
ISSN 1560-3547, Regular and Chaotic Dynamics, 2011, Vol. 16, Nos. 1–2, pp. 118–128. c© Pleiades Publishing, Ltd., 2011.

A Free Energy Based Mathematical Study
for Molecular Motors1

Shui-Nee Chow1*, Wen Huang2**, Yao Li1***, and Haomin Zhou1****

1School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332
2Department of mathematics, University of science and Technology of China,

Hefei Anhui 230026, P. R. China
Received October 11, 2010; accepted December 2, 2010

Abstract—We present a Parrondo’s paradox for free energy in a classical flashing ratchet model
and use it as an alternative way to interpret the working mechanism of molecular motors. We
also study the efficiency of molecular motors measured by their free energies. Our example
demonstrates that a molecular motor can gain up to 20% in its free energy during the process.
In addition, we report a noise induced free energy increasing phenomenon, which is similar to
the stochastic resonance, in flashing ratchet models.
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1. INTRODUCTION

In this paper, we consider some properties of Parrondo’s paradox, flashing ratchet models,
molecular motors and their associated free energy functionals. Parrando’s paradox is a well known
concept in the game theory. Roughly speaking, this paradox says that it is possible to construct a
winning strategy by playing two losing strategies alternately or randomly. The paradox has been
considered by many authors in different disciplines, although its original example is based on a coin
toss game. Readers are referred to [4, 6, 7] and references therein for more information.

Molecular motors we consider in this paper are related to proteins that conduct movements in
living organisms. There are different kinds of molecular motors, such as Myosin, Kinesin, Dynein,
Actin, Microtubule, Dynamin, ATP synthase and RNA polymerase. These tiny biological machines
perform most forms of movements in the living world. Although different kinds of molecular
motors are for different biological tasks, they share a similar basic working principle, which is
to convert chemical energy into mechanical motions. There exist many different models which
provide explanation to the working mechanism of molecular motors[1, 9, 23]. However, despite the
differences among different models, most authors use Brownian motions to handle the uncertainties
in molecular motors. One reason that one needs to consider uncertainties is that molecular motors
have extreme small sizes, and they are very sensitive to thermal fluctuations.

Among different mathematical models for molecular motors, a flashing ratchet model, which is
related to Parando’s paradox, has been used in recent years. The main idea behind the flashing
ratchet model is that it describes molecular motors as Brownian particles moving in an asymmetric
potential field that is turned on and off periodically or randomly. The oscillatory pattern in time
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of the potential field causes directional motions of the Brownian particles, just as flashing ratchets
allowing movements in designed directions. More precisely, the flashing ratchet model describes the
motion of a molecular motor X ∈ R

d by a stochastic differential equation,

dX = −∇Ψ(X, t)dt +
√

2τdWt, (1.1)

where Ψ(x, t) is a time dependent asymmetric potential function taking non-negative values for
different time intervals, Wt is the standard Brownian motion in R

d, and τ is proportional to the
temperature of the system. The flashing ratchet has been studied by many authors (see, for example
[1, 8, 11, 13–15, 19, 20, 24]). Inspired by the work reported in [8], we present in this paper an
explanation of the flashing ratchet models which is based on the time evolution of free energy as
in the case of Parrondo’s paradox.

The free energy is a commonly used concept in many scientific areas. Roughly speaking, it refers
to the maximal amount of work that can be extracted from a system. The definition of free energy
for molecular motors can be given in the following manner. By (1.1), the motion of a molecular
motor is a random function. We denote its probability density function by P . Then the free energy
can be expressed as a functional of P :

F (P ) = U(P ) − τS(P ), (1.2)

where U(P ) is the potential energy, S(P ) is the entropy, and τ is a constant that is proportional
to temperature. More precisely, we have:

U(P )(t) :=
∫

Rd

Ψ(x, t)P (x, t)dx.

S(P )(t) := −
∫

Rd

P (x, t) log P (x, t)dx,

We note that S(P ) is often called the Gibbs–Boltzmann entropy functional and is known as Shannon
entropy if the ambient space R

d is replaced a finite set. In fact, the entropy functional has been
used to measure the efficiency of molecular motors [9, 15–17].

Many of the existing studies are based on the steady state probability distribution, called Gibbs’
distribution, for computing the entropy functional. However, this is not a suitable choice for the
flashing ratchet model because of the oscillatory time dependency of the potential function Ψ(X, t).
In fact, we need to know the time dependent probability density function P in order to understand
how the free energy changes as time increases.

The probability density function P can be computed from its Fokker–Planck equation, which is
a linear parabolic equation that describes the time evolution of the probability density function of
a stochastic process. For the flashing ratchet motions defined by (1.1), the corresponding Fokker–
Planck equation is

∂P (x, t)
∂t

= ∇ · (∇Ψ(x, t)P (x, t)) + τΔP (x, t). (1.3)

see [8] for more details.

In this paper, we describe in detail how we use the free energy to construct a Parrondo’s paradox
for a flashing ratchet model that explains the working mechanism of molecular motors. We also
present a new method to estimate the efficiency of molecular motors. Furthermore, we show an
interesting behavior that the efficiency of molecular motors would reach its maximum at a certain
level of environmental noise. This phenomenon is similar to stochastic resonance.

We remark that we assume the movements of particles are relatively slow due to their small sizes
and short time scales. Therefore, we do not consider the kinetic energy of the molecular motors in
this paper.
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2. PARRONDO’S PARADOX IN FLASHING RATCHET: OLD AND NEW

The flashing ratchet model is based on a randomly perturbed dynamical equation (1.1), which
describes the motion of a molecular motor. Meanwhile, flashing ratchet model is also a classical
example of Parrondo’s paradox [8, 11]. In this section, we review the classical Parrondo’s paradox
of flashing ratchet model, and then demonstrate another explanation of Parrondo’s paradox from
the time evolution of the free energy.

In both cases, the key component in the model is that the asymmetric potential field Ψ(x, t) is
time dependent and can be turned on and off periodically or randomly, i.e. we can assume that the
potential function Ψ(x, t) is a given asymmetric function G(x) when it is turned on and 0 when
turned off:

Ψ(x, t) =

{
G(x) if n ≤ t < n + 1/2
0 if n + 1/2 ≤ t < n + 1.

We remark that the integer time intervals [n, n + 1/2) and [n + 1/2, n + 1) are taken for convenience.
And they can be other time intervals with non-integer lengths.

For models of molecular motors, it is necessary to select an asymmetric potential function G(x),
for example, a seesawed function as in Figure 2.

G(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−1.5x − 1.2 if x ≤ −1
5x + 5.3 if − 1 < x ≤ −0.5
−1.5x + 2.05 if − 0.5 < x ≤ 1
3x − 2.45 if x ≥ 1.

The asymmetry of G(x) is reflected around each minimal point, at which the slope from the left is
different from the slope from the right. When molecular particles are subjected to alternating forces
from the asymmetric potential field and Brownian motions, one may observe a directed motion.

Fig. 1. The asymmetric potential function.

The classical Fokker–Planck equation gives the time evolution of the probability density function
which could provide an explanation of this directed motion. Thus the mechanism in flashing ratchet
is not difficult to understand. When the potential is “turned off”, the molecular particles move
randomly and isotropically in all directions, just like Brownian motions. They can easily get out
of the potential wells that attracted them in the previous stage when the potential was switched
on. In this example, it is obvious that more particles move cross the maximal potential location
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MOLECULAR MOTORS 121

(potential is switched off at this stage though) from left hand side to its right hand side than the
reverse direction because the distance from the maximal location to the left minimum is closer than
it to the right minimum. When the potential is “turned on”, the particles will be driven to the
vicinity of the local minima. Due to the asymmetry in the potential function, more particles from
the left side than from the right side move to a local minimum. Repeating of the process leads to
more particles moving from left to the right, as a directed motion.

The probability distribution of molecular motors are governed by Fokker–Planck equation (1.3).
In the example, the environmental noise level is set as τ = 0.2. We take the initial distribution
given by the solid curve as shown in Figure 2, we also show the distribution of molecular motors
at t = 60 by the dashed curve in the same figure. Clearly, the mass of the distribution function
is shifted from the left to the right, which implies that more particles move from the left to the
right. However, we note that the given potential function G(x) has lower values on the left end and
higher values on the right. The molecules move from lower potential places to higher ones, which
is certainly against the normal intuition. This fits well to the classical Parrondo’s paradox — two
losing game strategies can form a winning strategy. This has been studied in [8, 11] and a rigorous
analysis is given in [14].

Fig. 2. The solid curve is the probability density function at t = 0; the dotted curve is the probability density
function at t = 60.

With the definition given in (1.2), it is natural that we extend this explanation of Parrondo’s
paradox to free energy. It is well known that if the potential function does not depend on time,
the free energy decreases along the solution of Fokker–Planck equation as shown in [10, 12, 21].
However, this is no longer true for the flashing ratchet model, due to the temporal oscillatory pattern
of Ψ(x, t). In fact, we have two different processes depending on whether the potential function is 0
or G(x). For convenience, we call the stochastic process with Ψ(x, t) = G(x) “Process A” and the
pure diffusion process with Ψ(x, t) = 0 “Process B”.

The time evolution of the probability density function in Process A is governed by

∂P (x, t)
∂t

= ∇ · (∇G(x)P (x, t)) + τΔP (x, t), (2.1)

while the time evolution of the probability density function in Process B is given by

∂P (x, t)
∂t

= τΔP (x, t). (2.2)
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Clearly both processes are energy dissipative, i.e. the free energy decreases with both processes
(losing strategies). However, when applying Process A and Process B alternatively, the free energy
increases with time (winning strategy). This is an analogue of Parrondo’s paradox .

To better illustrate Parrondo’s paradox of free energy, we use the following numerical example.
The asymmetric potential field G(x) is given in Figure 3,

G(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−4(x + 7) + 1 if x < −7
−(x + 4)/3 if − 7 ≤ x < −4
3(x + 4) if − 4 ≤ x < −3.5
−(x + 0.5)/3 + 0.5 if − 3.5 ≤ x < −0.5
3(x + 0.5) + 0.5 if − 0.5 ≤ x < 0
−(x − 3)/3 + 1 if 0 ≤ x < 3
3(x − 3) + 1 if 3 ≤ x < 3.5
−(x − 6.5)/3 + 1.5 if 3.5 ≤ x < 6.5
4(x − 6.5) + 1.5 if x ≥ 6.5

There are four local minima and their heights increase from left to right. We pick the initial
distribution as the Gibbs distribution, denoted by Φ(x), the global minimum of free energy
functional, given by

Φ(x) =
1
K

e−Ψ(x)/τ

where K =
∫

RN e−Ψ(x)/τ dx is the normalizer. The Gibbs distribution as τ = 0.1 concentrates at the
left local minimum, as shown in Figure 4. At this initial state, the system has the free energy value
0.1091.

We use the following finite difference scheme to carry out numerical simulations to demonstrates
this directed motion,

Pn+1
i = Pn

i +
δt

δx2
(

∑
j∈N(i),Ψ̄j>Ψ̄i

((Ψj + τ log Pj) − (Ψi + τ log Pi))Pj

+
∑

j∈N(i),Ψ̄j<Ψ̄i

((Ψj + τ log Pj) − (Ψi + τ log Pi))Pi),
(2.3)

where N(i) = {i − 1, i + 1}, Ψ̄n
i = Ψn

i + τ log Pi, and δt and δx are temporal and spatial mesh sizes
respectively. This is a special upwind scheme for Fokker–Planck equation, and its properties have
been reported in [2]. It is worth to point out that this scheme converges to the Gibbs’ distribution
independent of the spatial mesh size, which is different from other commonly used schemes such as
the central difference scheme.

After turning on and off the potential function periodically with period T = 1 for 1200 times,
we observe the directed motion from the left end to the right. And the probability distribution is
concentrated at the right local minimum, which has higher potential energy and lower entropy. The
overall free energy, which is increased to 1.5009, is higher at the final state.

Figure 5 shows the free energy values at each time when the potential function is turned off.
Clearly, the free energy is increased. Comparing the values at t = 0 with that at t = 500, the free
energy increases from 0.1091 to 1.5009.

To see the detail of the free energy changes, we plot the free energy values in the first 10
periods in alternating Process A and B in another example. The time interval is still T = 1,
while the noise level is set as τ = 0.4. The upper branches correspond to Process A when the
potential is turned on. The lower branches are for Process B when the potential field is turned
off. Clearly, both processes cause decrease in the free energy (so they are all “losing game”), while
jumps occurs when the potential is turned on and off. Overall, the free energy is increased as in
Figure 6 — two losing games form a winning strategy. The free energy at five points A,B,C,D,E
are −0.2085,−1.9681,−2.1806,−0.1184,−0.2009 respectively. In the end of the simulation, the free
energy is increased from −0.2085 to −0.2009.
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Fig. 3. A seesawed potential function.

Fig. 4. Probability density function shows a directed motion by molecular motors.

3. APPLICATION IN MOLECULAR MOTOR

From the previous section, we see that alternating two energy dissipative processes actually
causes the increase in the free energy, which we call it Parrondo’s paradox of free energy. Actually,
Parrondo’s paradox is more than a mathematical game, it can give a new viewpoint of molecular
motors.

To discuss this new viewpoint of molecular, one should answer a natural question: where the
energy comes from? Furthermore, we can ask whether it is possible to use the free energy to
compute the efficiency of molecular motors. Actually, the efficiency of molecular motors is discussed
in existing articles such as by using different methods or models. One classical method is computing
the average kinetic energy of particles as the output of motors [3, 9, 13, 15–17, 22, 24]. Others also
count the entropy production into the dissipation of energy [15], while the basic viewpoint is still
based on the kinetic energy. The classical method works well when the kinetic energy could be
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Fig. 5. The free energy at each time when the potential is turned off.

Fig. 6. The free energy in the first 10 periods. The y-axis on the upper half is the free energy with potential
turned on, on the lower half is the free energy with potential turned off.

significant, for example in an open system with external forcing. However, in an isothermal system
with high viscosity, the change of free energy may overcome the very small kinetic energy in case
of no external force given. This may suggest that if we omit the change of free energy, we may
miscalculate the efficiency of the motors.

Regarding the energy source in the processes, the free energy actually comes from the change of
potential energy when the potential is switched off. When the potential is turned off, the particles
are only subject to the Brownian diffusion. After a period of Brownian motion, when the potential
is turned on again, the potential energy has increased. In Figure 6, when the potential is turned on
again at D, we could see the increase of free energy clearly. So in another word, the switching of the
potential field is not free, generally one must spend some extra energy to “turn on” the potential
field again. The following paragraphs give an example about how could the potential be switched,
and how could the system obtain energy during this procedure.
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To understand this mechanism better, we may recall the illustration of the working mechanism
of a molecular motor given in [1]. Here we use the same symbols as used in [1] to represent the
proteins and particles involved in the system. We consider a negatively charged protein E which
is moving in an asymmetric potential field formed by the protein molecules with electrical polarity
as shown in Figure 7. Moreover, we assume E is an enzyme that catalyzes a chemical reaction
(Picture 1 and 2 in Figure 8), i.e.

SH ⇐⇒ S− + H+.

Fig. 7. An asymmetric electric field.

The compound EHS is negatively charged initially. When S− dissociates from EHS, EH
becomes neutrally charged. So the protein E does not sense the existence of the potential field,
and moves as a Brownian particle (Picture 3 in Figure 8). This is corresponding to Process B,
in which the potential function is turned off. When H+ dissociates from the protein, E becomes
negatively charged again. Then the protein moves with the influence of the potential field (Picture 4
in Figure 8). This is Process A. Both processes are repeated periodically and the protein E moves
from low potential area to high potential region with increased free energy.

Fig. 8. A the mechanism of a molecular motor.

When the potential field is “turned off”, it does not really vanish. In fact, it is only neutralized
by H+. Therefore the potential energy of EH does not change before the dissociation of H+.
However, the potential energy of H+ decreases. As a consequence, the potential energy of E must
increase to maintain the overall potential energy by EH. Hence, when the potential field is “turned
on” again, the free energy of E increases. In summary, the increased free energy comes from the
decreased potential energy of H+ when it dissociates from E. On the other hand, not all of the lost
potential energy of H+ can be converted into the free energy of E due to the environmental noise.

Moreover, we can compute the efficiency of the molecular motor. Again, we take figure 6 as an
example. We consider the free energy at five points A,B,C,D and E, and the free energy at A,D,E
are FA, FD, FE respectively; the free energy with vanished potential (or the negative entropy) at
B and C are SB and SC respectively.

At time t = A = B, the potential function is turned off. The free energy at this time is
FA = UA + SA = UA + SB

where U is the potential energy.
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At time t = C = D, the potential function is turned on again. At this time, the free energy with
vanished potential is SC , the free energy with regular potential is FD. Then we have

FD = UD + SD = UC + SC

So the total energy that comes from external environment is

UC − UB = FD − FA + SB − SC

And the gains of the free energy is FE − FA. So the efficiency of the molecular motor is

γ =
FE − FA

FD − FA + SB − SC

From stochastic process (1.1), it is clear that the noise level ε =
√

2τ and time interval T of
switching the potential field on and off are two major factors to determine the free energy gain
by molecular motors. We plot their relationships in the following example in Figure 9. We vary
the noise level ε from 0 to 5, and the time interval T from 0 to 0.5. From the plot, we see higher
efficiency with faster switching. But please note that the rate of free energy gain does not increase
with faster switching, so this is a trade-off — faster switching gives higher efficiency as well as less
power. On the other hand, the efficiency are smaller for too low and too high level of noise. In
fact, as shown in Figure 10, there exists a value for τ that the efficiency reaches it maximal. This
corresponds to the maximal efficiency for molecular motors. In other words, the molecular motors
attains its maximal efficiently if the noise level is set at the right place. Like in the classical bistable
model of stochastic resonance, the noise does not disturb the model, but enhance the performance
of the model. We call this a stochastic resonance like behavior. In fact, the mechanism of this
phenomenon is different from that of the classical bistable model as well as that of the stochastic
resonance in the quantum Brownian motors [18, 19].

Fig. 9. Free energy gain v.s. noise level and time interval of switching potential field.

We remark that evaluating the performance of molecular motors from the free energy point of
view is different from the existing studies, such as the method used in [13], in which the output
energy is calculated by the power of the stopping force. The efficiency of molecular motors measured
in the free energy can reach near 20%. For example, with the potential function in our example,
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Fig. 10. Stochastic resonance — noise vs. efficiency.

when the time interval is T = 0.001, and the noise level is ε = 3.5, the maximal efficiency is as
high as γ = 18.74%. This is different from the observations reported in [13], which indicates a
low efficiency (around 5%) of molecular motors. (In some open systems with external force, the
efficiency could be higher [15], which is different form our case)

Finally, if the state space is not a Euclidean space but a finite set of points, then our new
Parrondo’s paradox of free energy and our viewpoint of molecular motor based on the free energy
(and also applied by using Fokker–Planck equation(s)) are also true. For details in the discrete case,
please see [2].
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