1. Use the Fourier transform to solve the equation
 \[u_t = t^2 u_{xx} \quad x \in \mathbb{R}, \ t > 0, \]
 with initial condition \(u(x, 0) = f(x) \).

2. Evans, p87, #15 (in the second edition). If you are using the first edition, it is #13 there.

3. Let \(\Omega \subset \mathbb{R}^n \) be a bounded domain. Assume \(u \in C^{2,1}(\Omega \times (0, \infty)) \cap C(\bar{\Omega} \times [0, \infty)) \) satisfies
 \[
 \begin{cases}
 u_t = \Delta u & x \in \Omega, \ t > 0, \\
 u(x, 0) = g(x) & x \in \Omega, \\
 u(x, t) = 0 & x \in \partial \Omega, t > 0,
 \end{cases}
 \]
 where \(g \in C_c(\Omega) \). Prove that \(|u(x, t)| \leq \frac{\|g\|_{L^1}}{(4\pi t)^{n/2}}\) for all \(x \in \Omega, t > 0 \).
 (Hint: Compare \(u \) with \(v \), where \(v \) solves the heat equation in the whole space with initial condition \(|g|\) in \(\Omega \), and initial condition 0 outside \(\Omega \).)

4. Consider the Cauchy problem
 \[u_t - \Delta u - u^2(x, t) = f(x, t) \quad \text{in} \ \mathbb{R}^n \times (0, T) \]
 with initial condition \(u(x, 0) = 0 \). Prove that there is at most one bounded solution \(u \in C^{2,1}(\mathbb{R}^n \times (0, T)) \).

5. The following example (Tychonoff, 1935) says that there exists a solution \(u \in C^\infty(\mathbb{R} \times (0, \infty)) \cap C(\mathbb{R} \times [0, \infty)) \) to the heat equation, which is identically zero at \(t = 0 \) but not for \(t > 0 \). (That’s why we need to impose growth conditions at infinity to show uniqueness of solutions to the Cauchy problem.)
 (a) Let \(g(t) \) be a function to be specified later. Consider the power series
 \[u(x, t) = \sum_{j=0}^{\infty} \frac{g^{(j)}(t)}{(2k)!} x^{2k}. \]
 If we are allowed to differentiate the power series term by term, formally check that \(u \) solves the heat equation \(u_t = u_{xx} \) in \(\mathbb{R} \times (0, \infty) \).
 (b) We now choose \(g \) as
 \[g(t) = \begin{cases}
 e^{-1/t^2} & t > 0, \\
 0 & t = 0.
 \end{cases} \]
 Check that the \(u \) defined in part (a) is indeed in \(C^\infty(\mathbb{R}^n \times (0, T)) \), and \(\lim_{t \to 0^+} u(x, t) = 0 \) for all \(x \in \mathbb{R} \).
 (You may directly use the estimate that \(|g^{(k)}(t)| \leq \frac{k!}{(Ct)^k} e^{-\frac{1}{2t^2}}\) for all \(t > 0 \), where \(C > 0 \) is some fixed constant.)