$$
\begin{aligned}
& U(x, t)=A\left(k t+x^{2} / 2\right)+B x \\
& \frac{\partial u}{\partial t}=A k \\
& \frac{\partial u}{\partial x}=A x+B \\
& \frac{\partial^{2} u}{\partial x^{2}}=A \\
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{k} \frac{\partial u}{\partial t}=A \\
& \frac{\partial u}{\partial x}(0,+)=S_{0} \Rightarrow A=S_{0} \\
& \frac{\partial u}{\partial x}\left(a_{1}+\right)=S_{1} \Rightarrow A a+S_{0}=S_{1} \\
& A=\frac{S_{0}-S_{0}}{a}, B=S_{0} \\
& \frac{\partial u}{\partial t}=A K
\end{aligned}
$$

\therefore Flux depends capon the value of A^{2}

