ
(X),

‖μ1P̂ − μ2P̂‖Wβ
≤ ᾱ‖μ1 − μ2‖Wβ

.

The results above are deduced from this together the facts that (i) for any two β , the
corresponding norms are equivalent, and (ii) equipped with these norms, the spaces
LWβ

(X) are complete.
(2) This remark pertains to the constants ᾱ,C1 and C2 in Theorem 4.1. It is shown in [17]

that if Assumption (A2) holds on DR = {W ≤ R} for R ≥ 2K/γ where γ and K are the
constants in Assumption (A1), then for any α∗ ∈ (0, α) and any γ∗ ∈ (1−γ +2K/R,1),
one can choose β = α∗/K and obtain a contraction rate

ᾱ = max
{
1 − (α − α0), (2 + Rβγ∗)/(2 + Rβ)

}

with respect to the ‖ · ‖Wβ
-norm (see item (1) above). The constants C1 and C2 come

from the equivalence of the norms ‖ · ‖W and ‖ · ‖Wβ
.

4.2 Outline of Proofs of Our Results

To prove Theorems 1 and 3 stated in Sect. 3, we will apply the results in Sect. 4.1 to the
time-1 sample chain Φn of Φt . The proof is divided into the following three steps:

(i) The first step is to establish Assumption (A1) with W0 = V0, the total energy function.
This consists of proving the following: (a) In the time interval [0,1), the expected en-
ergy gain under Φt is uniformly bounded independent of initial condition, and (b) start-
ing from any initial distribution, there is a positive probability (bounded away from
zero) that a fraction of the initial energy will be released into the heat baths before
time 1.

(ii) The second step is to establish Assumption (A2). We will show in our case that the set
D in Assumption (A2) can be taken to be {V0 ≤ M} for any M ∈ (1,∞).

(iii) With the successful completion of these two steps, we will be in a position to appeal to
Theorem 4.1 to obtain results analogous to Theorems 1 and 3 for the time-1 chain Φn.
In the last step, we pass these results to the original continuous-time Markov chain Φt .
Corollary 4 is easily deduced from Theorem 3.

The proof of Theorem 2 is related to Assumption (A2) but involves some additional
ideas. We will show that any invariant probability measure of Φt is necessarily absolutely
continuous with respect to Lebesgue measure, with a strictly positive density almost every-
where.

5 Expected Energy Gains

To prove tightness, or that the chain does not heat up over time, we need to control the
amount of energy that flows into the chain. More precisely, given an initial condition x(0)

and a number τ > 0, we define

GL,[0,τ )

(
x(0)

) := Ex(0)

[∑

tα

max
{
x1

(
t+α

) − x1(tα),0
}
1{0<tα<τ }

]
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where tα > 0 are the times at which c0 rings, x1(tα) is the energy at site 1 before the exchange
and x1(t

+
α ) immediately after the exchange. Similarly, define GR,[0,τ )(x(0)) replacing c0 and

x1 by cN and xN respectively, and let G := GL + GR . Notice that G ≥ 0, as it counts only
the net flow of energy from the bath into the chain in each interaction. If the net flow is from
the chain to the bath, a “0” is registered. We will refer to G[0,1)(x(0)) as the expected energy
gain by the chain per unit time starting from initial condition x(0).

The goal of this section is to prove

Proposition 5.1 There exists a constant B depending on Ch(1) (and the assumption that TL,
TR < 1) such that G[0,1)(x(0)) ≤ B for all x(0) ∈R

N+ .

For the definition of “Ch(1)”, see Assumptions (H) in Sect. 2.1. The rationale for this
result is that when x1 is small, clock c0 should not ring too often, and when it is large, the
net flow of energy is more likely from the chain to the bath when c0 rings, and the same is
true for xN and cN . Below we make these ideas mathematically rigorous.

5.1 Main Computation

Observe that before the first energy exchange with a bath, the rate ηi of clock ci is less
than or equal to max{1,V0(x(0))Ch(1)} for all i. We check this for c0: If max{TL, x1} ≤ 1,
then f (TL, x1) ≤ Ch(max{TL, x1}) ≤ Ch(1) by the monotonicity of h. If max{TL, x1} > 1,
then max{TL, x1} = x1 > 1, and f (TL, x1) ≤ x1Ch(1) ≤ V0(x(0))Ch(1) by condition (2) in
Assumptions (H). The other cases are similar.

The rest of this section is devoted to the proof of the following lemma:

Lemma 5.2 There exists a constant B such that for every x(0) ∈ R
N+ , if τ ≤ Ch(1)e−2M−2

for some M ≥ max{2,V0(x(0))}Ch(1), then G[0,τ )(x(0)) ≤ Bτ .

We note that both M and τ depend on x(0), and for as long as V0 ≤ V0(x(0)), we have
ηi ≤ M (the “2” in its definition is for later convenience), and Mτ ≤ 1

2 e−2.

Proof We fix x(0), and consider separately the following mutually exclusive cases. It will
be assumed implicitly throughout that all discussions pertain to the interval [0, τ ). For k =
0,1,2, . . . ,∞, let

Ek = {c0 and cN together ring exactly k times}.
The contributions to G[0,τ )(x(0)) by the various events are analyzed as follows:

Event E0: Clearly, there is no energy gain in this case.
Event E1: We let E1 = E0

1 ∪EN
1 corresponding to the cases where c0 or cN rings. Since the

two cases are treated in an identical fashion, we consider c0 and drop the superscript 0. We
further subdivide E1 (meaning E0

1 ) into the following two cases:

E1a := {c0 rings exactly once, c1 does not ring before c0; cN does not ring};
E1b := {c0 rings exactly once, c1 rings before c0; cN does not ring}.

For notational simplicity, let us write β = βL and x1 = x1(0). Since P[E1a] ≤
P[c0 rings exactly once | c1 does not ring before c0, and cN does not ring], we have
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P[E1a] ≤
∫ ∞

0

∫ 1

0

∫ τ

0
e−f (x1,TL)sf (x1, TL)e−f (p(x1+y),TL)(τ−s)βe−βydsdpdy

≤ f (x1, TL)

∫ ∞

0

∫ 1

0

∫ τ

0
ef (p(x1+y),TL)sβe−βydsdpdy

≤ f (x1, TL)τ

∫ ∞

0
e(x1+y+1)Ch(1)τ βe−βydy

= f (x1, TL)τ · β

β − Ch(1)τ
· e(x1+1)Ch(1)τ

< 2f (x1, TL)τ.

To bound the last inequality, we have used Ch(1)τ ≤ 1
4e−2 and x1Ch(1) ≤ M .

It follows that the expected energy gain associated with E1a is given by

P[E1a] ·E[
G[0,τ )

(
x(0)

) | E1a

] = P[E1a]
∫ ∞

0

∫ 1

0
max

{
p(x1 + y) − x1,0

}
βe−βydpdy

< 2τf (TL, x1)

∫ ∞

0

y2

2(x1 + y)
βe−βydy.

Since

f (TL, x1) ≤ Ch
(
max{x1, TL}) < Ch(x1 + 1) ≤ (x1 + 1)Ch(1)

and

y2

x1 + y
<

1 + y2

x1 + 1
for all x1, y > 0,

it follows that

P[E1a] ·E[
G[0,τ )

(
x(0)

) | E1a

]
< Ch(1)τ

∫ ∞

0

(
1 + y2

)
βe−βydy

= Ch(1)
(
1 + 2β−2

)
τ < 3Ch(1)τ.

Next, we claim

P[E1b] ≤ (
1 − e−Mτ

)
2Mτ < 2M2τ 2.

For as long as V0 = V0(x(0)) up to the time of the ring, the probability of ci ringing at least
once is the quantity in brackets, and we have shown above that the probability of any ci

ringing exactly once is less than or equal to 2Mτ . Since TL < 1, the expected energy gain
associated with E1b is less than P[E1b], and 2M2τ 2 ≤ 2e−2Ch(1)τ .

Event Ek , k > 1: The times at which exchanges with baths take place are given by a rather
complicated process: Consider, for example, c0. At any one moment, the time to the next
ring is given by an exponential distribution, but the parameters of this distribution vary
with x1, the value of which is in turn dependent on the history of interactions in the entire
chain. When c0 rings, the sequence of energies emitted by the bath is i.i.d., however, and
we will take advantage of that.
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To put the random variables representing energies emitted by the left and right baths on
the same probability space, we introduce

ϕθ : (0,1) → (0,∞) defined by
∫ ϕθ (x)

0

1

θ
e−y/θdy = x,

so that ϕθ carries the uniform distribution on the unit interval (0,1) to the exponential dis-
tribution with mean θ .

We assume throughout that x(0) is the initial condition and [0, τ ) is the time interval of
interest. First fix u = (u1, . . . , uk) ∈ (0,1)k , and define Ωu to be the set of sample paths ω

with the property that at the ith energy exchange with a bath, 1 ≤ i ≤ k, the energy drawn
from the bath (to be mixed with x1 or xN ) is ϕσ(ω,i)(ui), where σ(ω, i) = TL (resp. TR) if
this exchange is with the left (resp. right) bath. Thus for this sample path, the total amount
of energy to enter the chain in the first k exchanges with baths is bounded above by

k∑

i=1

ϕσ(ω,i)(ui) ≤
k∑

i=1

ϕ1(ui) := Sk,u.

In the last inequality, we have used the fact that for fixed x ∈ (0,1), ϕθ (x) increases with θ .
Let Pu denote the conditional probability of P on Ωu, and Eu the corresponding expectation.

We claim that

Pu(Ek) =
∫

· · ·
∫

{0<s1<s2<···<sk<τ }
p1q1p2q2 · · ·pkqkpk+1ds1 · · ·dsk,

where pi and qidsi are the probabilities of events Pi and Qi :

Pi = {
neither c0 nor cN rings on (si−1, si) | Pj ,Qj , j < i

};
Qi = {

one of c0 or cN rings on (si, si + dsi) | Pj , j ≤ i, and Qj, j < i
}
.

The definitions above are to be read with s0 = 0 and sk+1 = 1. Using the generous bounds
pi ≤ 1 and

qi ≤ f
(
x1(si), TL

) + f
(
xN(si), TR

) ≤ 2
(
M + Ch(1)Sk,u

)
,

we obtain

Pu(Ek) ≤ τ k

k!
[
2
(
M + Ch(1)Sk,u

)]k
.

With respect to Eu, then, the expected energy gain associated with Ek is no greater than

Eu

[(
k∑

i=1

ϕσ(·,i)(ui)

)

1Ek

]

≤ Sk,u · Pu[Ek]

≤ Sk,u
2kτ k

k!
(
M + Ch(1)Sk,u

)k
.

Integrating over u, we obtain the upper bound

E

[
Sk

2kτ k

k!
(
M + Ch(1)Sk

)k

]
(5.1)
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where Sk = ∑k

i=1 Yi is the sum of k independent, mean-1, exponentially distributed, random
variables (called an Erlang distribution).

The probability density function of Sk is xk−1e−x/(k − 1)!, and its moment generating
function is (1 − t)−k . Differentiating the latter m times, we obtain

E
[
Sm

k

] = k(k + 1) · · · (k + m − 1) <

m−1∏

j=0

(k + j).

Thus the expectation in (5.1) is equal to

2kτ k

k!
k∑

i=0

(
k

i

)
Mk−i

(
Ch(1)

)i
E

[
Si+1

k

]
<

2kτ k

k!
k∑

i=0

(
k

i

)
Mk−i

(
Ch(1)

)i
(2k)i+1

= 2k(2kτ k)

k!
(
M + 2Ch(1)k

)k
.

This completes the estimate for the contribution from one Ek at a time, for k ≥ 2. (The
argument is valid for k = 1, but the bound is too weak to be useful.) To finish, we consider
the expected energy gain from

⋃
k≥2 Ek . By Stirling’s formula,

n! ≥ √
2πn

nn

en

for all n (see [32] for the version used). Hence

∞∑

k=2

2k(2kτ k)

k!
(
M + 2Ch(1)k

)k ≤
∞∑

k=2

2kek

√
2πk · kk

· (2kMτ)k

(
1

k
+ 2Ch(1)

M

)k

<

∞∑

k=2

2kek

√
2πk · kk

· (2kMτ)k · e since 2Ch(1) ≤ M

≤
∞∑

k=2

2ke√
4π

(2Mτe)k.

Letting a := 2Mτe and noticing that a ≤ e−1 < 1
2 , we see that the sum above is

= e√
π

∞∑

k=2

kak = e√
π

a2(2 − a)

(1 − a)2
<

2e√
π

a2 = 8e√
π

Ch(1)τ.

The finiteness of this sum implies in particular that P[E∞] = 0.
Summing the contribution from all cases, we obtain that G[0,τ )(x(0)) is bounded above

by Bτ for a constant B independent of x(0). �

5.2 Proof of Proposition 5.1

Starting from x(0), we introduce two sequences of random variables τ1, τ2, . . . and
X0,X1, . . . as follows. To begin with, we let X0 = max{2,V0(x(0))}Ch(1) and τ1 =
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Ch(1)e−2X−2
0 (cf. Lemma 5.2). Let X1 be the energy gain on the time interval [0, τ1) in

the sense of the last section, i.e.,

X1 =
∑

tα

max
{
x1

(
t+α

) − x1(tα),0
}
1{0<tα<τ1} +

∑

sα

max
{
xN

(
s+
α

) − xN(sα),0
}
1{0<sα<τ1},

where tα (resp. sα) are the times at which c0 (resp. cN ) rings.
By Lemma 5.2, Ex(0)[X1] ≤ Bτ1. Since x(0) is fixed throughout, we will drop the sub-

script in E from here on.
Having defined τk and Xk for all k < n, we define recursively

τn = Ch(1)e−2

(X0 + Ch(1)
∑

1≤k<n Xk)2
, (5.2)

and let Xn be the energy gained on the “next” τn units of time, i.e. on the time interval
[tn−1, tn) where tn = ∑

i≤n τi .
Observe that Lemma 5.2 can be applied to give

E[Xn | τn = s] ≤ Bs,

for if τn = s, then V0(tn−1), the total energy of the system at time tn−1, satisfies

max
{
2,V0(tn−1)

}
Ch(1) ≤ X0 + Ch(1)

∑

1≤k<n

Xk.

(The inequality is likely strict, for Xk counts only (positive) net gain per interaction ignoring
net losses.) Repeated applications of Lemma 5.2 then gives

E

[
n∑

k=1

Xk

∣
∣∣

n∑

k=1

τk = s

]

≤ Bs,

and if P[∑∞
k=1 τk ≤ 1] = 0, then we have proved

G[0,1)

(
x(0)

) ≤ B.

It remains, therefore, to show P[∑∞
k=1 τk ≤ 1] = 0. Suppose not. Then for each sample

path with
∑∞

k=1 τk ≤ 1, there is an infinite sequence k1 < k2 < · · · with the property that
τkj

< 1/kj ; the absence of such a sequence would imply τk ≥ 1/k for all but finitely many k,
leading to

∑∞
k=1 τk = ∞. But τkj

< 1/kj implies, by (5.2), that

kj −1∑

i=1

Xi >

√
kj Ch(1)e − X0

Ch(1)
,

which tends to infinity as kj → ∞, contradicting

E

[ ∞∑

k=1

Xk

∣
∣∣

∞∑

k=1

τk ≤ 1

]

< B.

This completes the proof of Proposition 5.1.
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6 Relevant Properties of the Time-1 Chain

In Sects. 6.1 and 6.2, we show that Φn, the time-1 sample chain of Φt , satisfies conditions
Assumptions (A1) and (A2) in Sect. 4.1. These are the main ingredients in the proofs of
Theorems 1 and 3. Section 6.3 discusses how Φ1 transforms the Lebesgue measure class, an
issue at the heart of Theorem 2.

6.1 Total Energy as Lyapunov Function

In analogy with the definitions related to expected energy gain at the beginning of Sect. 5,
we define expected energy loss to be L := LL + LR where

LL,[0,τ )

(
x(0)

) := Ex(0)

[∑

tα

max
{
x1(tα) − x1

(
t+α

)
,0

}
1tα<τ

]
(6.1)

where tα > 0 are the times when c0 rings, and LR,[0,τ )(x(0)) is defined analogously.

Lemma 6.1 There exist γ0 > 0 and K∗ < ∞ such that for every x(0) with V0(x(0)) > K∗,

L[0,1)

(
x(0)

) ≥ γ0V0

(
x(0)

)
.

Proof We first lay out a procedure that we claim will lead to the systematic dumping of a
fraction of V0(x(0)) into one of the baths – postponing the choice of constants and compu-
tation of probabilities till later.

Let M = xn0(0) = max{xi(0),1 ≤ i ≤ N}, i.e., initially, site n0 has the highest energy
among all sites. Of interest to us is the event

S =
n0⋂

i=1

Si

where Si defines what happens on the time interval [(i − 1)δ, iδ) and the size of δ is to be
specified:

Si =
{

The following hold on the time interval [(i − 1)δ, iδ) :

(a) cn0−i rings exactly once;

(b) all other cj are silent; and

(c) xn0−i (iδ) ≥ 1

2
xn0−i+1

(
(i − 1)δ

)}
.

That is to say, S1 defines what takes place on [0, δ). In this event, cn0−1 is the only clock that
rings; it rings exactly once, say at time s1, resulting in xn0−1(s

+
1 )≥ 1

2 xn0(s1)= 1
2xn0(0)≥ 1

2M .
The next ring, which takes place at time s2 ∈ [δ,2δ), comes from cn0−2, and results in
xn0−2(s

+
2 ) ≥ 1

2xn0−1(s2) ≥ 1
4M . Inductively, one sees that x1(s

+
n0−1) ≥ 2−(n0−1)M . Defi-

nitions associated with Sn0 have to be interpreted a little differently: x0(sn0) is the en-
ergy emitted by the left bath in the exchange at time sn0 , and x0(s

+
n0

) is the portion of
x0(sn0) + x1(sn0) that goes to the bath. Event Sn0 again stipulates that x0(s

+
n0

) ≥ 1
2x1(sn0) ≥
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2−n0M . The amount of energy dumped, i.e., lost by the chain in the sense of (6.1), is
max{x0(s

+
n0

) − x0(sn0),0}, and this is guaranteed to happen with probability P[S].
Observe that we may assume n0 ≤ N/2 in the scheme above, for if n0 > N/2, we can

pass the energy to the right bath. It is clear from the discussion above that the sample paths
in S lead to the dumping of a fraction of the highest energy. To obtain the desired bound on
expected energy loss, we need to show that P[S] is bounded below by a quantity indepen-
dent of V0(x(0)). This is what the rest of the proof is about. As the computation is slightly
different depending on the relation between interaction rates and system size, we separate
into the following two cases:

Case 1. N < supx h(x). We let M0 be such that h(M0) ≥ N
2 , and consider only those initial

conditions with V0(x(0)) ≥ NM0, so that M , the highest energy in any one site initially, is
≥M0. We choose our time steps to be δ = h(M)−1, and notice that the process is completed
within one unit of time, since n0δ ≤ N

2 h(M)−1 ≤ N
2 h(M0)

−1 ≤ 1 by the nondecreasing
property of h.
We write

P[Si | S1, . . . , Si−1] = P1(i)P2(i)P3(i)

where P1 and P2 correspond respectively to the probabilities of (a) and (b) in the definition
of Si given Sj for all j < i, and P3 is the probability of (c) given (a), (b) and Sj , j < i.
Observe that given S1, . . . , Si−1, we have, at time (i − 1)δ,

(i) xn0−i = xn0−i (0) ≤ M , and
(ii) 2−i+1M ≤ xn0−i+1 ≤ iM .

(i) is clear, since neither of the clocks adjacent to it has rung so far. The lower bound in
(ii) is a consequence of Sj , j < i, and the upper bound is attained if xj (0) = M for every
j ∈ [n0 − i + 1, n0], and in every one of the first i − 1 interactions, all of the energy goes
to the site on the left.
To estimate P1(i), we let xj denote the energy at site j before the clock rings and x̄j after.
Then, using the nondecreasing property and the sublinear growth rate of h, we obtain

P1(i) =
∫ δ

0
f (xn0−i , xn0−i+1)e

−f (xn0−i ,xn0−i+1)se−f (x̄n0−i ,x̄n0−i+1)(δ−s)ds

≥
∫ δ

0
h

(
M

2i−1

)
e−Ch(iM)se−Ch((i+1)M)(δ−s)ds

= h

(
M

2i−1

)
· e−Ch((i+1)M)δ · δ

≥ 2−(i−1)h(M) · e−C(i+1)h(M)δ · δ
= 2−(i−1)e−C(i+1) since δh(M) = 1.

Likewise,

P2(i) =
∏

j 	=n0−i

ef (xj ,xj+1)δ ≥ (
e−Ch(iM)δ

)N ≥ e−CiN ,

using again δh(M) = 1, and it is obvious that P3(i) ≥ 1
2 . These estimates together show

that P[S] = ∏n0
i=1 P1(i)P2(i)P3(i) is bounded below by a quantity independent of V0(x(0)).
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Finally, given S, the expected energy loss at time sn0 is greater than 1
2x0(s

+
n0

) ≥ 2−n0−1M

if x0(s
+
n0

) ≥ 2 (since E[x0(sn0)] = TL < 1). Thus if we take K∗ = N · max{M0,2
N
2 +1},

then M ≥ max{M0,2n0+1}, x0(s
+
n0

) ≥ 2, and the assertion in Lemma 6.1 holds with γ0 =
P[S]2−( N

2 +1)N−1.
Case 2. N ≥ supx h(x). When it is not possible to satisfy h(M)δ = 1 and Nδ ≤ 1 at

the same time, we proceed a little differently: We let h0 := supx h(x), fix M0 with
h(M0) ≥ 1

2 h0, and choose δ = 1
N

. Then for M ≥ M0, we have 1
N

h0
2 ≤ δh(M) ≤ 1

N
h0, which

is sufficient for our purposes. �

We now state for the record

Proposition 6.2 The time-1 chain Φn satisfies Assumption (A1) with W0 = V0 = ∑N

i=1 xi ,
i.e., there exist K0 < ∞ and γ0 > 0 such that for all x ∈R

N+ , we have

(PV0)(x) − V0(x) ≤ −γ0V0(x) + K0.

Proof Since

PV0(x) − V0(x) = G[0,1)(x) − L[0,1)(x)

where G[0,1) and L[0,1) are the expected energy gain and loss in one unit of time for the
continuous-time chain Φt , it follows from Proposition 5.1 and Lemma 6.1 that

(PV0)(x) − V0(x) ≤ −γ0V0(x) + B

whenever V0(x) ≥ K∗. The desired inequality then holds for all x ∈ R
N+ with K0 = B +

γ0K∗. �

6.2 Doeblin-Type Condition on Sets with Bounded Total Energy

In what follows we will use the notation Da := {V0 ≤ a}, and Ba := {x : xi < a ∀i}. Recall
that Lebesgue measure on R

N is denoted by λ, and for B ⊂ R
N+ , λ|B is the restriction of λ

to B .

Lemma 6.3 Given any M,a > 0, there exists ε = ε(M,a) > 0 such that

P (x, ·) ≥ ε(λ|Ba ) for all x ∈ DM. (6.2)

Proof For z = (z1, . . . , zN) ∈ R
N+ and σ > 0, let B(z, σ ) := {zi ≤ xi < zi + σ, all i}. It

suffices to produce, for given M,a > 0, an ε for which

P
(
x,B(z, σ )

) ≥ ελ
(
B(z, σ )

)

holds for all x ∈ DM and all z, σ such that B(z, σ ) ⊂ Ba . Let M,a,x, z and σ be fixed.
As before, we first identify the event of interest: Let δ = 1

N+1 . We consider S = S0 · · ·SN

where Si , which specifies what happens on the time interval [iδ, (i + 1)δ), is defined as
follows:

Si = Ai ∩ {
on [iδ, (i + 1)δ), ci rings exactly once, all other clocks are silent

};
A0 = {

energy emitted by left bath ∈ (Na + 1,Na + 2)
}
,
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Ai = {
xi

(
(i + 1)δ

) ∈ [zi, zi + σ)
}

for i = 1,2, . . . ,N.

The idea is that a sufficiently large amount of energy is injected into the chain initially so
that for i = 1, . . . ,N , xi(iδ) ≥ 1 + (N − i + 1)a, so it is always possible for site i to acquire
an amount of energy between zi and zi + σ and to pass the rest to site i + 1, or to the right
bath in the case i = N .

We seek an estimate from below in the form of εσN for P[S]. The situation is simpler
than in Lemma 6.1 as ε is allowed to depend on M and a, as well as N,h,TL and TR . Here
are the considerations:

(i) At time iδ, we need a lower bound on ηi = the rate of ci , to bound from below the
probability of ci ringing within time δ. Here we have η0 ≥ h(TL), and for i = 1, . . . ,N ,
ηi = h(max{xi(iδ), xi+1(iδ)}) ≥ h(1 + a) conditioned on Sj , j < i.

(ii) There is a uniform upper bound for ηi as V0 ≤ M + Na + 2 throughout.
(iii) Finally, let p ∈ (0,1) be the fraction in the next mixing that puts xi ∈ [zi, zi + σ).

Given Sj , j < i, we will need p ≥ cσ for some c > 0. For i < N , this is true as 1 +a ≤
xi(iδ) + xi+1(iδ) ≤ M + Na + 2. The case of i = N is similar.

Further details are left to the reader. �

It follows immediately from Lemma 6.3 that Assumption (A2) is satisfied by the time-1
chain Φn. We have shown, in fact, that D can be taken to be {V0 ≤ M} for any M , and ν can
be taken to be 1

λ(Ba)
λ|Ba for any a > 0. We record the following immediate corollary, which

connects the previous discussion to the next:

Corollary 6.4 For every x ∈ R
N+ , P (x, ·) has an absolutely continuous component with a

strictly positive density.

We clarify this statement: By the Lebesgue Decomposition Theorem, any finite Borel
measure μ on R

N+ can be decomposed into μ = μabs + μ⊥ where μabs is absolutely con-
tinuous with respect to λ (written μabs � λ) and μ⊥ is singular with respect to λ (written
μ⊥ ⊥ λ). Letting μ = P (x, ·), we observe that both μabs and μ⊥ are nontrivial for every x:
Corollary 6.4 tells us that not only is μabs(R

N+) > 0, the Radon–Nikodym derivative of μabs

with respect to λ (written dμabs
dλ

) is > 0 λ-a.e. To see that μ⊥ is nontrivial, notice that there
is always a positive measure set of sample paths that correspond, for example, to ci−1 and
ci not ringing before time 1 for some i. Following these sample paths, the value of xi is not
disturbed.

6.3 Action of Markov Operator on Lebesgue Measure Class

Recall that associated with the time-1 chain, we have the operator P acting on measures by

(μP )(·) =
∫

P (x, ·)μ(dx).

Lemma 6.5 For any finite Borel measure μ on R
N+ , if μ � λ, then μP � λ.

Proof Let

L(N) = {
� = (i1, i2, . . . , in) | 0 ≤ i1, i2, . . . , in ≤ N,n ∈ Z

+}
.
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For � = (i1, i2, . . . , in), we define the event E(�) to be that in which clocks ci1 , ci2 , . . . , cin

ring in the order specified and these are only energy exchanges before t = 1. We also let
E(∅) and E(∞) denote respectively the event of zero or infinitely many rings on the time
interval [0,1). For E = E(�), E(∅) or E(∞), we define the operator PE , which acts on the
space of Borel measures on R

N+ , by

(μPE)(A) =
∫

PE(x,A)μ(dx) where PE(x,A) = P
[
(Φ1 ∈ A | Φ0 = x) | E]

.

Then

μP(·) =
∫

R
N+

[( ∑

�∈L(N)

Px
[
E(�)

]
PE(�)(x, ·)

)
+ Px

[
E(∅)

]
PE(∅)(x, ·)

+ Px
[
E(∞)

]
PE(∞)(x, ·)

]
μ(dx)

We will check at the end of the proof that Px[E(∞)] = 0 for every x. Focus first on the
following two crucial observations:

(1) Given μ � λ and � ∈ L(N), we let μ� be the measure on R
N+ with the property that

dμ�

dλ
(x) = Px

[
E(�)

]dμ

dλ
(x).

Notice that 0 < μ�(R
N+) < 1. Similarly define μ∅. Then

μP = μ∅ +
∑

�∈L(N)

μ�PE(�), (6.3)

and it suffices to show the absolute continuity of each of the countably many measures
on the right side of (6.3).

(2) For every � = (i1, . . . , in), the operator PE(�) can be decomposed into

PE(�) = PE(in) · · ·PE(i2)PE(i1),

where E(k) is the event that on the time interval [0,1), ck rings exactly once, and all
other clocks are silent.

Observations (1) and (2) together reduce the problem to the following: Given μ � λ

and k ∈ {0,1, . . . ,N}, it suffices to show that μPE(k) � λ. Let ξ = dμ

dλ
. We claim, and leave

the verification (which is straightforward) to the reader, that μPE(k) is the measure whose
density ηk with respect to λ is given by

ηk(x) =
∫ 1

0
ξ
(
x1, . . . , xk−1,p(xk + xk+1), (1 − p)(xk + xk+1), xk+2, . . . , xN

)
dp

for 0 < k < N and x = (x1, . . . , xN), while for k = 0 and N , we have

η0(x) =
∫ ∞

0

∫ ∞

(x1−x̂1)+
ξ(x̂1, x2, . . . , xN)

1

x̂1 + y
βLe−βLydydx̂1,

ηN(x) =
∫ ∞

0

∫ ∞

(xN −x̂N )+
ξ(x1, x2, . . . , x̂N )

1

x̂N + y
βRe−βRydydx̂N .
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We finish with a proof of Px[E(∞)] = 0. Let x ∈ R
N+ be fixed. Given ε > 0, we know

from Proposition 5.1 that for M̄ large enough, Px[FM̄ ] > 1 − ε where FM̄ = {V0(x(t)) ≤
M̄, t ∈ [0,1)}. With total energy ≤ M̄ , each ci is, at any one point in time, no faster than a
clock with rate M̄ . An estimate similar to that of Pu(Ek) in the proof of Lemma 5.2 gives

Px[exactly k rings | FM̄ ] ≤ M̄k

k! .

From this one deduces that

Px[≥ n rings | FM̄ ] ≤
∑

k≥n

((N + 1)M̄)k

k! ,

which tends to 0 as n → ∞. �

7 Proof of Theorems

7.1 Summary of Results for Time-� Sample Chains

Recall that for any � > 0, the time-� sample chain of Φt is denoted by Φ�
n . We summarize

here a few results for the discrete-time chain Φ�
n the main computations for which have

been carried out in Sects. 5 and 6. Let V (x) = V0(x) + 1.

Proposition 7.1

(a) For every � > 0, ∃ a unique π� ∈ LV (RN+) left invariant by Φ�
n .

(b) There exist constants C0 > 0 and ρ0 ∈ (0,1) such that for all � ∈ [1,2],
∥
∥μ1P

n� − μ2P
n�

∥
∥

V
≤ C0ρ

n
0 ‖μ1 − μ2‖V

holds for all μ1,μ2 ∈ LV (RN+).

Proof For � = 1, Assumption (A1) is given by Proposition 6.2, and Assumption (A2) is
proved in Sect. 6.2. These results are extended mutatis mutandis to any � > 0. Thus part
(a) in the proposition follows immediately from Theorem 4.1, as does part (b) if constants
are permitted to depend on �. That two numbers C0 and ρ0 can be chosen to work for all
� ∈ [1,2] is what remains to be checked. We leave it to the reader to verify that uniform
constants can be chosen for the range of � specified in the proofs of Proposition 6.2 and
Lemma 6.3. (The choice of [1,2] is arbitrary but upper and lower bounds are clearly needed:
For example, expected energy gain on the time interval [0,�) is shown to be less than B�,
and the constant ε in Lemma 6.3 goes to zero as � → 0.) Explicit relationships between the
constants in Assumption (A1) and (A2) and the numbers C0 and ρ0 are given in item (2) in
the Remark following Theorem 4.1. �

Proposition 7.2 The following hold for any � > 0:

(a) Every Φ�
n -invariant Borel probability measure μ is � λ with dμ

dλ
> 0 λ-a.e.

(b) It follows from (a) that Φ�
n has at most one invariant probability measure.
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Proof The proofs are identical for all � > 0. For notational simplicity, we assume � = 1.
(a) Let μ be an invariant probability measure for Φn, and let μ = μabs + μ⊥ be the

decomposition in the last paragraph of Sect. 6.2. Then μP = μabsP +μ⊥P . By Lemma 6.5,
we have μabsP � λ, while Corollary 6.4 tells us that if μ⊥(RN+) 	= 0, then μ⊥P will have
a nonzero absolutely continuous component. Since it is impossible for ((μP )⊥)(RN+) to be
strictly smaller than (μ⊥)(RN+), we conclude that μ⊥(RN+) = 0, i.e., μ � λ. That dμ

dλ
> 0

λ-a.e also follows from Corollary 6.4.
(b) is an immediate consequence of (a) as there cannot be two distinct ergodic measures

both with positive densities λ-a.e. �

7.2 From Discrete to Continuous Time

We need to show that all the π� given by Proposition 7.1(a) are identical, and to do that
requires the following “continuity at 0” property for the family of time-δ sample chains.

Lemma 7.3 Given � > 0 and ε > 0, there exists δ0 = δ0(�, ε) > 0 such that for all δ ∈
(0, δ0),

∣
∣(π�P δ

)
(A) − π�(A)

∣
∣ < ε

for every Borel set A ⊂ R
N+ .

Proof For fixed �,ε, there exists a compact set U = {x | xi ≤ R} such that π�(U) > 1 − ε
4 .

Since the rate function f (x, y) is bounded on U , there is a real number δ0 > 0 such that
P δ(x,x) > 1 − ε

4 (e.g., no energy exchange takes place on the time interval (0, δ)) for every
x ∈ U and 0 < δ < δ0. Then we have

(
π�P δ

)
(A) =

∫
P δ(x,A)π�(dx)

=
∫

U∩A

P δ(x,A)π�(dx) +
∫

U−A

P δ(x,A)π�(dx) +
∫

Uc

P δ(x,A)π�(dx)

= π�(U ∩ A) − a1 + a2 + a3

where

a1 =
∫

U∩A

(
1 − P δ(x,A)

)
π�(dx) ≤ ε

4
π�(U ∩ A) ≤ ε

4
,

a2 =
∫

U−A

P δ(x,A)π�(dx) ≤ ε

4
π�(U − A) ≤ ε

4
,

a3 =
∫

Uc

P δ(x,A)π�(dx) ≤ π�

(
Uc

) ≤ ε

4
.

Further, π�(A) − π�(U ∩ A) ≤ π�(Uc) < ε/4, so |π�(A) − π�(U ∩ A)| ≤ ε/4. Hence

∣
∣π�(A) − (

π�P δ
)
(A)

∣
∣ < ε. �

Proof of Theorem 1 To show the existence of π ∈ LV (RN+) with πP t = π for all t > 0, we
need to show π� = πΓ for all �,Γ > 0. That there is at most one such measure follows
from the corresponding result for Φ�

n .
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Let � and Γ be fixed. It suffices to show for an arbitrarily small (but fixed) ε > 0 that

∣∣(π�P Γ
)
(A) − π�(A)

∣∣ < ε (7.1)

holds for every Borel set A ⊂ R
N+ .

Notice first that for every j ∈ Z
+, since π� is also invariant for the time-j� sample

chain Φ
j�
n , we have πj� = π�. Similarly, for any k ∈ Z

+, πj�/k = πj� = π�. For given
ε > 0, let δ0 = δ0(�, ε) be as in Lemma 7.3. Since {j�/k}j,k∈Z+ is dense in R+, we may
choose j, k so that δ := Γ − j�

k
∈ (0, δ0). Then

π�P Γ = (
π�P

j�
k

)
P δ = π�P δ,

and (7.1) holds by Lemma 7.3. �

Henceforth we will write π = π�, any � > 0.
Theorem 2 follows immediately from Theorem 1 and Proposition 7.2.

Proof of Theorem 3 We first prove (b), and then deduce (a) from (b). Let μ1,μ2 ∈ LV (RN+)

be given. For t ≥ 1, we let n ∈ Z
+ be such that t = n + � and � ∈ [1,2]. Then by Proposi-

tion 7.1,

∥
∥μ1P

t − μ2P
t
∥
∥

V
= ∥

∥(
μ1P

�
)
P n − (

μ2P
�
)
P n

∥
∥

V

≤ C0ρ
n
0 · ∥∥μ1P

� − μ2P
�
∥∥

V

≤ C0ρ
n
0 · (C0ρ0‖μ1 − μ2‖V

)
.

For t < 1, using the fact that P tV ≤ V + B ≤ (1 + B)V where B is as in Proposition 5.1
and V ≥ 1, we obtain

∥
∥μ1P

t − μ2P
t
∥
∥

V
=

∫

R
N+

P tV |μ1 − μ2| ≤ (1 + B)‖μ1 − μ2‖V .

Theorem 3(a) is a special case of part (b), with μ1 = δx, point mass concentrated at x,
and μ2 = π . The expression in (a) follows from

‖δx − π‖V ≤
∫

V (z)(δx + π)(dz) = V (x) + ‖π‖V ≤ (‖π‖V + 1
)
V (x). �

7.3 Correlation Decay

Under the conditions of Corollary 4, we have

∣∣Cμ

ξ,ζ (t)
∣∣ =

∣
∣∣
∣

∫
ξ(x)

((
P tζ

)
(x) −

∫ (
P tζ

)
(z)μ(dz)

)
μ(dx)

∣
∣∣
∣

≤ ‖ξ‖
∫ (∫

|ζ |∣∣δxP
t − μP t

∣
∣
)

μ(dx)

≤ ‖ξ‖‖ζ‖V

∫ (∫
V

∣∣δxP
t − μP t

∣∣
)

μ(dx).
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The quantity inside the inner parentheses being, by definition, ‖δxP
t − μP t‖V , it follows

from Theorem 3 that it is bounded above by cρt‖δx − μ‖V . We finish by observing that
∫

‖δx − μ‖V μ(dx) ≤
∫ (

V (x) + ‖μ‖V

)
μ(dx) = 2‖μ‖V .

Corollary 4 is proved.
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