Abstract

Thomassen proved that every $(k + 3)$-connected graph G contains an induced cycle C such that $G - V(C)$ is k-connected, establishing a conjecture of Lovász. In general, one could ask the following question: For any positive integers k, l, does there exist a smallest positive integer $g(k, l)$ such that for any $g(k, l)$-connected graph G, any $X \subseteq V(G)$ with $|X| = k$, and any $e \in E(G - X)$, there is an induced cycle C in $G - X$ such that $e \in E(C)$ and $G - V(C)$ is l-connected? The case when $k = 0$ is a well-known conjecture of Lovász which is still open for $l \geq 3$. In this paper, we prove $g(k, 1) \leq 10k + 1$ and $g(k, 2) \leq 10k + 11$. We also consider a weaker version: For any positive integers k, l, is there a smallest positive integer $f(k, l)$ such that for every $f(k, l)$-connected graph G and any $X \subseteq V(G)$ with $|X| = k$, there is an induced cycle C in $G - X$ such that $G - V(C)$ is l-connected? The case when $k = 0$ was studied by Thomassen. We prove $f(k, l) \leq 2k + l + 2$ and $f(k, 1) = k + 3$.

Keywords: connectivity, non-separating cycle, k-contractible edge
1 Introduction

We begin with notation necessary for describing problems and results in this paper. Let G be a graph; we use $V(G)$ and $E(G)$ to denote its vertex and edge set, respectively. For any $e \in E(G)$, $V(e)$ denotes the set of vertices of G incident with e. By $H \subseteq G$ we mean that H is a subgraph of G, and we view any subset of vertices as a subgraph with no edges. For any $U \subseteq G$, the neighborhood of U, denoted by $N_G(U)$, is the set of vertices in $V(G) - V(U)$ adjacent to at least one vertex in U; and $N_G[U] := N_G(U) \cup U$ is the closed neighborhood of U in G. The degree $d_G(u)$ of a vertex u in G is $|N_G(\{u\})|$. If the graph G is clear from the context, the reference to G is usually omitted. For any $U \subseteq G$, $G[U]$ denotes the subgraph of G induced by $V(U)$ and we write $G - U := G[V(G) - V(U)]$. Let k be a positive integer. A graph G is k-connected if $|V(G)| \geq k + 1$ and $G - U$ is connected for any $U \subseteq V(G)$ with $|U| < k$.

Lovász (see [14]) conjectured the existence of a function $g(k)$ such that for any positive integer k, any $g(k)$-connected graph G, and any distinct $s,t \in V(G)$, there exists a path P in G between s and t such that $G - V(P)$ is k-connected. This is equivalent to the problem for asking the existence of such a cycle C through a specified edge. A result of Tutte [16] shows that $g(1) = 3$; and that $g(2) = 5$ was proved independently by Chen, Gould and Yu [2] and by Kriesell [9]. Lovász’s conjecture remains open for $k \geq 3$.

The result of Tutte [16] showing $g(1) = 3$ is actually stronger: For every 3-connected graph G, $e \in E(G)$, and $u \in G - V(e)$, there exists an induced cycle C in $G - u$ such that $e \in E(C)$ and $G - V(C)$ is connected. It is conjectured in [8] that there exists a function $f(k)$ such that every $f(k)$-connected graph G and every $s,t,u \in V(G)$, there is a path P between s and t in G and a k-connected subgraph H of G such that $u \in V(H)$ and $V(H) \cap V(P) = \emptyset$. It is further shown that this conjecture implies the above conjecture of Lovász. We feel that in potential applications one may need P and C to avoid certain vertices (see [17] for another example), and believe the following is true.

Conjecture 1.1. For any positive integers k,l, there exists a smallest positive integer $g(k,l)$ such that for any $g(k,l)$-connected graph G, any $e \in E(G)$, and any $X \subseteq V(G) - V(e)$ with $|X| = k$, there exists an induced cycle C in $G - X$ such that $e \in E(C)$ and $G - V(C)$ is l-connected.

When $k = 0$, Conjecture 1.1 is simply Lovász’s conjecture mentioned above. We provide evidence to Conjecture 1.1 by proving

Theorem 1.2. For any positive integer k, $g(k,1) \leq 10k + 1$ and $g(k,2) \leq 10k + 11$.

The proof of Theorem 1.2 is given in Section 2, where we also mention a result about connectivity of k-linked graphs that is needed in our proof.

It turns out that asking the cycle in Lovász’s conjecture to go through a specified edge is what makes the conjecture difficult. Thomassen [13] proved that for any positive integer k, every $(k + 3)$-connected graph contains a cycle C such that $G - V(C)$ is k-connected, establishing a conjecture of Lovász [10]. (This result was further strengthened by Egawa [3,4] for graphs with girth at least 4 or 5.) We consider a similar relaxation of Conjecture 1.1: For any positive integers k,l, there exists a smallest positive integer $f(k,l)$ such that for any $f(k,l)$-connected graph G and any $X \subseteq V(G)$ with $|X| = k$, there is an induced cycle C in
A solution to every linkage problem in a graph is strongly k-linked. To prove Theorem 1.2 we need a result about connectivity of k-linked graphs. A linkage problem in a graph G is a set of pairs of vertices of G, written as $L = \{\{s_1,t_1\},\ldots,\{s_k,t_k\}\}$. A solution to L is a set of paths $\{P_1, \ldots, P_k\}$ such that s_i, t_i are the ends of P_i and, for any $i \neq j$ and any $x \in V(P_i) \cap V(P_j)$, $x \in \{s_i, t_i\} \cap \{s_j, t_j\}$. A graph G is called k-linked if every linkage problem with k pairwise disjoint pairs of vertices has a solution. A graph G is strongly k-linked if every linkage problem in G consisting of k pairs has a solution. Bollobás and Thomason [1] proved that every $22k$-connected graph is k-linked. In [15] Thomas and Wollan improve this bound to $10k$.

Lemma 2.1. (Thomas and Wollan). Every $10k$-connected graph is k-linked.

A result of Mader [11] implies that any k-linked graph on at least $2k$ vertices is strongly k-linked. Thus the following statement follows trivially from Lemma 2.1.

Corollary 2.2. Every $10k$-connected graph is strongly k-linked.

For a path P and $u, v \in V(P)$, we use uPv to denote the subpath of P between u and v, and we view P as a sequence of vertices. Let G be a graph and $B \subseteq G$. A B-bridge of G is a subgraph of G induced by all edges in a component of $G - V(B)$ and all edges from that component to B.

Proof of Theorem 1.2. We break this proof into two cases. In Case 1 we prove $g(k,1) \leq 10k + 1$; and in Case 2, we show $g(k,2) \leq 10k + 11$.

Case 1. Let G be a $(10k + 1)$-connected graph, $e = st \in E(G)$, and $X = \{x_1, \ldots, x_k\} \subseteq G - V(e)$. We need to show that there is an induced cycle C in $G - X$ such that $e \in E(C)$ and $G - V(C)$ is connected.

Note that $G - e$ is $10k$-connected. Consider the linkage problem $L = \{\{s, t\}, \{x_1, x_2\}, \ldots, \{x_{k-1}, x_k\}\}$ in $G - e$, which has k pairs of vertices. By Corollary 2.2, there is a solution $\{P, Q_1, \ldots, Q_{k-1}\}$ to L such that P is from s to t, and Q_i is from x_i to x_{i+1} for $i = 1, \ldots, k-1$. We may assume all paths are induced in $G - e$. Note that $X \subseteq \bigcup_{i=1}^{k-1} Q_i$, and $\bigcup_{i=1}^{k-1} Q_i$ is a connected subgraph of $G - e - V(P)$.

Thus $G - e$ has an induced path P between s and t such that X is contained in a connected component C_0 of $G - e - V(P)$. Let C_1, C_2, \ldots, C_q be the other components of $G - V(P)$ (if any) such that $|V(C_1)| \geq |V(C_2)| \geq |V(C_q)|$, and let $S(P) := (|V(C_0)|, |V(C_1)|, \ldots, |V(C_q)|)$. We choose P so that $S(P)$ is maximal with respect to the lexicographic ordering.
If \(q = 0 \) then \(G - V(P) \) is connected; so \(C := G[V(P)] \) is the desired cycle showing that \(g(k, 1, 1) \leq 10k+1 \). We may thus assume that \(q > 0 \). Note that \(|N(C_q) \cap V(P)| \geq 10k+1 \). Choose two vertices \(u, v \in N(C_q) \cap V(P) \) such that \(uPv \) is maximum. Without loss of generality we may assume that \(s, u, v, t \) occur on \(P \) in this order. Let \(Q \) be an induced path in \(G[C_q \cup \{u, v\}] \) between \(u \) and \(v \). Then \(P' := sPuQvPt \) is an induced path in \(G - X \) between \(s \) and \(t \). Since \(G \) is \((10k + 1)\)-connected, \(uPv - \{u, v\} \) has a neighbor in \(\bigcup_{i=0}^{q-1} V(C_i) \). So \(S(P') \) is larger than \(S(P) \), a contradiction.

Case 2. Let \(G \) be a \((10k + 11)\)-connected graph, \(e = st \in E(G) \), and \(X = \{x_1, \ldots, x_k\} \subseteq V(G) - V(e) \). We show that \(G - X \) contains an induced cycle \(C \) such that \(e \in E(C) \) and \(G - V(C) \) is 2-connected.

Note that \(G - e \) is \((10(k + 1)\)-connected. Consider the linkage problem \(\mathcal{L} = \{\{s, t\}, \{x_1, x_2\}, \ldots, \{x_{k-1}, x_k\}, \{x_k, x_1\}\} \), which has \(k+1 \) pairs of vertices. By Corollary 2.2, there is a solution \(\{P, Q_1, \ldots, Q_k\} \) to \(\mathcal{L} \) such that \(P \) is from \(s \) to \(t \) and \(Q_i \) is from \(x_i \) to \(x_{i+1} \) for \(i = 1, \ldots, k \) (with \(x_{k+1} = x_1 \)).

Since \(X \subseteq \bigcup_{i=1}^k Q_i \) which is a cycle, \(X \) is contained in a 2-connected block \(B_0 \) of \(G - V(P) \). Let \(B_1, \ldots, B_q \) be the \(B_0 \)-bridges of \(G - V(P) \) (if any) such that \(|V(B_1)| \geq |V(B_2)| \geq \ldots \geq |V(B_q)| \), and let \(S(P) := (|V(B_0)|, |V(B_1)|, \ldots, |V(B_q)|) \). Note that \(|V(B_1 \cap B_0)| \leq 1 \). We choose \(P \) so that \(S(P) \) is maximal with respect to the lexicographic ordering. We may assume that \(P \) is induced in \(G - e \).

If \(q = 0 \) then \(G - V(P) \) is 2-connected; so \(C := G[V(P)] \) is the desired cycle showing that \(g(k, 2) \leq 10k + 11 \). Hence we may assume \(q > 0 \). Since \(|V(B_q \cap B_0)| \leq 1 \) and \(G - e \) is \((10(k + 1)\)-connected, we may let \(u, v \in N(B_q - V(B_q \cap B_0)) \) such that \(uPv \) is maximal. Without loss of generality we may assume that \(s, u, v, t \) occur on \(P \) in order. Let \(Q \) be an induced path in \(G[B_q \cup \{u, v\}] - V(B_q \cap B_0) \) between \(u \) and \(v \). Then \(P' := sPuQvPt \) is an induced path in \(G - e - X \) between \(s \) and \(t \). Since \(G \) is \((10k + 11)\)-connected, \(uPv - \{u, v\} \) has a neighbor in \(\bigcup_{i=1}^{q-1} B_i \), or at least two neighbors in \(B_0 \). So \(S(P') \) is larger than \(S(P) \), a contradiction.

The bounds in Theorem 1.2 are probably far from being best possible. One way to reduce these bounds is to find out the minimum connectivity of \(G \) that guarantees the existence of disjoint connected subgraphs \(P \) and \(H \) such that \(\{s, t\} \subseteq V(P) \) and \(X \subseteq V(H) \). When \(|X| = 2 \), \(G \) needs to be 6-connected by a result of Jung [6]; but this is not known for \(|X| \geq 3 \). The problem is more difficult if, in addition, one requires \(H \) to be \(l \)-connected for some \(l \geq 2 \).

3 Contractible edges

For our proof of Theorem 1.3, we need the concept of a contractible edge. Let \(G \) be a \(k \)-connected graph and \(e \in E(G) \). We say that \(e \) is \(k \)-contractible if the graph obtained from \(G \) by contracting \(e \), denoted by \(G/e \), is \(k \)-connected.

Clearly every edge in a 1-connected graph (other than \(K_2 \)) is 1-contractible. An edge \(e \) in a 2-connected graph \(G \) is 2-contractible iff \(G - V(e) \) is connected; from this one can see that any 2-connected graph other than \(K_3 \) contains a lot of 2-contractible edges. Tutte [16] showed that \(K_4 \) is the only 3-connected graph which does not admit any 3-contractible edge. Fontet [5] and, independently, Martinov [12] proved that if a 4-connected graph contains no 4-contractible edge then it is the square of a cycle of length at least 5 or it is the line graph of
a cyclically 4-edge-connected cubic graph. For general \(k\), Thomassen [13] proved that if \(G\) is a \(k\)-connected graph with no triangles then \(G\) admits a \(k\)-contractible edge. This is then used in [13] to prove the following result (establishing a conjecture of Lovász [10]).

Lemma 3.1. (Thomassen). For \(k \geq 4\), every \(k\)-connected graph \(G\) contains an induced cycle \(C\) such that \(G - V(C)\) is \((k - 3)\)-connected and \(|N(u) \cap V(C)| \leq 3\) for all \(u \in V(G) - V(C)\).

For our proof of Theorem 1.3, we need to prove the following lemma about contractible edges avoiding a given set of vertices.

Lemma 3.2. Let \(G\) be a \(k\)-connected graph, where \(k \geq 4\), and let \(X \subseteq V(G)\) such that \(|X| \leq k/2 - 1\), \(G - X\) has girth at least 5, and \(|V(G) - N[X]| \geq |X| + 1\). Then there exists \(u \in V(G) - N[X]\) such that \(u\) is incident with a \(k\)-contractible edge of \(G\).

Proof. Suppose that no vertex in \(V(G) - N[X]\) is incident with a \(k\)-contractible edge of \(G\). Let \(u \in V(G) - N[X]\). Then for any \(e \in E(G)\) incident with \(u\), \(V(e)\) is contained in a \(k\)-cut \(S_e\) of \(G\). Let \(Q_u\) denote the collection of all quadruples \((e, S_e, A_e, B_e)\) such that \(e \in E(G)\) is incident with \(u\), \(S_e\) is a \(k\)-cut of \(G\) with \(V(e) \subseteq S_e\), \(A_e\) is a component of \(G - S_e\), and \(B_e := G - S_e - A_e\). We choose \(e \in E(G)\) incident with \(u\) such that

1. \((e, S_e, A_e, B_e) \in Q_u\) and \(|A_e|\) is minimal.

We claim that

2. for each \(u \in V(G) - N[X]\) and each \((e, S_e, A_e, B_e) \in Q_u\) satisfying (1), \(|A_e| \leq k - 2\).

For, suppose that there exist \(u \in V(G) - N[X]\) and \((e, S_e, A_e, B_e) \in Q_u\) satisfying (1) such that \(|A_e| \geq k - 1\). Let \(e = uv\). Since \(G\) is \(k\)-connected, \(u\) is adjacent to some \(w \in V(A_e)\). Let \(f = uw\). Then there exists a quadruple \((f, S_f, A_f, B_f) \in Q_u\).

We claim that \(A_e \cap A_f = \emptyset\) or \(B_e \cap B_f = \emptyset\). For suppose \(A_e \cap A_f \neq \emptyset\) and \(B_e \cap B_f \neq \emptyset\). Then \(T_1 := (S_e \cap V(A_f)) \cup (S_e \cap S_f) \cup (V(A_e) \cap S_f)\) is a cut of \(G\) and contains \(V(f)\), and \(T_2 := (S_e \cap V(B_f)) \cup (S_e \cap S_f) \cup (V(B_e) \cap S_f)\) is a cut of \(G\). Thus \(|T_1| \geq k + 1\) (by (1)) and \(|T_2| \geq k\) (since \(G\) is \(k\)-connected). So

\[
2k = |S_e| + |S_f| = |T_1| + |T_2| \geq 2k + 1,
\]
a contradiction.

Similarly, we can show that \(A_e \cap B_f = \emptyset\) or \(A_f \cap B_e = \emptyset\).

Suppose \(B_e \cap B_f = \emptyset\). If \(A_f \cap B_e = \emptyset\) then by (1), \(k - 1 \leq |A_e| \leq |B_e| = |V(B_e) \cap S_f| \leq k - 2\), a contradiction. So \(A_f \cap B_e \neq \emptyset\). Thus \(A_e \cap B_f = \emptyset\), and \(S_e \cap V(A_f) \neq \emptyset\) as \(G\) is \(k\)-connected. Hence, by (1), \(k - 1 \leq |A_e| \leq |B_f| = |V(B_f) \cap S_e| \leq k - 2\), a contradiction.

Therefore, \(B_e \cap B_f \neq \emptyset\). Similarly, \(B_e \cap A_f \neq \emptyset\). So \(A_e \cap A_f = \emptyset\) and \(A_e \cap B_f = \emptyset\). Moreover, \(S_e \cap V(A_f) \neq \emptyset\) as \(G\) is \(k\)-connected; so \(S_f \cap V(B_e) \neq \emptyset\) as \(G\) is \(k\)-connected. Hence \(|A_e| \leq k - 2\), a contradiction which completes the proof of (2).

Since \(G\) is \(k\)-connected, \(u\) has a neighbor in \(A_e\); hence, since \(u \in V(G) - N[X]\), \(A_e - X \neq \emptyset\). In fact,

3. for any \(u \in V(G) - N[X]\) and for any \((e, S_e, A_e, B_e) \in Q_u\) satisfying (1), we have \(|V(A_e) - X| = 1|.

5
First, suppose $|V(A_e) - X| \geq 3$, and let $w_1, w_2, w_3 \in V(A_e) - X$. We wish to estimate $|N(w_1) \cup N(w_2) \cup N(w_3)|$. Applying the principle of inclusion and exclusion, we have

$$|N(w_1) \cup N(w_2) \cup N(w_3)| = \left(\sum_{i=1}^{3} |N(w_i)| \right) - \left(\sum_{1 \leq i < j \leq 3} |N(w_i) \cap N(w_j)| \right) + |N(w_1) \cap N(w_2) \cap N(w_3)|.$$

Since $G - X$ has girth at least 5, $|N(w_i) \cap N(w_j) - X| \leq 1$, and if $|N(w_1) \cap N(w_2) \cap N(w_3) - X| \neq 0$ then $N(w_1) \cap N(w_2) - X = N(w_2) \cap N(w_3) - X = N(w_1) \cap N(w_3) - X$. So

$$\left| \bigcup_{1 \leq i < j \leq 3} (N(w_i) \cap N(w_j) - X) \right| + |N(w_1) \cap N(w_2) \cap N(w_3) - X| \leq 3.$$

Note that

$$\left| \bigcup_{1 \leq i < j \leq 3} N(w_i) \cap N(w_j) \cap X \right| + |N(w_1) \cap N(w_2) \cap N(w_3) \cap X| \leq 2|X|.$$

Hence,

$$\left(\sum_{1 \leq i < j \leq 3} |N(w_i) \cap N(w_j)| \right) - |N(w_1) \cap N(w_2) \cap N(w_3)|$$

$$= \left| \bigcup_{1 \leq i < j \leq 3} (N(w_i) \cap N(w_j)) \right| + |N(w_1) \cap N(w_2) \cap N(w_3)|$$

$$\leq 2|X| + 3.$$

To see the equality above, we note that each vertex in exactly two of $N(w_1), N(w_2), N(w_3)$ is counted exactly once on both sides, and each vertex belonging to all three is counted exactly twice on both sides. Therefore, since $|X| \leq k/2 - 1$, we have

$$|N(w_1) \cup N(w_2) \cup N(w_3)| \geq \sum_{i=1}^{3} |N(w_i)| - (2|X| + 3) \geq 3k - (2|X| + 3) \geq 2k - 1.$$

Since $|S_e| = k$ and $N(w_i) \subseteq V(A_e) \cup S_e$ for $i = 1, 2, 3$, we have $|A_e| \geq k - 1$, contradicting (2).

Now suppose $|V(A_e) - X| = 2$, and let $V(A_e) - X = \{w_1, w_2\}$. If $w_1 w_2 \notin E(G)$ then, since G is k-connected, each w_i has at least $k - |X|$ neighbors in $S_e - X$; so w_1 and w_2 have at least $2(k - |X|) - k \geq 2$ common neighbors in $S_e - X$ (since $|X| \leq k/2 - 1$), which forces a cycle in $G - X$ of length at most 4, a contradiction. So $w_1 w_2 \in E(G)$; and thus $N(w_1) \cap N(w_2) \cap (S_e - X) = \emptyset$. Hence,

$$k \geq |S_e - X|$$

$$\geq |(N(w_1) \cup N(w_2)) \cap (S_e - X)|$$

$$= |N(w_1) \cap (S_e - X)| + |N(w_2) \cap (S_e - X)|$$

$$\geq 2(k - |X| - 1)$$

$$\geq k \text{ (since } |X| \leq k/2 - 1).$$
This inequality shows that \((N(w_1) \cup N(w_2)) \cap (S_e - X) = S_e - X = S_e\). Since \(u, v \in S_e - X\),
\(G\{u, v, w_1, w_2\}\) contains a cycle, a contradiction, which completes the proof of (3).

So for any \(u \in V(G) - N[X]\) and for any \((e, S_e, A_e, B_e) \in Q_u\) satisfying (1), we let \(V(A_e) - X = \{w_u\}\). Let \(X_u = V(A_e) \cap X\). Since \(u \in V(G) - N[X]\), we have

\[(4) \ uv_u \in E(G), \ N(X_u) = (S_e - \{u\}) \cup \{w_u\}, \text{ and } N(w_u) - N[X] = \{u\}.\]

We claim that

\[(5) \text{ for any distinct } u, u' \in V(G) - N[X], \text{ any } (e, S_e, A_e, B_e) \in Q_u \text{ satisfying } (1), \text{ and any } (f, S_f, A_f, B_f) \in Q_{u'} \text{ satisfying } (1), \text{ we have } X_u \cap X_{u'} = \emptyset, \text{ where } X_u = X \cap V(A_e) \text{ and } X_{u'} = X \cap V(A_f).\]

Suppose \(X_u \cap X_{u'} \neq \emptyset\). If \(w_u = w_{u'}\), then, by (4), \(\{u\} = N(w_u) - N[X] = N(w_{u'}) - N[X] = \{u'\}\), a contradiction. So \(w_u \neq w_{u'}\).

Since \(u, u' \notin N[X]\), \(N[X_u \cup X_{u'}] \neq V(G)\). Therefore, since \(G\) is \(k\)-connected, \(|N(X_u \cup X_{u'})| \geq k\) and, by (4),

\[2k \leq |N(X_u \cup X_{u'})| + |N(X_u \cap X_{u'})| \leq |N(X_u)| + |N(X_{u'})| = 2k.\]

It follows that \(|N(X_u \cup X_{u'})| = k\). Let \(F_u := N(w_u) - (X \cup \{u\})\) and \(F_{u'} := N(w_{u'}) - (X \cup \{u'\})\). Then \(F_u \subseteq N(X_u) - X\) (by (4)) and \(|F_u| \geq k - |X| - 1\), and \(F_{u'} \subseteq N(X_{u'}) - X\) (by (4)) and \(|F_{u'}| \geq k - |X| - 1\). Note that \(w_u \neq u'\) and \(w_{u'} \neq u\), since \(u, u' \notin N[X]\).

If \(w_u w_{u'} \notin E(G)\) then \(w_u, w_{u'} \notin F_u \cup F_{u'}\). Hence, since \(w_u \in N(X_u) - X\) and \(w_{u'} \in N(X_{u'}) - X\), \(|F_u \cup F_{u'}| \leq |N(X_u \cup X_{u'}) - X| - 2 \leq k - 2\) (as \(|N(X_u \cup X_{u'})| = k\)). So \(|F_u \cup F_{u'}| = |F_u| + |F_{u'}| - |F_u \cap F_{u'}| \geq 2(k - |X| - 1) - (k - 2) = 2\) (as \(|X| \leq k/2 - 1\), which forces a cycle of length 4 in \(G - X\), \(u\), a contradiction.

So \(w_u w_{u'} \in E(G)\). Then \(F_u \cap F_{u'} = \emptyset\), since the girth of \(G - X\) is at least 5. Thus \(|F_u \cup F_{u'}| = |F_u| + |F_{u'}| \geq 2(k - |X| - 1) \geq k\) (as \(|X| \leq k/2 - 1\)). On the other hand, \(|F_u \cup F_{u'}| \leq |N(X_u \cup X_{u'})| = k\). So \(F_u \cup F_{u'} = N(X_u \cup X_{u'})\). Let \(e = uv\). Then by (4), \(v \in N(X_u) - X \subseteq N(X_u \cup X_{u'})\). Hence \(v \in F_u\) as \(v \notin F_u\) (since \(w_u v \notin E(G)\)). Now \(w_u w_{u'} v u\) is a cycle in \(G - X\), a contradiction, which completes the proof of (5).

Since \(X_u \neq \emptyset\) and because of (5), \(|V(G) - N[X]| \leq |\bigcup_{u \in V(G) - N[X]} X_u| \leq |X|\), contradicting the assumption that \(|V(G) - N[X]| \geq |X| + 1\).

When \(|X| = 1\), we have a stronger version of Lemma 3.2.

Lemma 3.3. Let \(G\) be a \(k\)-connected graph, where \(k \geq 4\), and let \(x \in V(G)\) such that \(G - x\) has girth at least 5. Then there is a \(k\)-contractible edge not incident with \(x\).

Proof. If \(|V(G) - N[x]| \geq 2\) then, by Lemma 3.2, there is a \(k\)-contractible edge in \(G\) not incident with \(X\). So we may assume \(|V(G) - N[x]| \leq 1\). Then \(d_G(x) \geq |V(G - x)| - 1\). Let \(u, v, w \in V(G - x)\) be distinct such that \(uv, vw \in E(G - x)\). Since \(G - x\) has girth at least 5 and \(G - x\) is at least \((k - 1)\)-connected, \(|V(G - x)| \geq (d_{G - x}(u) - 1) + (d_{G - x}(v) - 2) + (d_{G - x}(w) - 1) + 3 \geq 3k - 4\). Since \(k \geq 4\),

\[(1) \ d_G(x) \geq |V(G - x)| - 1 \geq 3k - 5 \geq k + 3.\]
Suppose that all k-contractible edges in G are incident with x. Then for any edge e not incident with x, there is a k-cut S_e containing $V(e)$. Let Q denote the set of all quadruples (e,S_e,A_e,B_e) such that $e \in E(G)$ is not incident with x, S_e is a k-cut of G containing $V(e)$, A_e is a component of $G-S_e$, and $B_e = G-S_e-V(A_e)$. We may choose an edge e not incident with x and choose $(e,S_e,A_e,B_e) \in Q$, such that

(2) $|A_e|$ is minimal.

By (1) and by our assumption that $G - x$ has girth at least 5, we see that $|A_e| \geq 2$. Furthermore,

(3) $|A_e| \geq k - 1$.

Since $|A_e| \geq 2$, $A_e - \{x\} \neq \emptyset$. If $|A_e - \{x\}| = 1$, then $x \in A_e$ and thus $d_G(x) \leq |S_e \cup A_e - \{x\}| = k + 1$, contradicting (1). Hence $|A_e - \{x\}| \geq 2$. Let $w_1,w_2 \in V(A_e) - \{x\}$. Since $G - x$ has no cycle of length less than 5, $|(N(w_1) \cap N(w_2)) - \{x\}| \leq 1$ if $w_1w_2 \not\in E(G)$ and $|(N(w_1) \cap N(w_2)) - \{x\}| = 0$ if $w_1w_2 \in E(G)$. So $|N[w_1] \cup N[w_2]| \geq 2k - 1$. Hence $|A_e| \geq k - 1$, since $|S_e| = k$ and $N[w_1] \cup N[w_2] \subseteq V(A_e) \cup S_e$, which completes the proof of (3).

Since $|A_e| \geq k - 1 \geq 3$, it is easy to see that there is an edge f in $G - x$ such that $V(f) \cap V(A_e) \neq \emptyset$ and $V(f) \cap S_e \neq \emptyset$. Then the same proof for (2) in the proof of Lemma 3.2 works here and gives a contradiction.

We now can prove the following result from which Theorem 1.3 follows directly. Let \mathcal{F} be a family of graphs. A graph G is said to be \mathcal{F}-free if no induced subgraph of G is isomorphic to a graph in \mathcal{F}.

Theorem 3.4. For any positive integers k,l, any $(2k+l+2)$-connected graph G, and any $X \subseteq V(G)$ with $|X| = k$, there is an induced cycle C in $G-X$ such that $G-V(C)$ is l-connected. Moreover, if $G - X$ is $\{K_3,K_{2,3}\}$-free then $|N(u) \cap V(C)| \leq 1$ for any $u \not\in V(C) \cup X$.

Proof. Let G be a $(2k+l+2)$-connected graph and let $X \subseteq V(G)$ with $|X| = k$. We proceed by induction on $|V(G)|$. If $|V(G)| = 2k+l+3$, then G is complete; so any triangle in $G - X$ gives the desired cycle. We may thus assume that $|V(G)| \geq 2k+l+4$ and the assertion holds for graphs of order less than $|V(G)|$. We may also assume that

(1) the girth of $G - X$ is at least 5.

For, suppose the girth of $G - X$ is at most 4, and let C be a cycle in $G - X$ with $|C|$ minimum. Then $|C| \leq 4$, C is induced and $G-V(C)$ has connectivity at least $2k+l+2-4 = 2(k-1)+l \geq l$, as $k \geq 1$. Now assume that $G - X$ is $\{K_3,K_{2,3}\}$-free. Then $|C| = 4$, and $|N(u) \cap V(C)| \leq 1$ for each $u \not\in V(C) \cup X$.

Next, we show that

(2) when $k \geq 2$, we may assume that $|V(G) - N[X]| \geq |X| + 1 = k + 1$.

8
Suppose \(k \geq 2 \) and \(|V(G) - N[X]| \leq k\). For each \(x \in X \), \(G - x \) has connectivity at least \(2k + l + 2 - 1 > 2(k - 1) + l + 2 \); so by induction there is an induced cycle \(C_x \) in \(G - X \) such that \((G - x) - V(C_x)\) is \(l \)-connected and \(|N(u) \cap V(C_x)| \leq 1\) for any \(u \notin V(C_x) \cup X \). Hence

\[
|V(G - X) - V(C_x)| \geq \sum_{u \in V(C_x)} (d_G(u) - k - 2) \geq (k + l)|V(C_x)|.
\]

It follows that \(|V(C_x)| \leq |V(G - X)|/(k + l + 1)\). If \(|N(x) \cap V((G - x) - V(C_x))| \geq l\) then \(G - V(C_x) \) is \(l \)-connected. So we may assume that for any \(x \in X \),

\[
l > |N(x) \cap V((G - x) - V(C_x))| = d_G(x) - |N(x) \cap V(C_x)| \geq d_G(x) - |V(C_x)| \geq d_G(x) - |V(G - X)|/(k + l + 1).
\]

Hence,

\[
|V(G - X)| > (d_G(x) - l)(k + l + 1).
\]

So

\[
k|V(G - X)| \geq \left(\sum_{x \in X} d_G(x) \right) - kl (k + l + 1).
\]

Since we assume \(|V(G) - N[X]| \leq k\), \(\sum_{x \in X} d_G(x) \geq |N(X)| \geq |V(G - X)| - k\). Thus \(k|V(G - X)| \geq (|V(G - X)| - k - kl)(k + l + 1)\), and hence \(|V(G - X)| \leq k(k + l + 1)\). Therefore,

\[
(2k + 2)(k + l + 1) \leq (d_G(x) - l)(k + l + 1) < |V(G - X)| \leq k(k + l + 1),
\]

a contradiction which completes the proof of (2).

By (2), we may apply Lemma 3.2 or Lemma 3.3 to conclude that there is a \((2k + l + 2)\)-contractible edge \(e = uv \in E(G - X) \). Thus \(G/e \) is \((2k + l + 2)\)-connected and \(X \subseteq V(G/e) \). Let \(z \) denote the vertex of \(G/e \) resulted from the contraction of \(e \). By (1), \(G/e \) is also \(\{K_3, K_{2,3}\}\)-free. So by induction, \(G/e - X \) contains an induced cycle \(C' \) such that \(G/e - V(C') \) is \(l \)-connected and \(|N(u) \cap V(C')| \leq 1\) for all \(u \in V(G/e) - (X \cup V(C'))\).

We may view the edges of \(C' \) as edges of \(G \), and let \(C \) be an induced cycle in the subgraph of \(G \) induced by \(E(C') \cup \{e\} \). So \(C \subseteq G - X \).

Let \(v \in V(G) - (X \cup V(C)) \). We claim that \(|N_G(v) \cap V(C)| \leq 1\). If \(v \notin V(e) \) then \(|N_G(v) \cap V(e)| \leq 1\) (by (1)); so \(|N_G(v) \cap V(C)| \leq |N_{G/e}(v) \cap V(C')| \leq 1\). Now assume \(v \in V(e) \). If \(z \notin V(C') \) then \(|N_G(v) \cap V(C)| \leq |N_{G/e}(z) \cap V(C')| \leq 1\). So assume \(z \in V(C') \). Then, since \(C' \) is induced in \(G/e \), it follows from (1) that \(|N_G(v) \cap V(C)| \leq 1\).

It remains to show that \(G - V(C) \) is \(l \)-connected. For, suppose \(S \) is cut in \(G - V(C) \) with \(|S| \leq l - 1\). Then \(|S \cap V(e)| = 1\) as otherwise \(S \) or \((S - V(e)) \cup \{z\}\) would be a cut in \(G/e - V(C') \) (which is \(l \)-connected). For the same reason, \(G - S \) has exactly two components, one of which consists of the vertex in \(V(e) - S \), say \(v \). But \(v \) has degree at most \(1 + (l - 1) = l < 2k + l + 2 \), a contradiction. \(\blacksquare \)
4 Determining $f(k, 1)$

In this section, we prove Theorem 1.4. Actually we prove a result stronger than Theorem 1.4, and our approach is to find a connected subgraph T of G such that $X \subseteq V(T)$, and then find a cycle in $G - T$. This leads to the following concept.

Let G be a graph and $X \subseteq V(G)$. We define an X-tree in G as a minimal connected induced subgraph of G containing X. When $|X| = 1$, there is a unique X-tree, namely $G[X]$. When $|X| = 2$, an X-tree is simply an induced path in G between the vertices in X. However, for $|X| \geq 3$, an X-tree need not be a tree.

Let T be an X-tree in G. Then by minimality of T, any vertex in $V(T) - X$ is a cut vertex of T and, in particular, every vertex of degree at most 1 in T must be in X. Given any subgraph H of $G - V(T)$, we define a partition of $V(T)$ as follows. Recall the definition of a bridge in Section 2 (following Corollary 2.2). For each $u \in V(T)$, let C_u denote the maximal union of u-bridges of T such that $N(C_u - u) \cap V(H) = \emptyset$ and let $C_u = \emptyset$ if no such u-bridge of T exists. (Thus, by definition, $C_u \subseteq T$; so $C_u \cap H = \emptyset$.) We say that u is H-maximal if for any $v \in V(T) - \{u\}$, C_u is not contained in C_v. Define

\[
V_1 = \bigcup V(C_u - u), \text{ where the union is taken over all } H\text{-maximal } u;
\]
\[
V_2 = (X - V_1) \cup \{u : u \text{ is } H\text{-maximal}\};
\]
\[
V_3 = V(T) - (V_1 \cup V_2).
\]

We say that V_1, V_2, V_3 is the H-partition of $V(T)$. The following lemma summarizes a few properties about H-partitions and X-trees. In particular, property (1) implies that $V_1 \cap V_2 = \emptyset$; so V_1, V_2, V_3 is a partition of $V(T)$ (here we allow sets in a partition to be empty).

Lemma 4.1. Let G be a connected graph, $X \subseteq V(G)$, T an X-tree in G, $H \subseteq G - V(T)$, and V_1, V_2, V_3 the H-partition of $V(T)$. Then

1. if $u, v \in V_2$ are distinct and H-maximal then $C_u \cap C_v = \emptyset$,
2. $N(V_1) \cap (V(H) \cup V_3) = \emptyset$,
3. $X \subseteq V_1 \cup V_2$,
4. for any $u \in V_3$, each component of $T - u$ contains a neighbor of H (so if H is connected then $G[T \cup H] - u$ is connected),
5. $|V_2| \leq |X|$, and if $|V_2| = |X|$ then every component of $G[V_1 \cup V_2] - E(G[V_2])$ is a path between X and V_2 with internal vertices (if any) in V_1.

Proof. Let $u, v \in V(T)$ be distinct and H-maximal. If $u \notin V(C_v)$ and $v \notin V(C_u)$ then u belongs to a v-bridge of T not contained in C_v, and v belongs to a u-bridge of T not contained in C_u; in this case it is easy to see that $C_u \cap C_v = \emptyset$. So by symmetry, we may assume $u \in V(C_v)$. By the maximality of C_v, any v-bridge of T not contained in C_v has a neighbor in H, which shows that $C_u \subseteq C_v$, contradicting the H-maximality of u. So we have (1).

We have (2) and (3) from the definition of the H-partition of $V(T)$. Now let $u \in V_3$. Then by definition, every component of $T - u$ contains a neighbor of H; so if H is connected then $G[T \cup H] - u$ is connected, and we have (4).
If $V_2 \subseteq X$ then $|V_2| \leq |X|$. Now assume $V_2 \not\subseteq X$, and let $u_1, \ldots, u_t \in V_2 - X$. Then by definition, each u_i is H-maximal. Thus, by (1), $C_{u_i} \cap C_{u_j} = \emptyset$ whenever $i \neq j$. Moreover, since T is an X-tree, every component of $C_{u_i} - u_i$ intersects X. Therefore, $|V_2| \leq |X|$. Next, assume $|V_2| = |X|$. If $V_2 = X$ then by definition $V_1 = \emptyset$; so (5) holds (by viewing each vertex in $X = V_2$ as a trivial path between X and V_2). Hence, let $u_1, \ldots, u_t \in V_2 - X$. Then each $C_{u_i} - u_i$ is connected and contains only one vertex from X; hence by the minimality of T, C_{u_i} must be a path from $u_i \in V_2$ to some vertex in X and with all internal vertices in V_1. Thus we have (5), viewing each vertex in $X \cap V_2$ as a trivial path between X and V_2.

In order to state our next result, we need the concept of a \emph{k-fold wheel with center X}, which is defined as a graph obtained from the disjoint union of a cycle C and a disconnected graph X with $|V(X)| = k$ by adding all possible edges between $V(C)$ and $V(X)$; and $V(X)$ (or X) is called the \emph{center} of the wheel. A 2-fold wheel is also called a \emph{double wheel}. Note that a k-fold wheel with center X is not ($|X| + 3$)-connected, but if the cycle $G - X$ has at least $|X| + 2$ vertices then it is ($|X| + 2$)-connected.

Kawarabayashi, Lee and Yu [7] proved that if G is a 4-connected graph and $u,v \in V(G)$ are distinct, then either G is a 2-fold wheel with center $\{u,v\}$, or G has a path P between u and v such that $G - V(P)$ is 2-connected. This result together with a result in [2,9] implies $f(2,1) = 5$.

Recall the result of Tutte that if G is a 3-connected graph and $x \in V(G)$ then there is a cycle C in $G - x$ such that $G - V(C)$ is connected. From this we can deduce $f(1,1) = 3$. Therefore, to prove Theorem 1.4 it suffices to consider $k \geq 3$.

Lemma 4.2. Let G be a $(k + 2)$-connected graph and $X \subseteq V(G)$ with $|X| = k \geq 3$. Suppose G is not a k-fold wheel with center $G[X]$. Then there exists an induced cycle C in G such that X is contained in a component of $G - V(C)$.

Proof. For an X-tree T in G, let D_1, \ldots, D_r be the components of $G - V(T)$ such that $|V(D_1)| \geq |V(D_2)| \geq \ldots \geq |V(D_r)|$. We choose T such that

1. $|V(T)|$ is minimum, and
2. subject to (1), $S(T) := (|V(D_1)|, |V(D_2)|, \ldots, |V(D_r)|)$ is maximal with respect to the lexicographic ordering.

Suppose that the assertion of Lemma 4.2 is false for G,X. Then each D_1 is a tree. Let $x \in V(D_r)$ with degree at most 1 in D_r, and let V_1, V_2, V_3 be the x-partition of $V(T)$. (So Lemma 4.1 holds for V_1, V_2, V_3.) Then $N(x) \cap V(T) \subseteq V_2 \cup V_3$. (In this proof N without subscript is used to denote the neighborhood in G.) Since $d_G(x) \geq k + 2$ and $|V_2| \leq k$ (by Lemma 4.1(5)), we see that $N(x) \cap V_3 \neq \emptyset$; in particular, $V_3 \neq \emptyset$. We claim that

3. each $u \in V_3$ has at most one neighbor in $V(D_r) - \{x\}$ and no neighbor in $V(D_i)$ for $i = 1, \ldots, r - 1$.

Since $G[V(T) \cup \{x\}] - u$ is connected (by Lemma 4.1(4)), $G[V(T) \cup \{x\}] - u$ contains an X-tree, say T'. If u has two neighbors in $V(D_r) - \{x\}$, say y_1, y_2, then the edges uy_1, uy_2 and a path in $D_r - x$ between y_1 and y_2 form a cycle disjoint from T', a contradiction to our assumption.
that Lemma 4.2 fails with \(G, X \). If \(u \) has a neighbor in \(D_i \) for some \(i \leq r - 1 \), then \(S(T') \) is larger than \(S(T) \), a contradiction to (1) or (2). So we have (3).

We will show \(|V_3| = 1 \). Let \(\delta \) denote the minimum degree of \(G[V_3] \), and let \(u \in V_3 \) have degree \(\delta \) in \(G[V_3] \). By (3), \(u \) has at most 2 neighbors outside \(T \) (\(u \) may be adjacent to \(x \) and a vertex in \(D_r - x \)); so by Lemma 4.1(2), \(|N(u) \cap V_2| \geq (k + 2) - \delta - 2 = k - \delta \). Let \(A := N(u) \cap V_2 \) and \(B := V_2 - A \). Thus

\[
(4) \quad |A| \geq k - \delta \quad \text{and} \quad |B| \leq |V_2| - (k - \delta) \leq \delta.
\]

(5) For any edge \(wz \) of \(G[V_3] - u \), \(\{w, z\} \) is a 2-cut of \(T \), and \(T - \{w, z\} \) has a component \(F_{wz} \) such that \(V(F_{wz}) \cap V_3 = \emptyset \), \(N_T(F_{wz}) = \{w, z\}, V(F_{wz}) \cap A = \emptyset \), and \(V(F_{wz}) \cap B \neq \emptyset \).

Since \(X \subseteq V_1 \cup V_2 \) (by Lemma 4.1(3)), if follows from (1) that \(G[V(T) \cup \{x\}] - \{w, z\} \) is not connected and hence has a component \(F_{wz} \) disjoint from \(A \cup \{u, x\} \). So \(V(F_{wz}) \cap A = \emptyset \) and \(F_{wz} \) is a component of \(T - \{w, z\} \). Moreover, \(w \in N_T(F_{wz}) \) as, otherwise, \(G[V(T) \cup \{x\}] - z \) is not connected, contradicting Lemma 4.1(4) (since \(z \in V_3 \)). Similarly, \(z \in N_T(F_{wz}) \). So we have \(N_T(F_{wz}) = \{w, z\} \).

If there exists \(z' \in V(F_{wz}) \cap V_3 \), then, since \(z' \notin X \), \(T - z' \) has a component, say \(F \), which is inside \(F_{wz} \). Now \(F \) is also a component of \(G[V(T) \cup \{x\}] - z' \), contradicting Lemma 4.1(4). Hence, \(V(F_{wz}) \cap V_3 = \emptyset \).

Therefore, since \(V(F_{wz}) \cap A = \emptyset \), \(V(F_{wz}) \cap B \neq \emptyset \) (by Lemma 4.1(2)), completing the proof of (5).

(6) If \(|V_3| \geq 2 \) then there exist \(v \in V_3 - \{u\} \) and a component \(F_v \) of \(T - v \) such that \(V(F_v) \cap V_3 = \emptyset \), \(N_T(F_v) = \{v\} \), \(V(F_v) \cap A = \emptyset \), and \(V(F_v) \cap B \neq \emptyset \).

Suppose \(|V_3| \geq 2 \). Then \(T - u \) has a component, say \(F \), containing at least one vertex in \(V_3 \). Now, for any \(v \in V(F) \cap V_3 \), at least one component of \(T - v \), say \(F_v \), is contained in \(F \). Choose \(v \) and \(F_v \) so that \(|V(F_v)| \) is minimum. Then \(V(F_v) \cap V_3 = \emptyset \) and \(N_T(F_v) = \{v\} \). So \(u \notin F_v \), which implies \(V(F_v) \cap A = \emptyset \). Hence, \(V(F_v) \cap B \neq \emptyset \) by Lemma 4.1(2), completing the proof of (6).

(7) \(|V_2| = |X| \), and \(G[V_3] \cong K_s \) for some \(s \in \{1, 2\} \).

Let \(|V_3| = t \) and \(|E(G[V_3])| = m \). Suppose \(t = 1 \). Then \(G[V_3] \cong K_1 \) and \(V_3 = \{u\} \). So by Lemma 4.1(2) and by (3), \(|V_2| \geq d_T(u) \geq d_G(u) - 2 \geq (k + 2) - 2 = k \). It follows from Lemma 4.1(5) that \(|V_2| = k \), and we have (7).

Thus we may assume \(t \geq 2 \). Let \(e, f \in S := \{wz : wz \text{ is an edge of } G[V_3] - u \} \cup \{v\} \) be arbitrary (\(v \) is given in (6)). By (5) and (6), \(V(F_e) \cap V_3 = \emptyset = V(F_f) \cap V_3 \), and \(N_T(F_e) = V(e) \) and \(N_T(F_f) = V(f) \). So \(F_e \cap F_f = \emptyset \) when \(e \neq f \). Hence, since there are \(m - \delta \) edges in \(G[V_3] - u \) and \(V(F_e) \cap B \neq \emptyset \neq V(F_f) \cap B \) (by (5) and (6)), it follows from (4) that

\[
\delta \geq |B| \geq |S| = m - \delta + 1.
\]

So \(\delta \geq 1 \) and \(m \leq 2\delta - 1 \). Since \(m \geq t\delta/2 \), \(t = 2 \) or \(t = 3 \).

If \(t = 2 \) then \(\delta = |B| = 1 \), and \(G[V_3] \cong K_2 \); so by Lemma 4.1(5) and by (4), \(k \geq |V_2| = |B| + |A| \geq 1 + (k - 1) = k \), and (7) holds.
Thus we may assume $t = 3$. Then $\delta \geq m - \delta + 1 \geq 3\delta/2 - \delta + 1$. Therefore, $\delta = 2$, $G[V_3] \cong K_3$, and $|B| = 2$. Assume $V_3 = \{u, v, w\}$ and $B = \{b_1, b_2\}$. By (5) and (6), we may assume that $b_1 \in F_v$ and $b_2 \in F_{uv}$, and, by Lemma 4.1(2), that $b_1v, b_2v, b_2w \in E(T)$. Then $T - w$ is connected (as $N_T(w) \subseteq N_T(\{u, v\})$), contradicting (1) and completing the proof of (7).

We may assume

(8) $|V_3| = 1$.

For, suppose $|V_3| \geq 2$. Then by (7), $G[V_3] \cong K_2$. So let $V_3 = \{u, v\}$. If $V_2 \subseteq N(u)$ then $T - v$ is connected (as $N_T(v) \subseteq V_2 \cup \{u\}$ by Lemma 4.1(2)), contradicting (1). Thus $V_2 \not\subseteq N(u)$. Therefore, since $|N(u) - T| \leq 2$ (by (3)) and $|V_2| = k$ (by (7)), it follows from $|N(u)| \geq k + 2$ that $x \in N(u)$.

Similarly, we have $x \in N(v)$. Then $xuvx$ is a cycle in $G - X$ (as $X \subseteq V_1 \cup V_2$) by Lemma 4.1(3). Since $k \geq 3$, $G - \{u, v, x\}$ is $(k - 1)$-connected and contains X; so the assertion of the lemma holds. Thus we may assume (8).

(9) $N_T(u) = V_2$, $|N(u) - V(T)| = 2$, $|V(D_r)| \geq 2$, and $N_T[u] = N(x) \cap V(T) = V_2 \cup V_3$.

Since $|N(u)| \geq k + 2$ and $N_T(u) \subseteq V_2$ (by Lemma 4.1(2)), it follows from (3) and (7) that $N_T(u) = V_2$ and $|N(u) - V(T)| = 2$. Since $N(x) \cap V(T) \subseteq V_2 \cup V_3$ (by definition of x-partition) and $|N(x) \cap V(D_r)| \leq 1$, we see that $V_2 \subseteq N(x)$, $|V(D_r)| \geq 2$, and $N_T[u] = N(x) \cap V(T) = V_2 \cup V_3$. This proves (9).

Let $V_2 = \{v_1, \ldots, v_k\}$. By (7) and Lemma 4.1(5), let P_i, for each $1 \leq i \leq k$, be the path which is the component of $G[V_1 \cup V_2] - E(G[V_2])$ containing v_i, and let $X = \{x_1, \ldots, x_k\}$ such that $x_i \in V(P_i)$. Since $|V(D_r)| \geq 2$, there exists $y \in V(D_r - x)$ with degree 1 in D_r. Then

(10) $u \in N(y)$ and $|N(y) \cap V_2| \geq k - 1$.

Consider the y-partition V'_1, V'_2, V'_3 of $V(T)$. Then (3)-(9) holds for V'_1, V'_2, V'_3. In particular, $|V'_2| = k$ and $|V'_3| = 1$. Let $V'_3 = \{u'\}$. Then by (9), $N_T(u') = V'_2$, $|N(u') - V(T)| = 2$, $N_T[u'] = N(y) \cap V(T) = V'_2 \cup V'_3$.

If $u' = u$, then $V'_2 = N_T(u') = N_T(u) = V_2$, $u \in N(y)$ and $|N(y) \cap V_2| = |N(y) \cap V'_3| = |V'_2| = k > k - 1$. So assume $u' \neq u$.

Since $G[V_1 \cup V_2] - E(G[V_2])$ is the disjoint union of P_1, \ldots, P_k, every vertex in $V_1 - V_2$ has degree at most 2 in T. Since u' has degree at least $k \geq 3$ in T, $u' \in V_2$. Without loss of generality, let $u' = v_1$. Then $v_1 \not\in X$; so let v'_1 be the neighbor of $u' = v_1$ on P_1. Then $N_T[u'] \subseteq V_2 \cup \{v'_1, u\}$. Thus

$|N(y) \cap V_2| \geq |N(y) \cap N_T[u']| - 2 = |N(y) \cap V(T)| - 2 = |V'_2 \cup V'_3| - 2 = (k + 1) - 2 = k - 1$,

and $u \in N(y)$ (since $u \in N_T(u') \subseteq N(y)$). So we may assume (10).

From (10) and without loss of generality, we may assume that $v_1, \ldots, v_{k-1} \in N(y)$. Let $F = V(D_r) - \{x, y\}$. We may assume

(11) $N(F) \cap V_1 = \emptyset$.

For, suppose that there exists $v_i' \in V(P_i) \cap V_1$ such that $v_i' \in N(F)$ for some $1 \leq i \leq k$. If $i = k$ then $v_k \notin X$, xw_kx is a cycle and, since $v_1, \ldots, v_{k-1} \in N(y)$, $G[V(T) \cup V(D_r)] - \{u, v_k, x\}$ is a connected subgraph of $G - \{u, v_k, x\}$ containing X; so the assertion of the lemma holds. If $i < k$ then $v_i \notin X$, yw_iy is a cycle and, since $N(x) \cap V(T) = V_2 \cup V_3$ (by (9)), $G[V(T) \cup V(D_r)] - \{u, v_i, y\}$ is a connected subgraph of $G - \{u, v_i, y\}$ containing X; again the assertion of the lemma holds. So we may assume (11).

By (11), $N(F \cup \{x, u\}) = V_2 \cup \{y\}$ which has $k + 1$ vertices. Since G is $(k + 2)$-connected, $V_2 \cup \{y\}$ cannot be a cut in G; so $V(G) = V(D_r) \cup V_2 \cup \{u\}$, and $|V(T)| = |V_2 \cup V_3| = k + 1$. Hence $X = V_2$. Moreover, $V(T) \subseteq N(y)$ (as $|N(y)| \geq k + 2$ and $|N(y) - V(T)| = 1$).

Since $|N(u) - V(T)| \leq 2$, we see that D_r has exactly two vertices of degree 1, and hence D_r is a path between x and y. Furthermore, $u \not\in N(F)$ (by (3)), and therefore each vertex in F is adjacent to all of V_2. Finally, note that $G[X] = G[V_2]$ is not connected; as otherwise, $T - u = G[X]$ contradicts the choice of T in (1). So G is a k-fold wheel with center $G[X]$.

Theorem 1.4 follows from the following result.

Theorem 4.3. Let G be a $(k + 2)$-connected graph, where $k \geq 2$, and let $X \subseteq V(G)$ with $|X| = k$. Then either G is a k-fold wheel with center $G[X]$, or there exists an induced cycle C in $G - X$ such that $G - V(C)$ is connected.

Proof. Suppose G is not a k-fold wheel with center $G[X]$. By Lemma 4.2, there is a connected subgraph T of G containing X and there is an induced cycle C in $G - V(T)$. So T is contained in some component of $G - V(C)$, say U_0. Let U_1, \ldots, U_r be the components of $G - V(C) - V(U_0)$. We may select C and T so that $S(C) := (|U_0|, |U_1|, \ldots, |U_r|)$ is maximal with respect to the lexicographic ordering.

If $r = 0$ then C is the desired cycle. So we may assume $r \geq 1$. Since G is $(k + 2)$-connected, U_r has at least $k + 2$ neighbors on C. Choose $u, v \in N(U_r) \cap V(C)$ such that there is an u-v path P in C whose internal vertices have no neighbor in U_r. Let Q be an induced path in $G[V(U_r) \cup \{u, v\}]$ between u and v. Then $C' = P \cup Q$ is an induced cycle in G. Since G is $(k + 2)$-connected and C is induced, $V(C) - V(P)$ has at least one neighbor in $V(G) - V(C \cup U_r)$. Thus $S(C')$ is larger than $S(C)$, a contradiction.

Acknowledgment. We thank the anonymous referees for helpful suggestions.
References

