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a b s t r a c t

There is an evolutionary advantage in having multiple components with overlapping functionality (i.e

degeneracy) in organisms. While theoretical considerations of degeneracy have been well established

in neural networks using information theory, the same concepts have not been developed for

differential systems, which form the basis of many biochemical reaction network descriptions in

systems biology. Here we establish mathematical definitions of degeneracy, complexity and robustness

that allow for the quantification of these properties in a system. By exciting a dynamical system with

noise, the mutual information associated with a selected observable output and the interacting

subspaces of input components can be used to define both complexity and degeneracy. The calculation

of degeneracy in a biological network is a useful metric for evaluating features such as the sensitivity of

a biological network to environmental evolutionary pressure. Using a two-receptor signal transduction

network, we find that redundant components will not yield high degeneracy whereas compensatory

mechanisms established by pathway crosstalk will. This form of analysis permits interrogation of large-

scale differential systems for non-identical, functionally equivalent features that have evolved to

maintain homeostasis during disruption of individual components.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In 1999, Hartwell et al. introduced the concept of modular
biology, where a functional module is created by interacting
molecules collectively performing a discrete function. Such mod-
ules provide an advantage for both evolvability (sensitivity to
environmental changes) and robustness (insensitivity to pertur-
bations) in a system (Hartwell et al., 1999). Reconciling the
divergent requirements of evolvability and robustness requires
knowledge regarding the connections between these functional
units and an appreciation for how each module integrates
information arriving from multiple inputs. In complex biological
systems such as neural networks, there has been recent emphasis
on features of structural complexity such as degeneracy. As first
introduced in Tononi et al. (1994), structural complexity can be
understood in terms of the interplay between specialization of
functions in individual modules (functional segregation) and the
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ability of the modules to interact and perform functions coher-
ently (functional integration). A highly complex system maintains
segregation of function while still allowing for functional integra-
tion. Degeneracy measures how well functionally independent
modules can interact to produce redundant outputs. Modules that
are structural duplicates form a completely redundant system
and always produce the same output; degenerate systems arise
from structurally distinct modules with different outputs inter-
acting to produce the same output under certain conditions.

Systemic features like degeneracy, complexity, robustness are
related to one another. It has already been observed via numerical
simulations for neural networks that high degeneracy not only
yields high robustness, but also it is accompanied by an increase
in structural complexity (Tononi et al., 1999). Thus, it is believed
that degeneracy is a necessary feature in the evolution of complex
biological systems, partly because genetically dissimilar organ-
isms will drive toward convergence of function while maintaining
non-redundant components (Edelman and Gally, 2001). It is also
believed that the robustness and adaptability that ensue from
degeneracy are key features of complex biological systems at
multiple scales (Stelling et al., 2004) and organisms have evolved
to contain many non-identical structures to produce similar
functions. In this manner, degeneracy helps to fulfill the necessary

www.elsevier.com/locate/yjtbi
www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2012.02.020
mailto:yli@math.gatech.edu
mailto:g.dwivedi@gatech.edu
mailto:wenh@mail.ustc.edu.cn
mailto:melissa.kemp@bme.gatech.edu
mailto:yi@math.gatech.edu
dx.doi.org/10.1016/j.jtbi.2012.02.020


Y. Li et al. / Journal of Theoretical Biology 302 (2012) 29–3830
properties of biologically functional modules. While the concept
of degeneracy was introduced for neural networks, there is strong
evidence that many dynamical biological networks including
cellular metabolic and signaling networks exhibit the property
of degeneracy; for example, protein kinase isoforms regulated by
separate genes phosphorylate the same substrate protein
(Edelman and Gally, 2001). Furthermore, because regulatory
features of protein or metabolic networks often rely on dynamical
systems analysis, such theory must be compatible with kinetic
description of biochemical reactions rather than neural network
(Tononi et al., 1999) or logic-based description (Rizk et al., 2009).
Although some features like regulation and robustness of bio-
chemical networks of signal transduction have been studied
quantitatively (Kitano, 2007; Rizk et al., 2009), the features of
interest here, such as degeneracy and complexity, have not been
formalized mathematically in terms of ordinary differential equa-
tion description that is so commonly used for describing protein
networks. By developing a method for calculating degeneracy in
general biological networks modeled by differential equations,
network structures can be explored that fulfill the contrary
requirements of evolvability and robustness first posited by
Hartwell et al. Understanding these features becomes important
as increasingly complex biological systems are being designed ab
initio in synthetic biology. In this article, we first mathematically
formalize the relationships between degeneracy, complexity and
robustness in dynamical systems. We next establish that high
degeneracy always yields high complexity. Finally, we illustrate
two distinct approaches for numerically calculating degeneracy in
dynamical systems, a predator–prey model and a kinetic signaling
model. In many instances, the metric of degeneracy is a useful
indicator of how easily the system adapts under evolutionary
pressure.
2. Mathematical approach

2.1. Random perturbations of ODE system

Our strategy is to inject a fixed amount of stochastic perturba-
tion into a differential system. With such small random perturba-
tions, the corresponding variable sets of modules of the network
become stochastic processes. If two modules have strong func-
tional connectivity, then these two stochastic processes should
have high statistical correlation. Conversely, two functionally
independent components must be statistically independent. This
statistical connectivity can be measured by the mutual informa-
tion of the components. It is already known that degeneracy
measures the ability of structurally different components to
perform the same function, while complexity measures the
degree of functional integration and segregation between differ-
ent components. Using these ideas, we can quantify degeneracy
and complexity using linear combinations of mutual information.

To avoid mathematical challenges from injecting small sto-
chastic perturbations into an ODE system, we will assume
throughout this work that the differential system is dissipative.
In other words, asymptotically the differential system will grav-
itate to its global attractor such that the generated stochastic
process has a stable invariant measure. This invariant measure
allows us to obtain the asymptotic correlation between modules.
The random perturbation and its invariant measure is described
below

x0 ¼ f ðxÞ, xARn
ð1Þ

i.e., we consider the Ito stochastic differential equation (SDE)

dX ¼ f ðxÞ dtþEsðxÞ dWt , ð2Þ
where Wt is the Wiener process, s is a non-singular, n�n matrix-
valued function and E is a small parameter. The time evolution of
the probability density function associated with the SDE (2)
satisfies the so-called Fokker–Planck equation

rt ¼
1

2
E2
Xn

i,j ¼ 1

ðAijrÞij�rðfrÞ, ð3Þ

where AðxÞ ¼ sðxÞsT ðxÞ is an n�n symmetric non-negative defi-
nite matrix.

Of particular importance among the solutions of the Fokker–
Planck equation are the steady states, which satisfy the stationary
Fokker–Planck equation

1

2
E2
Xn

i,j ¼ 1

ðAijrÞij�rðfrEÞ ¼ 0,

rðxÞ40,
R

RnrEðxÞ dx¼ 1:

8>><
>>:

ð4Þ

A smooth solution rE of the stationary Fokker–Planck equation (4)
is known to uniquely exist (Bogachev et al., 2009; Huang et al.,
2011) if
�
 f is differentiable and s is twice differentiable on Rn; and

�
 there exists a Lyapunov function VðxÞ40, V-þ1 such that

1
2E

2
Pn

i,j ¼ 1 AijðxÞ@
2
ijVðxÞþ f ðxÞ � VðxÞo�g for some constant g40

and all 9x9 sufficiently large.

We remark that while the ODE (1) may have many complicated
invariant measures without even having density functions, the
steady-state of the SDE (2) is nevertheless unique and smooth.
We also note that when E is fixed, we denote the invariant
solution as r instead of rE.

2.2. Definitions of degeneracy, complexity and robustness

2.2.1. Degeneracy and complexity

Inspired by, but differing from Tononi et al. (1999), our
definition of degeneracy is divided into several steps. In the first
step, we define projected density, entropy and mutual informa-
tion associated with any subspace. Then, we fix a subspace as the
‘‘output’’ set and define its associated degeneracy by considering
the complementary subspace as the ‘‘input’’ set. Lastly, we define
the degeneracy of the entire system by varying the output sets
and taking the maximum among all degeneracies of these sets.
Definitions of projected density, entropy and mutual information
are provided in Appendix A. In a biological network, mutual
information between two components I1 and I2, MIðI1; I2Þ, mea-
sures the functional connectivity between the components. Using
mutual information, degeneracy can be defined as follows.

Let O be a fixed subspace of Rn, viewed as an output set. We
denote I as the complementary subspace to O, viewed as the input
set. In other words, the set O is a fixed set of ‘‘observables’’ when
the system (2) is excited by noise. To measure the impact of noise
on all possible components of the input set, we consider any
subspace Ik of I and denote its complementary set in I by Ik

c. The
interacting information among Ik, Ik

c and O is defined by

DðkÞ ¼MIðI; Ik;OÞ ¼MIðIk;OÞþMIðIc
k;OÞ�MIðI;OÞ: ð5Þ

The interacting information measures how much Ik and Ik
c are

structurally different but perform the same function as signified
by the output set O.

We note that unlike the mutual information between two
subspaces, the interacting information among three subspaces
can take negative values (Sun Han, 1980).

Similar to the case of neural networks, we define the degeneracy
associated with O by averaging all the interacting information
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among all possible subspaces of I, i.e.

DðOÞ ¼/MIðI; Ik,OÞS¼
X

Ik

1

2Cn
k

maxfMIðI; Ik;OÞ,0g: ð6Þ

Similar to degeneracy, complexity CðOÞ associated with O
could be obtained by averaging all the mutual information
between Ik and Ik

c, i.e.

CðOÞ ¼/MIðIk; I
c
kÞS¼

X
Ik

1

2Cn
k

MIðIk; I
c
kÞ: ð7Þ

This value measures how much codependency in a network
appears among different modules rather than different elements
(units that constitute a module).

Now, for a fixed diffusion matrix s and E40, we define the
degeneracy DE,s and structural complexity CE,s of the system
(1) as

DE,s ¼Max
O

DðOÞ,

CE,s ¼Max
O

CðOÞ:

We call a differential system (1) degenerate (resp. complex)
with respect to a diffusion matrix s if there exists E0, such that
DE,s40 (resp. CE,s40) for all 0oEoE0.

We would like to make the following remarks:
�
 In many applications, one can often choose sðxÞ as the identity
matrix, so that the noise perturbation becomes purely white.
But a variable diffusion matrix sðxÞ, associated with a colored
noise perturbation, should play an important role in detecting
the key output set mainly responsible for the degeneracy.

�
 For a particular biological system, one often has a natural

choice of ‘‘observable’’ variables to be used as the output set O.
If one can select a special subspace Ik0

of the complementary
subspace I so that the interacting information MIðI; Ik0

;OÞ
among the three is positive with respect to a fixed diffusion
matrix, then it follows from the definition that the whole
system has a certain level of degeneracy. Since the interacting
information could be negative, we take the average of
maxfMIðI; Ik;OÞ,0g to measure the degeneracy of the system.

2.2.2. Robustness-system robustness and functional robustness

Our notion of robustness will be defined in a way that reflects
the strength of attraction of the global attractor of system (1).
Recall that the system (1) was assumed to be dissipative so that a
global attractor already exists. We denote the global attractor byA.

To define the robustness, we require in this paper that A is
a strong attractor in the following sense. The attractor A is said to
be a strong attractor with non-negative index a if there exists
a compact neighborhood N with C1 smooth boundary and a
Lyapunov function V(x) such that

rVðxÞ � f ðxÞr�a distðx,AÞ for all xAN :

For a strong attractor A, the system robustness of A is the
following quantity:

R¼ inf
1

a
: a is an index of A

� �
:

The system is said to be robust if A is a strong attractor and R

is finite.
If the performance function p(x) of the system is given with the

following assumptions: (1) pðxÞ ¼ 1 8xAA; (2) 0opðxÞo1 if
x=2A, then, following Kitano (2007), one can define functional
robustness Rf ðEÞ as

Rf ðEÞ ¼
Z

rEðxÞpðxÞ dx:
Using this notation, the system has the best performance when
the perturbation vanishes and robustness is interpreted as the
ability to preserve phenotype rather than maintaining a fixed
steady state. We remark that if a system is robust and some
property of the performance function is also known, then some
estimate on the functional robustness can be made.

2.3. Connection between degeneracy, complexity and robustness

Degeneracy, complexity and robustness are not isolated con-
cepts. More and more examples suggest some internal connec-
tions among them (see Edelman and Gally, 2001; Stelling et al.,
2004). In fact, these relationships could not only be observed in
biological experiments, but also be verified by our mathematical
quantification of degeneracy, complexity and robustness. From
the definition, degeneracy always implies complexity. Further,
with some additional conditions, a robust system must have
certain level of degeneracy (and hence, also complexity).

2.3.1. Degeneracy and complexity

It has been observed in neural networks that a degenerate
system must have a complex structure (Tononi et al., 1999). The
same property holds for a differential system, which is commonly
used to describe biochemical networks. A simple calculation
shows that

MIðI; Ik;OÞrminfMIðI; IkÞ,MIðIc
k;OÞ,MIðI;OÞg: ð8Þ

If we compare Eqs. (6) and (7), by taking the average among all
possible subsets Ik, we obtain

CðOÞZDðOÞ

because MIðI; Ic
k;OÞrMIðI; Ic

kÞ. In other words, with respect to a
fixed diffusion matrix, degeneracy implies complexity.

This explains the observation in Edelman and Gally (2001) that
biological systems selected for high degeneracy are accompanied
by high complexity.

Remark: We can prove Eq. (8) in the following way:

MIðX;Y ; ZÞ ¼HðXÞþHðYÞþHðZÞ�HðX,YÞ�HðY ,ZÞ

�HðX,ZÞþHðX,Y ,ZÞ ¼HðXÞþHðYÞ�HðX,YÞ

�ðHðX,ZÞþHðY ,ZÞ�HðZÞ�HðX,Y ,ZÞÞ

¼MIðX;YÞ�MIðX;Y9ZÞ:

Since the l mutual information is non-negative: MIðX;Y9ZÞZ0, we
have MIðX;Y; ZÞrMIðX;YÞ. (The non-negativity of conditional
mutual information is a direct corollary of Kullback’s inequality,
or see Yeung, 2002.)

Similarly we can prove MIðX;Y ; ZÞrMIðX; ZÞ and MIðX;Y ; ZÞr
MIðY ; ZÞ, from which (8) follows.

2.3.2. Degeneracy and robustness

We would like to examine the connections between degen-
eracy and robustness for an ODE system (1). Robustness alone
does not necessarily imply degeneracy of the system; this is
because one can certainly have a system with zero complexity
(e.g., a system with many symmetric components) which is
however robust. By (8), such a system must be non-degenerate.
Therefore, for a robust system to be degenerate, the system must
be complex and such structural complexity often gives rise to
some kind of embedding complexity of the global attractor into
the phase space. Roughly speaking, the components of a complex
system interact strongly with each other and as a result, the
global attractor is twisted in the phase space such that it does not
lie in any hyperplane. To characterize the twist property of the
global attractor, it is natural to consider its projections on certain
hyperplanes and measure the dimensions of the corresponding
projections. We note that the attractor as well as its projections
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may only be fractal sets, hence they should be measured with
respect to the Minkowski dimension, also called box counting
dimension (Pesin, 1997).

For a subspace V of Rn, we denote by dV the co-dimension of A
in V, i.e., the dimension of V subtracts the Minkowski dimension
of the projection of A to V.

The twisted attractor is defined as follows. The global attractor
A is said to be twisted if there is a linear decomposition Rn

¼ I �
J �O such that

dIþdJ þdOþdRn odI�J þdI�OþdJ�O:

We have the following theorem:
The invariant probability density function rE is said to be

regular for A if there exists some function CðKÞ40 that is
independent with respect to E, such that

minðrEðxÞÞZC maxðrEðxÞÞ 8x with distðx,AÞrKE

for all 0oEoE0 and K40.

Theorem 1. If the system (1) is robust with a twisted global

attractor, and if the E-invariant density function rE is regular for A,
then there exists an E040, such that DE,s40 for all 0oEoE0

For a proof of the theorem see Appendix B.
Fig. 1. Algorithms for calculating degeneracy when fixed points are unknown

(Algorithm 1) or known (Algorithm 2).

2.3.3. Degeneracy at equilibrium

Degenerate behavior could occur not only at the twisted
attractor, but also at certain equilibria, or what a biologist may
regard as homeostasis. Here, we introduce another theorem on
the connection between robustness and degeneracy. If an ODE
system has a unique equilibrium point and in the neighborhood
of this equilibrium point the reactions to random perturbations
have certain level of diversity, then we claim that it is a
degenerate system. More precisely, if different directions demon-
strate different sensitivities under random perturbation, then it is
a degenerate system. Since it is known that a large number of
chemical reaction networks have unique stable equilibrium
points, the degeneracy near equilibrium may be more applicable
for biological reaction networks.

Assume that system (1)

x0 ¼ f ðxÞ

has a unique stable fixed point, say x0. Let B denote the Jacobian
matrix of f(x) at x0. Since we have assumed the robustness
already, it is obvious that the eigenvalues of B only have negative
real parts. After some calculation, one can find the solution to the
stationary Fokker–Planck equation (4):

r¼ 1

K
e�zT S�1z=2Eþoð9z92

Þ, ð9Þ

where z¼ x�x0. The symmetric positive definite matrix S solves
the Lyapunov equation uniquely

SBT
þBSþA¼ 0,

where A¼ sðx0ÞsT ðx0Þ.
With the stationary solution r, we can find the marginals on

target subspaces. It is known that the marginal of a normal
distribution is also normal, whose covariance matrix is the corre-
sponding sub-matrix of S. More precisely, if X ¼ spanfxa1

, . . . ,xak
g is a

subspace, then the sub-matrix Sða1, . . . ,ak; a1, . . . ,akÞ is the covar-
iance matrix of the projection of rE on subspace X. For simplicity, we
denote Sða1, . . . ,ak; a1, . . . ,akÞ as S(X).

Then, we can compute the degeneracy with split X ¼ I1�I2 � O.
Since Eq. (9) approximates a multivariate normal distribution,
calculation of degeneracy yields the following theorem: if

G :¼ log
9SðI1ÞJSðI2ÞJSðOÞJSðXÞ9
9SðI1,I2ÞJSðI1,OÞJSðI2,OÞ9

40 ð10Þ

then the system is degenerate.
In fact, it can be shown that as E-0, the degeneracy of rE with

respect to decomposition I1,I2,O converges to G.
Two approaches can be taken for calculating D for a coupled

differential system. One relies on Monte-Carlo simulations
(Appendix C and Algorithm 1 in Fig. 1), while the other is based
on stochastic analysis by the Freı̆dlin and Wentzell (1998) quasi-
potential method (Appendix C and Algorithm 2 in Fig. 1). We
demonstrate the utility of each with biological examples below.
3. Illustrations

3.1. Implications of degeneracy in a signal transduction pathway

Consider a simple example consisting of three modules A, B and
C shown in Fig. 2. A and B serve as inputs, while C is the output. If
module A has a functional relationship with the output module C,
the mutual information between the two is high. Similarly, if
modules B and C share high mutual information, they are func-
tionally related as well. However, both modules A and B being
functionally related to the output is not enough for degeneracy.
We also require A and B to be structurally different. This can be
checked by treating A and B as a single unit, measuring its mutual
information with the output and comparing it with the mutual
information A and B share individually with C. The value
MIðA;CÞþMIðB;CÞ�MIðfA,Bg;CÞ, thus measures the degeneracy, or
how much more correlation the inputs A and B share with the
output C than expected. Defining degeneracy enables us to explore
the applications of degeneracy quantitatively.

Using a simplified model of crosstalk in protein signal transduc-
tion, we illustrate the calculation of degeneracy using Algorithm 2



Fig. 2. A toy example of a modular biological network.

Fig. 3. Illustration using IL-4R and EpoR crosstalk model. (A) The core JAK–STAT

modules of IL-4R and EpoR pathways with crosstalk. Both modules are regulated

by PTP1B, both generate ROS which oxidatively inactivates PTP1B. (B) Crosstalk

enhances degeneracy. The links connecting the two modules were abolished

resulting in independent IL-4R and EpoR signaling modules. (C) Redundancy vs

degeneracy. The edges in panel A were modified to construct a hypothetical

signaling system with completely redundant modules with crosstalk. * indicates

phosphorylated protein; ox, oxidized; red, reduced; arrows pointing at other

edges, catalyzed reactions; dashed arrows entering into species, constant produc-

tion; dashed arrows exiting species, first order decay; species highlighted in black,

inputs; species highlighted in blue, outputs.
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(Fig. 1 and Appendix C). We also demonstrate how certain biological
features of the signaling network affect the numerical value of
degeneracy.

For illustrative purposes, we have chosen the JAK–STAT signal-
ing pathway since this system presents features that are useful for
illustrating the concept of degeneracy. The JAK–STAT pathway is a
two-step intracellular signaling pathway in which a member of
the JAK family of kinases, typically bound to a transmembrane
receptor, is activated by phosphorylation following ligation of the
receptor with extracellular cytokine. The activated JAK molecule
phosphorylates STAT which can then dimerize and act as a
transcription factor. The signaling pathway is regulated by several
mediators including phosphatases that dephosphorylate JAK and
STAT molecules, thereby inhibiting their catalytic activity (Shuai
and Liu, 2003). It has been shown previously that cytokine
receptor activation can be accompanied by production of reactive
oxygen species (ROS) in response to multiple kinds of cytokines
(Sharma et al., 2008). The generated ROS reacts with some
phosphatases to oxidize them reversibly, resulting in temporary
inactivation of the phosphatases. Phosphatase inactivity results in
amplification of STAT phosphorylation. Sharma et al. (2008)
demonstrated that different cytokines, signaling through their
respective receptors, can crosstalk in an ROS-mediated manner to
amplify signals coming through other cytokines. This is a result of
oxidative inactivation of phosphatases regulating the different
JAK–STAT pathways.

Based on this information we have constructed a simplified
model of crosstalk between IL-4 and Epo signaling. IL-4 signals
through the IL-4 receptor and activates the JAK3/STAT6 pathway
(Kelly-Welch et al., 2003). Epo signals through the Epo receptor
and activates the JAK2/STAT5 signaling pathway (Constantinescu
et al., 1999). Multiple phosphatases can regulate these pathways.
To illustrate the crosstalk between the pathways, we have chosen
one phosphatase, PTP1B, which is important in both signaling
pathways. In the IL-4 pathway it directly dephosphorylates STAT6
whereas the substrate of PTP1B in the Epo pathway is JAK2
(Lu et al., 2008; Myers et al., 2001). PTP1B is also susceptible to
ROS-mediated oxidative inactivation (Sharma et al., 2008). This
information was compiled to get the IL-4/Epo crosstalk model
shown in Fig. 3A. For the sake of parsimony, we have treated
phosphorylated STAT as the output and ignored phospho-STAT
dimerization. The details of model implementation are provided
in Appendix E and Supplementary Information.

The model we constructed was used to empirically study
relationships between the signaling pathway and the computed
degeneracy. We chose the receptors (IL-4R and EpoR) as a pair of
inputs to the system and activated STAT molecules (STAT5n and
STAT6n in Fig. 3A) as the output. Using the method outlined in
Algorithm 2 (Fig. 1), the model in Fig. 3A was found to be
degenerate with a value of D equal to 0.4267. Since our
theoretical results relate increased complexity with increased
degeneracy, we sought to verify if this was reflected in our model
of JAK–STAT crosstalk. The crosstalk between the two linear JAK–
STAT pathways is the source of increased complexity of the
system. To reduce the complexity of the system, we abrogated
all crosstalk by switching off ROS production and regulation by
the common phosphatase PTP1B to get the independent signaling
systems shown in Fig. 3B. The calculated value of degeneracy
decreased by more than 99% for this system as compared with the
pathway in Fig. 3A and the value of D was calculated to be 0.0016.
This demonstrates that crosstalk between signaling pathways
results in increased complexity which could result in increased
degeneracy.

Redundancy in signaling systems can also lead to complexity
in the pathway, in the sense that there can be significant amount
of crosstalk between parallel pathways. However, a redundant
system is by definition not degenerate because the redundant
modules perform identical functions under any given condition.
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To test how a redundant system compares with a degenerate
system, we modified the pathway in Fig. 3A to that shown in
Fig. 3C by inserting some hypothetical connections. This was done
to ensure that the two modules were structurally identical and
affected the output (STAT5n and STAT6n) identically. The rate
parameters were also identical for the two modules resulting in a
completely redundant system where EpoR and IL-4R affect STAT5
and STAT6 identically. The redundant system was found to still
have a positive D but the magnitude was reduced by more than
68% as compared with the value calculated for the system in
Fig. 3A. This agrees with the understanding that redundancy does
not lead to degeneracy and our calculation of D successfully
reflects this.

3.2. Degeneracy in a Lotka–Volterra system

We provide a three-dimensional example to demonstrate how
to verify degeneracy using the Monte-Carlo method (see
Appendix C). Consider the following competitive Lotka–Volterra
system

_x1 ¼ x1ð3�x1�x2�x3Þ,

_x2 ¼ x2ð4�x1�x2�2x3Þ,

_x3 ¼ x3ð7:221�2:61x1�1:611x2�3x3Þ:

This system represents a simple three-species competitive popu-
lation model. The system has a limit cycle as described previously
(Fig. 4) (Xiao and Li, 2000). Using the theory of quasi-potential
functions, one can rewrite the vector field as �rCðx1,x2,x3Þþ

lðx1,x2,x3Þ, where C is called a quasi-potential function and l is a
small perturbation in a definite sense with rC � l¼ 0. It is well
known that for such a system admitting a limit cycle, C is a
Lyapunov function which is as regular as the vector field. It then
follows from definition that the system is robust. Furthermore,
the condition in Theorem 1 is also satisfied due to the regularity
of the quasi-potential function.

Numerical simulations show that the limit cycle is not parallel
to any coordinate axis. In fact, it follows that dx ¼ dy ¼ dz ¼ 0,
dxyz ¼ 2, dxy ¼ dxz ¼ dyz ¼ 1. Hence, the attractor is also twisted.
Now applying the theorem on twisted attractors, we conclude
that the system is degenerate. Further details regarding this
illustration are provided in Appendix D.

3.3. Degeneracy enhances evolvability

It has been argued that not only is degeneracy an outcome, but
also an important driver of evolution (Edelman and Gally, 2001).
We performed computational simulations of adaptive evolution
to study the interplay between degeneracy and evolvability (see
Appendix F for details). We use the term evolvability to generally
Fig. 4. Limit cycle of the Lotka–Volterra system showing a twisted attractor.
represent the ease with which a biological network can adapt to
an environmental change through the process of evolution to
increase its fitness. We studied a network modeled using ODEs,
consisting of a fixed number of nodes and evolving by mutating
the strengths of connections between nodes. Using empirical
studies with stochastic simulations, we observed that evolution
was often, but not always, accompanied by increase in degen-
eracy. However, systems with higher initial degeneracy exhibited
greater evolvability. Since adaptive evolution is random and does
not follow any design, it is to be expected that not all mutations
that increase fitness will also lead to increased degeneracy. On the
other hand, a system with high initial degeneracy consists of
multiple interwoven modules performing the same function in
different ways. As a consequence, mutations in each of these
modules allow the system to evolve a different phenotypic
response resulting in an enhanced ability to explore the pheno-
type space. We note that our observation that evolution does not
always lead to increased degeneracy may not be true in the longer
term. Since systems with greater degeneracy have an increased
ability to adapt to environmental changes, mutations leading to
increased fitness in a particular environment but reduced degen-
eracy, lose out on their ability to respond to further environ-
mental changes. In some sense, degeneracy can be thought of as a
measure of the evolvability of a system. This means that the
ability to quantify degeneracy gives us a sense of the evolvability
of networks, at least on a relative scale, simply by analyzing its
structure.
4. Discussion

Degeneracy can be generally understood as the ability of
structurally distinct components of a system to behave similarly
under certain conditions, while the behavior may be different
under other conditions. Increasingly, large numbers of instances
of degeneracy are being found in biological systems at all scales
ranging from molecular to animal population levels (Edelman and
Gally, 2001). Particularly, in the context of cellular signaling
networks, there are multiple examples of degenerate behavior.
Different members of the interleukin (IL) family can activate the
same transcription factor. For instance, IL-2, IL-7 and IL-21 can all
activate STAT1 (Röchman et al., 2009). Growth factors can bind to
multiple types of receptors in the EGF receptor family (Chen et al.,
2009). MAPK signaling induced by growth factors and stress
exhibits promiscuous interaction between MEKK and MAPK
proteins where multiple types of MEKKs can activate the same
MAPK and a single MEKK can activate multiple MAPKs (Oda et al.,
2005). Recently, experimental studies have indicated that a
significant role for genetic buffering by non-homologous genes
(i.e., functional redundancy or degeneracy) (van Wageningen
et al., 2010) exists and may confer a selective advantage over
paralogs for regulation. The widespread appearance of degener-
acy in biological systems across scales suggests that it is a
property favored by adaptive evolution. Because of the nature of
evolutionary systems, desired changes are not intelligently engi-
neered into them. Instead, they evolve by incorporating random
changes some of which improve the fitness for survival. Also,
since no part of an adaptive biological system is outside the scope
of evolution, multiple components of the system can evolve to
achieve the same kind of adaptation. It is, therefore, reasonable to
expect an evolutionary system to increase in complexity over
time which could result in enhanced degeneracy. Thus, the theory
presented here provides a method not only for looking at
structural characteristics of biological networks, but also for
exploring the links between degeneracy and evolvability in
biological systems modeled using ODEs.
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Complexity arising as a consequence of the evolutionary
process means that biological systems rarely, if at all, operate in
isolation. Chen et al. (2009) showed that the behavior of a
signaling pathway in isolation is different from the behavior it
exhibits when put in the context of a more complex intracellular
environment. Systems biologists are aware that cellular signaling
pathways which are classically seen as isolated, and often linear,
chains of biochemical modifications rarely operate in this simple
fashion. The connections between signaling pathways give rise to
networks with much greater complexity. These resulting systems
can exhibit degenerate behavior in that one signaling pathway, a
module by itself, interacts with another structurally different
modules with both of them regulating the same output, resulting
in similar or different outcomes depending on conditions. This is
important from the point of view of applications such as drug
targeting. For instance, despite major efforts, very few drugs
specifically targeting the PI3K signaling pathway, which exhibits
strong crosstalk with a number of other pathways, make it to the
clinical trial stage (Hennessy et al., 2005). The complexity arising
from crosstalk is thought to be one reason for the failure of
specific inhibitors to work successfully in cells. Determining what
points should be targeted in a complex signaling network is a
critical question for drug design. It is therefore desirable that the
extent of compensation between connected pathways be defined
quantitatively. A quantitative measure of degeneracy in the net-
work can be exploited to identify candidate points in the network
most suitable for drug intervention. Quantification of degeneracy
can also have applications in synthetic biology for designing
system modules that are structurally distinct but can be made
to perform similar functions when needed.

Like degeneracy, complexity of a system can also be quantified
using mutual information between modules. A complex system is
one with high overall mutual information between different
modules (and not between simpler elements making the mod-
ules). For example, in the context of crosstalk between the IL-4
and Epo pathways, the IL-4 and Epo pathways separately can be
thought of as modules while the individual molecules constitute
the basic elements of the system. This means that a complex
system maintains a modular structure and also has co-depen-
dence between the existing modules. Maintenance of functional
modules means that the system is functionally segregated. At the
same time, co-dependence between the modules means that
there is integration of function between the modules. A complex
system, therefore, preserves both these properties which is
captured by the measure of complexity we have presented.

Using a model of crosstalk in interleukin signaling, we have
demonstrated the biological significance of this numerical mea-
sure of degeneracy. The IL-4R and EpoR signaling pathways, by
virtue of phosphatase and ROS mediated crosstalk, give rise to a
degenerate system when the receptors are treated as input and
STAT activation as output. By computationally manipulating the
signaling pathway, we have empirically shown the relationships
between degeneracy and some network features. As first demon-
strated by Tononi et al. (1999) for neural networks, we found that
independent signaling modules exhibit very low degeneracy.
Reduced connectivity also means that the modules have a
reduced ability to influence each other via crosstalk, which our
definition of degeneracy is able to reflect. Simply increasing the
complexity of the network may not be sufficient to guarantee a
degenerate system. For instance, fully redundant signaling mod-
ules with a high degree of crosstalk result in a structurally
complex system. In our computational analysis, when the mod-
ules were made fully redundant by making them identical in the
structure of the network and in the strengths of the internal
connections, the calculated degeneracy dropped despite an
increase in network edges. This agrees with the notion that
redundancy and degeneracy are functionally distinct, and demon-
strates that our definition of degeneracy is able to distinguish
between a truly degenerate system against one with high com-
plexity but low degeneracy.

We also present a definition of robustness in the context of
differential equation models of biological systems. The stability of
a differential system can be measured by its robustness under
random perturbation. A robust system strongly resists change
under fixed random perturbation. Moreover, as suggested by
Kitano (2007), if we know the performance function of a system,
we do not have to require that the system offer this resistance
everywhere—the system only needs to be stable at places where
the performance function decreases dramatically. Biologically,
this means that a robust system is not necessarily one that is
able to maintain a fixed steady state; instead, it is a system that is
able to maintain its phenotype in the face of perturbations
(Kitano, 2007). We have provided a definition of functional
robustness that takes this into account. Further, we have shown
that robustness and degeneracy are connected—a robust system
has positive degeneracy when it satisfies certain conditions
(Theorem 1).

While these illustrations with simplistic biological models
provide some insight into the significance of our theoretical
framework for defining degeneracy, several aspects remain to be
explored. For instance, does the calculated degeneracy provide an
estimate of the ability of crosstalking pathways to compensate for
each other under perturbation? System dynamics are of great
importance in understanding cellular signaling networks. Our
method for calculating degeneracy takes into account only the
fixed points of the differential system. In thinking about the
meaning of calculated degeneracy in the context of cell signaling,
it is important to keep system dynamics in mind. The outcome of
a signaling event is not always dictated by the steady state value,
instead instantaneous rates of changes or integrated values of
signals may be of relevance in a given system. For this reason, it is
important to explore the relationships between system dynamics
and degeneracy. Given the ‘‘no free lunch’’ concept in control
systems in which operating performance of one control function
comes at the cost of fragility elsewhere (Lander, 2011; Doyle and
Csete, 2007), the consequences of degenerate network properties
over redundant components can be explored further. These
concepts may be exploited in the design of synthetic biological
circuits to ensure a desired functional outcome under a variety of
biological contexts. Although several issues remain to be
addressed, the methods presented in this paper are significant
in providing a theoretical framework to the concept of degeneracy
and functional robustness for the class of systems represented by
differential equations.
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Appendix A. Definition of projected density, entropy and
mutual information

Let V be the variable set of Eq. (1). Biologically, V means the set
of elements or species of the network.
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Let r be a smooth solution of (4) for fixed E and s. For any
subspace I of Rn coordinated by uA I, we define the marginal
distribution with respect to I by

rIðuÞ ¼

Z
J
rðu,vÞ dv,

where J is the complementary subspace of I coordinated by vA J.
The coordinates of I are a subset of the variable set V, so
biologically I represents a subset of the whole network. For
instance, in R3

¼ fðx1,x2,x3Þg if I¼ fð0,u,0Þg and J¼ fðv1,0,v2Þg, then
u¼ x2 and

rIðuÞ ¼

Z
J
rðx1,x2,x3Þ dx1 dx3:

The projected entropy associated with the projected density
above is defined by

HðrIÞ ¼ �

Z
I
rIðuÞ log rIðuÞ du:

For any two subspaces I1 and I2, the direct sum I¼ I1 � I2 is
also a subspace. We then define their joint entropy HðI1,I2Þ simply
by the projected entropy HðI1 � I2Þ associated with the direct
sum, i.e.

HðI1,I2Þ ¼HðI1 � I2Þ ¼�

Z
I1�I2

rI1 ,I2
ðu,vÞ log rI1 ,I2

ðu,vÞ du dv,

where

rI1 ,I2
ðu,vÞ ¼

Z
J
rðu,v,wÞ dw

with J being the complementary subspace of I1 � I2. The mutual
information among subspaces I1,I2 is defined by

MðI1; I2Þ ¼HðI1ÞþHðI2Þ�HðI1,I2Þ:

It is easy to see that

MIðI1; I2Þ ¼

Z
I1�I2

rI1 ,I2
ðu,vÞ log

rI1 ,I2
ðu,vÞ

rI1
ðuÞrI2

ðvÞ
du dv: ðA:1Þ

Statistically, the mutual information (A.1) measures the corre-
lation between marginal distributions with respect to subspaces
I1 and I2.
Appendix B. Proof of Theorem 1
Proof. This theorem is a corollary of the Entropy-Dimension
identity proved in Li and Yi. Under the given conditions, we have

lim
E-0

HðrEðxÞÞ
�log E ¼N�d, ðA:2Þ

where HðrÞ means the entropy of r. Then, using the definitions of
degeneracy and a twisted attractor, we can prove the positivity of
the degeneracy DE,s. &

Remark. We note that rE is always regular if there exists a quasi-
potential function W(x) of A, such that for every 0oEoEn, we
have

rEðxÞ ¼
1

K
e�WðxÞ=E2

þoðEÞ,

where

K ¼

Z
RN

e�WðxÞ=E2

dx

and oðEÞ means high order terms of E.

From Ludwig (1975) and Day and Darden (1985), we can find
the desired function W(x) whenever the Freı̆dlin–Wentzell quasi-
potential function W(x) has second order derivatives. From
Day and Darden (1985) and Day (1994), we know that the
Freı̆dlin–Wentzell quasi-potential function W(x) has high regu-
larity in the neighborhood of stable nodes and limit cycles. Thus,
the example discussed in Section 3.2 satisfies the conditions of
Theorem 1. For more detailed introduction of Freı̆dlin–Wentzell
quasi-potential function, see Freı̆dlin and Wentzell (1998).
Appendix C. Calculating degeneracy

C.1. The Monte-Carlo method

According to the definitions previously provided in Eqs.
(5) and (7), the degeneracy and complexity can be computed for
a general ODE system if we can calculate the mutual information
between two components. We used the following way to calcu-
late the mutual information (Algorithm 1 in Fig. 1). First, a rough
bound of the attractor was determined numerically. This was
done using a simple Monte-Carlo simulation with some statistics.
Using the Monte-Carlo simulation, we obtained a sample set of
solutions of Eq. (2) by randomly choosing a set of points S in the
space and letting it evolve with Eq. (2) until some large enough
time T. Assuming fa1, . . . ,aNg is a sample of variable x1, and m and
s are the mean and standard deviation of the sample,
½m�3s,mþ3s� was chosen as a rough bound of the attractor. The
rough bounds of the other variables were determined similarly.

Then, we generated a numerical grid in the rough bound of the
attractor and ran another Monte-Carlo simulation to create
another large sample. This sample was required to be large
enough such that an approximate probability distribution could
be computed numerically using the sample set. With the approx-
imate probability distribution functions available, numerical
integration over target variables was used to calculate entropy,
mutual information and interacting information. Note that degen-
eracy is the interacting information and complexity is the mutual
information.

C.2. The Lyapunov method

For most ODE systems generated from chemical reaction
networks, there exists a unique stable equilibrium. The invariant
measure for such a system can be obtained using some linear
algebra calculations (Fig. 1). We first calculated the steady-state
solution x0. The Jacobian matrix B was then obtained either
numerically or analytically. The invariant measure was approxi-
mated with a multivariate normal distribution with covariant
matrix S, where S solves the Lyapunov equation

SBT
þBSþA¼ 0:

S could be solved analytically or numerically. Several softwares
are available for solving the Lyapunov equation numerically. The
degeneracy was then obtained using Eq. (10).
Appendix D. Details of implementation of the twisted
attractor illustration

We have applied Monte-Carlo simulation to compute the
degeneracy for a fixed value of E. The approach, as represented
in Algorithm 1 (Fig. 1), is to first use the Monte-Carlo method to
obtain the invariant measure, then to project the measure onto
relevant subspaces to compute their entropies. In the Monte-
Carlo simulation, we set noise matrix d as identity. The degen-
eracy is a linear combination of the entropies. For example, when
E¼ 0:001, the degeneracy is computed as D¼2.3144. Note that
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the calculated D is the degeneracy with respect to subspaces
coordinated by x1,x2,x3, which is less than the degeneracy of this
dynamical system when we take the maximum over all possible
subspace splits.

This number will increase when E decreases. The accuracy of
the Monte-Carlo method is of order N�1=2, where N is the total
number of grid points used, the accuracy of integration is
compatible to the grid size. In our simulation, we have taken
N¼4,000,000 and a grid size of 0.0005. This gives an accuracy of
around 10�3 for our computation.
Appendix E. ODE model of IL4-R/EpoR crosstalk

The system shown in Supplementary Fig. 1 was modeled using
coupled ordinary differential equations. All reactions were mod-
eled using mass action kinetics. Furthermore, the pathway was
modeled as an open system where new receptors and STAT
proteins were synthesized at a constant rate. Activated receptors
were lost due to receptor internalization and degradation (Becker
et al., 2010). Activated STAT degraded by the proteasome was
modeled as slow first order decay (Wang et al., 2000). The details
of receptor-mediated ROS production were collapsed into a single
reaction whereby active receptor produced ROS which could
oxidize PTP1B or get degraded by cellular ROS scavengers (not
modeled explicitly). Oxidized PTP1B could be reduced back to its
active form.

The parameters of the model were estimated by fitting only
the Epo signaling module (along with ROS production and PTP1B
oxidation) to STAT5 phosphorylation data previously published
for the Epo signaling pathway (Swameye et al., 2003). The same
parameter estimates were used for the IL4 module since we
expect similar qualitative behavior in both modules. The species
used in the model and their initial values are listed in Supple-
mentary Table 1. The reaction rate parameters used and the
differential equation system are tabulated in Supplementary
Tables 2 and 3, respectively. The qualitative fits are shown in
Supplementary Fig. 2.

The model without crosstalk (Fig. 3B) was obtained by setting
the rate constants k8, k11, k13 and k14 to 0 (see Supplementary
Fig. 1).

The hypothetical redundant model (Fig. 3C) was obtained by
making the following modifications to the model in Supplemen-
tary Fig. 1: (i) JAK3n catalyzed phosphorylation of STAT5 was
added (k¼0.8); (ii) JAK2n catalyzed phosphorylation of STAT6 was
added (k¼0.8); (iii) PTP1B catalyzed dephosphorylation of STAT6
was turned off; (iv) PTP1B catalyzed dephosphorylation of JAK3n

was added (k¼1.2).
Appendix F. Simulation of adaptive evolution

An n-node network with directed edges, representing a
hypothetical signaling pathway, was constructed (n values
3 and above were used). The nodes represent molecules and the
edges represent reactions. The pathway was modeled using mass
action kinetics using either linear or non-linear reaction rates.
Two nodes were arbitrarily chosen as input and output nodes and
degeneracy was calculated using the Lyapunov method described
above (Appendix C). To model evolution, an initial population of
genetically similar individuals was created. Genetic similarity
here is represented by similar strengths of connections, or
reaction rates, between the nodes. Further, the initial population
was constructed to meet certain constraints, such as all indivi-
duals could be required to have a positive degeneracy. This
allowed comparison between different initial configurations. To
simulate adaptation to a new environment, the initial population
was made to evolve towards a new steady state value. Evolution
followed cycles of mutations and selections. Mutations were
modeled by making small random changes to the reaction rates.
Selection was based on the fitness of individuals in the new
environment; fitter individuals had a higher chance of passing
their traits to the next generation. Population averages of the
steady state value of the output node and degeneracy were
monitored over evolution.
Appendix G. Supplementary data

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.jtbi.2012.02.020.
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