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Abstract. We consider a steady state v0 of the Euler equation in a fixed bounded domain
in Rn. Suppose the linearized Euler equation has an exponential dichotomy of unstable
and center-stable subspaces. By rewriting the Euler equation as an ODE on an infinite
dimensional manifold of volume preserving maps in W k,q, (k > 1 + n

q ), the unstable (and
stable) manifolds of v0 are constructed under certain spectral gap condition which is verified
for both 2D and 3D examples. In particular, when the unstable subspace is finite dimen-
sional, this implies the nonlinear instability of v0 in the sense that arbitrarily small W k,q

perturbations can lead to L2 growth of the nonlinear solutions.

1. Introduction

We consider the incompressible Euler equation on a smooth bounded domain Ω ⊂⊂ Rn,
n ≥ 2, under the slip (or periodic in certain directions) boundary condition

(E)

{
vt + (v · ∇)v = −∇p and ∇ · v = 0 x ∈ Ω

v ·N = 0, x ∈ ∂Ω

where v = (v1, . . . , vn)T is the velocity field and N is the unit outward normal vector of Ω.
We take

(1.1) W k,q
Euler , {v ∈ W k,q(Ω,Rn) | ∇·v = 0 in Ω, v ·N = 0 on ∂Ω}, q > 1, k > 1+

n

q

as the phase space. It is well known that (E) is well posed in these spaces, globally if n = 2
and locally if n ≥ 3. As shown below, the pressure p can be written in terms of v through a
quadratic mapping.
Let v0 be a steady solution of (E). Linearize the equation at (E) and we obtain

(1.2) vt = −(v0 · ∇)v − (v · ∇)v0 −∇p , Lv

where the operator L can be defined as acting only on v since the linearized pressure p
can be determined by v linearly, though non-locally. To study the dynamics near v0, the
first step is to understand linear instability, that is, the spectrum of the operator L. The
problem of linear instability of inviscid flows has a long history dated back to Rayleigh and
Kelvin in 19th century. But even until now, very few suffi cient conditions for the existence of
unstable eigenvalues are known and most of the investigations had been restricted to shear
flows and rotating flows. See [DR81],[DH66] and the references therein. Some recent results
on instability conditions can be found in [L03] [L05] for shear flows and rotating flows, and
in [L04a] for general 2D flows. Besides the discrete unstable spectrum, the linearized Euler
operator may also have non-empty unstable essential spectrum due to nontrivial Lyapunov
exponents of the steady flow v0 ([FV91] [LM91] [SL09] [LS03] [V96]). Indeed, growth of
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linearized solutions can be seen in Hs (s > 1) norm near any nontrivial steady flows, due to
the stretching of the steady fluid trajectory. One also notes that the choice of the Sobolev
space (norm) actually affects the essential spectrum which corresponds to small spatial scales,
but not discrete spectrum corresponding to large scales.
Consider a linearly unstable steady flow v0, that is, the linearized Euler operator L has an

unstable discrete eigenvalue. To discuss the nonlinear instability, it is important to specify
the norms. On the one hand, certain regularity is necessary in the local well-posedness
of classical solutions. On the other hand, as mentioned in the above, the choice of the
norm already affects the essential spectrum at the linear level. Moreover, even near steady
states without unstable eigenvalues, solutions are expected to grow in Hs norm with s > 1.
Therefore the growth in the energy norm L2 of nonlinear solutions is more a nonlinear
reflection of the linear instability from the discrete spectrum, which also corresponds to the
instability in the large scale spatial scale (see [L04b, Section 6.2] for detailed discussions).
Naturally, the ideal nonlinear instability result would be to obtain order O(1) growth in L2

distance (weaker energy norm) from the steady state v0 of solutions starting with arbitrary
small initial perturbation from v0 in Hs norm (stronger norm), where s > 0 is determined
by the regularity of unstable eigenfunctions. Such nonlinear instability result (i.e. Hs → L2)
is not only mathematically stronger, but also physically interesting due to the discussions in
the above.
The proof of the nonlinear instability based on unstable eigenvalues is nontrivial for several

reasons. The main diffi culty is that the nonlinear term v · ∇v contains a loss of derivative.
Moreover, the norm-dependent unstable essential spectrum corresponds to growth in small
spatial scales. It may interact with discrete unstable modes and then cause complications in
proving nonlinear instability. In the last decade, there appeared several proofs of nonlinear
instability for Euler equations ([BGS02] [Gre00] [VF03] [FSV97] [L04b]). In [FSV97], non-
linear instability in Hs

(
s > 1 + n

2

)
norm was proven for n−dimensional Euler equations,

under a spectral gap condition which was verified for 2D shear flows. All other papers proved
nonlinear instability only for the 2D case, in the more desirable H1 or L2 norms and under
different spectral assumptions. Particularly, in [L04b] nonlinear instability in L2 norm was
proved for general linearly unstable flows of 2D Euler, without additional assumption on the
growth rate which was made in ([BGS02] [Gre00] [VF03]).
When there exist a collection σu of unstable eigenvalues of the linearized Euler operator

at the steady flow v0 with strictly larger real parts than the rest of the spectrum, it is
very natural from a dynamical system point of view to ask if a locally invariant unstable
manifold tangent to the eigenspace of σu exists. The answer to this question would provide
a better picture of the nonlinear instability, including the dimensions and the directions
of the unstable solutions with certain minimal growth rate. More importantly, such locally
invariant manifolds provide more precise characterization of the local dynamical pictures near
an unstable equilibria, and are also basic tools for constructing globally invariant structures
such as heteroclinic and homoclinic orbits. These dynamical structures are important in
understanding the turbulent fluid behaviors. The major obstacle to the construction of
local invariant manifolds is again the loss of derivative due to the derivative nonlinearity
v ·∇v. For dissipative models such as reaction-diffusion equations ([H81]) and Navier-Stokes
equations ([Yu89] [Li05]), it is rather standard to construct invariant manifolds since the
dissipation terms provide strong smoothing effect to overcome the loss of derivatives in the
nonlinear terms. However, for non-dissipative continuum models including Euler equations,
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the linearized operators have no smoothing effect to help overcome the loss of derivative
in the nonlinear terms. So it has been largely open to construct invariant manifolds for
conservative continuum models such as Euler equations. In the proof of nonlinear instability
for 2D Euler, one takes initial data perturbed along the direction of unstable eigenfunctions
and then uses special properties of nonlinear solutions of 2D Euler to overcome the loss of
derivatives, such as the bootstrap arguments in ([BGS02] [L04b] [VF03]) and the nonlinear
energy estimates in ([Gre00]). However, these techniques can not be used for constructing
invariant manifolds, since we do not know beforehand the initial conditions for solutions on
unstable or stable manifolds.
In this paper, we obtain the first result on stable and unstable manifolds of Euler equations

in any dimensions. To state the precise results, we formulate the following assumptions:

(A1) v0 ∈ W k+r,q
Euler , where r ≥ 4.

(A2) ∃ λu > λcs > 0, and closed subspaces Xu and Xcs of W
k,q
Euler such that they satisfy

L
(
Xu,cs ∩ domain(L)

)
⊂ Xu,cs respectively and W

k,q
Euler = Xu ⊕ Xcs. Moreover, let

Lu = L|Xu and Lcs = L|Xcs , then for some M > 0, they satisfy

|etLcs | ≤Meλcst, ∀ t ≥ 0 and |etLu| ≤Meλut, ∀ t ≤ 0.

(A3) The largest Lyapunov exponent µ0 (in both forward and back time) of the linearized
equations

yt = Dv0

(
x(t)

)
y yt = −

(
Dv0

(
x(t)

))∗
y,

along any integral curve x(t) of xt = v0(x), satisfies

λu − λcs > K0µ0

where K0 is a constant depending only on r and k.

Now we give our main theorem

Theorem 1.1. Under above assumptions (A1)-(A3), there exists a unique Cr−3,1 local un-
stable manifold W u of v0 in W

k,q
Euler which satisfies

(1) It is tangent to Xu at v0.
(2) It can be written as the graph of a Cr−3,1 mapping from a neighborhood of v0 in Xu

to Xcs.
(3) It is locally invariant under the flow of the Euler equation (E), i.e. solutions starting

on W u can only leave W u through its boundary.
(4) Solutions starting on W u converges to v0 at the rate eλt as t → −∞ for any λ <

λu −K0µ0.

The same results hold for local stable manifold of v0 as the Euler equation (E) is time-
reversible.

Remark. In Sections 3 and 4, the assumptions (A2)-(A3) are verified for linearly unstable
2D shear flows and rotating flows, as well as 3D shear flows. For these flows, µ0 = 0 and
thus (A3) is automatically satisfied if an unstable eigenvalue exists.

Remark. Suppose v0 ∈ W k1+r,q1 ∩W k2+r,q2 and the invariant decompositions W ki,qi = X i
u⊕

X i
cs along with the same exponents λu,cs satisfy (A2) —(A3) for i = 1, 2. One may construct

the local unstable manifolds W u
i ⊂ W ki,qi, i = 1, 2 from Theorem 1.1. Assume X1

u = X2
u,

we claim W u
1 = W u

2 on an open neighborhood of v0. In fact, let k = max{k1, k2} and
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q = max{q1, q2} and W u be the unstable manifold of v0 in W k,q ⊂ W ki,qi, i = 1, 2. Clearly
W u ⊂ W u

i , i = 1, 2, with the same tangent spaces and thus the above claim follows.

When Xu is finite dimensional, which in particular is always true in 2D under assumption
the λu > λcs > (k − 1)µ0 as proved in Section 3, then theW k,q topology and L2 topology are
equivalent on W u. Then an immediate consequence of the above theorem is the nonlinear
instability in L2 norm with initial data slightly perturbed from v0 in W k,q norm.

Corollary 1. Suppose (A1) —(A3) are satisfied and Xu is finite dimensional, then there exists
δ > 0 such that there exist a solution v(t) such that |v(0)− v0|L2 ≥ δ and |v(t)− v0|Wk,q → 0
as t→ −∞ exponentially.

This is a stronger statement than the usual exponential nonlinear instability which by
definition means that there exists δ > 0 such that for any ε > 0, there exists a solution
v(t) satisfying both |v(0) − v0| < ε and sup0≤t≤O(− log ε) |v(t) − v0| ≥ δ. One notes that
the perturbed solution v(t) is allowed to depend on ε and no condition is imposed on the
asymptotic behavior of v(t) as t → −∞. In the contrast, any solution v(t) in Corollary 1
satisfies, in addition to the requirements in the nonlinear instability definition for all ε > 0,
that it starts at v0 when t = −∞ and get out of the δ-neighborhood of v0 in L2 norm.
In the previous works (see references above) on nonlinear instability of the Euler equation,

growing solutions have usually been found in the most unstable direction of the linearized
equation (1.2) with roughly the maximal exponential growth rate. The above unstable
manifold theorem actually provides solutions growing in other relatively weaker unstable di-
rections. Though not necessary, it is easier to see this when Xu is finite dimensional. In fact,
on the finite dimensional locally invariant manifold W u, the Euler equation (E) becomes a
smooth ODE and v0 is a hyperbolic unstable node. When L|Xu has eigenvalues with different
real parts, one may split Xu into strongly unstable subspace Xuu and weaker unstable sub-
space Xwu such that Xu = Xuu⊕Xwu. The standard invariant manifold theory implies there
exist the locally invariant weakly unstable manifold Wwu tangent to Xwu and the locally
invariant strongly unstable fibers W su

v with base point v ∈ Wwu and extend in the direction
of Xuu. Those solutions in Wwu grow in the directions of Xwu at a slower exponential rate.
Moreover, the Hartman-Grobman theorem implies that a Hölder homeomorphism on Xu

may transform the Euler equation restricted on W u into a linear ODE system.
In Section 4, we construct linearly unstable 3D steady flow satisfying the assumptions in

Theorem 1.1. By Corollary 1, this implies nonlinear exponential instability in L2 norm. To
our knowledge, this is the first proof of nonlinear instability of 3D Euler equation. We note
that the methods for proving nonlinear instability of 2D Euler cannot be applied to prove
nonlinear instability for 3D Euler. For example, the bootstrap arguments in ([BGS02] [L04b]
[VF03]) strongly use the fact that vorticity is non-streching in 2D and therefore do not work
in 3D due to the vorticity stretching effect.
Below, we sketch the main ideas in the proof of Theorem 1.1. The main diffi culty in

constructing the unstable manifolds for the Euler equation lies in the fact that a derivative
loss occurs in the nonlinear terms while the linearized flow does not have the smoothing
property. We will prove Theorem 1.1 mainly by considering the Euler equation (E) in
the Lagrangian coordinates. In a seminal paper [Ar66], V. Arnold pointed out that the
incompressible Euler equation can be viewed as the geodesic equation on the group of volume
preserving diffeomorphisms. This point of view has been adopted and developed by several
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authors in their work on the Euler equations, such as [EM70, Sh85, Br99, SZ08a, SZ08b] to
mention a few.
On the one hand, the main advantage of this approach is that (E) on a fixed domain as

in this paper becomes a smooth infinite dimensional ODE [EM70] on the tangent bundle of
the Lie group G of volume preserving diffeomorphisms of Ω and thus the diffi culty arising
from the loss of regularity disappears. A side remark is that this is in contrast with the
Euler equation with free boundaries [SZ08a, SZ08b] where the Riemannian curvature of the
infinite dimensional manifolds of volume preserving manifolds are unbounded operators and
the Euler equation can not be considered as infinite dimensional ODEs. As a clarification, by
saying that the Euler equation on fixed domains defines an ODE, we mean that it corresponds
to a vector field which is everywhere defined and smooth on an infinite dimensional manifold.
In this sense, evolutionary PDEs involving unbounded operators such as heat equation or
wave equation do not define infinite dimensional ODEs.
On the other hand, in the Lagrangian coordinates, the steady state v0 generates a special

geodesic u0(t) which coincides with the integral curve starting at the identity map of the right
invariant vector field on G generated by v0. By carefully using local coordinates along this
orbit generated by the group symmetry, we further transform the localized Euler equation
into a weakly nonlinear non-autonomous ODE with linear exponential dichotomy. One
notes that the multiplication on this Lie group G —the composition between W k,q volume
preserving maps — is continuous, but not smooth, see Proposition 2.2. The assumption
v0 ∈ W k+r,q ensures that the localization we choose possesses certain smoothness. Moreover,
compared to the usual exponential dichotomy enjoyed by many ODEs and even PDEs (see
for example [CL88]), the exponential dichotomy here has the defect that the angle between
the associated invariant subspaces may not have a uniform positive lower bound in time due
to the possible growth of the linearized ODE flow of the vector field v0. Moreover, this type
of unwanted growth in t may also appear in the norms of the nonlinearities. Assumption
(A3) is used to overcome this non-uniformity in t of the dichotomy in the construction of the
unstable manifolds via the method based on the Lyapunov-Perron integral equations. Here
we have to take the advantage of the fact that solutions on the unstable manifolds decay to
v0 exponentially as t → −∞. Since solutions on the center manifolds do not have similar
decay properties, we still can not construct center manifolds of stead states.

Remark. The assumption (A2) is the standard linear exponential dichotomy for constructing
invariant manifolds. The extra gap assumption (A3) might be technical, but appears rather
natural in our approach. In the proof, we change back and forth between Lagrangian and
Eulerian coordinates, and each transformation induces a factor eµ0t in the estimates. The
extra gap λu − λcs > K0µ0 guarantees that after all these transformations, the exponential
dichotomy of unstable and central-stable parts still persists.

The method introduced in this paper provides a general approach to construct unstable
manifolds for many other continuum models in fluid and plasmas. In these models, the loss
of derivative is also due to nonlinear terms from the material derivative. By working on
Lagrangian coordinates, we can again overcome such a loss of derivative and the existence of
unstable manifolds is conceivable with suffi cient spectral gap. We are using this approach to
construct unstable manifolds for density-dependent Euler equations and the Vlasov-Poisson
system for collisionless plasmas.



6 LIN AND ZENG

2. Proof of Theorem 1.1

Lagrangian coordinates is a standard tool in studying the Euler equation. In Subsection
2.1 and 2.2, we will present the manifold structure of the set G of the Lagrangian maps and
the ODE nature of (E) on TG. These general results have actually been proved even for
Euler equations defined on Riemannian manifolds in [EM70] in a rather geometric language.
However, we need to establish a more concrete framework along with more detailed estimates
to be used in the construction of local invariant manifolds in Subsections 2.3 —2.6, which is
done in a more directly equation based manner in Subsections 2.1 and 2.2. In Subsection 2.3,
we rewrite in the Lagrangian coordinates the localized Euler equation in a neighborhood of
the solution curve generated by v0 and in Subsection 2.4, the linear exponential dichotomy
is given. The unstable integral manifold corresponding the linear exponential dichotomy
is constructed in Subsection 2.5 and then finally the unstable manifold in the Eulerian
coordinates is obtained in Subsection 2.6.
Throughout this section, we will use K > 0 as a generic constant depending only on r

and k and C > 0 only on n, r, k, q, v0. Both K and C may change from line to line. We will
use D or ∇ to denote the differentiation with respect to physical variables in Ω and D the
Fréchet differentiations in function spaces.

2.1. Lagrangian coordinates and the Lie group of volume preserving maps. Let
u(t, ·) : Ω→ Ω be the Lagrangian coordinate map defined by

(2.1) u(0, y) = y and ut(t, y) = v(t, u(t, y)).

In particular, let u0(t, y) be the Lagrangian map of the steady vector field v0(x). Throughout
the paper, we fix a constant µ > µ0 ≥ 0 such that

(2.2) λu − λcs > K0µ

where µ0 is the Lyapunov exponent of v0. From the definition of the Lyapunov exponent,
we have

(2.3) |u0(t, ·)|Cl + |
(
u0(t, ·)

)−1|Cl ≤ Celµ|t|, t ∈ R, 0 ≤ l ≤ k + r

for some C > 0 independent of t. This possible exponential growth of the norm of u0

makes the problem much more subtle than the unusual constructions of the local invariant
manifolds in differential equations.
Since the flow is incompressible and k > 1 + n

q
, we have for any t ∈ R,

(2.4) u(t, ·) ∈ G , {φ ∈ W k,q(Ω,Rn) | φ is a diffeomorphism, det(Dφ) ≡ 1, φ(∂Ω) = ∂Ω}.

Clearly the composition makes G a group. We will show that G is an infinite dimensional
submanifold of W k,q(Ω,Rn). This will be our configuration space when the Euler equation
is written in the Lagrangian coordinates. We will work with local coordinates on G.
Formally, the tangent space of G is given by

(2.5) TidG = W k,q
Euler, TφG = {w | w ◦ φ−1 ∈ W k,q

Euler} ∀φ ∈ G,

whereW k,q
Euler defined in (1.1) is the phase space of the velocity fields of (E). From the Hodge

decomposition, a complementary space of W k,q
Euler in W

k,q(Ω,Rn) is given by

(2.6) (W k,q
Euler)

⊥ = {∇h | h ∈ W k+1,q(Ω,R)}.
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Here the orthogonality is in the sense that∫
Ω

w · ∇hdx = 0, ∀w ∈ W k,q
Euler, h ∈ W k+1,q(Ω,R).

It is clear that both W k,q
Euler and (W k,q

Euler)
⊥ are closed subspaces of W k,q(Ω,Rn) and

W k,q(Ω,Rn) = W k,q
Euler ⊕ (W k,q

Euler)
⊥.

In fact, given any X ∈ W k,q(Ω,Rn), let

(2.7) w = X −∇h

where h is the solution of

(2.8) ∆h = ∇ ·X in Ω ∇Nh = X ·N on ∂Ω,

then obviously X = w + ∇h with w ∈ W k,q
Euler and this verifies the direct sum. Locally

near the identity map id, we will write G as the graph of a smooth mapping from W k,q
Euler to

(W k,q
Euler)

⊥ and thus G is rigorously a smooth manifold. Let Bδ(·) denote the ball of radius δ
centered at 0 in the corresponding Banach space.

Proposition 2.1. There exists δ0 > 0 and a smooth mapping Ψ : Bδ0(W
k,q
Euler)→ W k,q(Ω,Rn),

such that Ψ(0) = id, DΨ(0) = I, Ψ(w)− w ∈ (W k,q
Euler)

⊥ for any w ∈ Bδ0(W
k,q
Euler), and(

id+B δ0
2

(
W k,q(Ω,Rn)

))
∩G ⊂ {Ψ(w) | w ∈ Bδ0(W

k,q
Euler)} ⊂

(
id+B2δ0

(
W k,q(Ω,Rn)

))
∩G.

Proof. Since ∂Ω is a smooth compact hypersurface in Rn, the distance function to ∂Ω is
smooth in a neighborhood of ∂Ω. Let d : Rn → R be a smooth function with compact
support such that it coincides with this distance function in a neighborhood of ∂Ω. Consider
the mapping

G : W k,q(Ω,Rn)→ Y , {(f, g) ∈ W k−1,q(Ω,R)×W k− 1
q
,q(∂Ω,R) |

∫
∂Ω

g dS = 0}

defined as

G(φ) =
(

det(Dφ), (d ◦ φ
)
|∂Ω −

1

|∂Ω|

∫
∂Ω

d ◦ φ dS)

where |∂Ω| denotes the area of ∂Ω. Obviously, G is a smooth mapping and G|G ≡ (1, 0).
Moreover, suppose φ ∈ U and G(φ) = (1, 0) where U is a neighborhood of the identity map
id in W k,q(Ω,Rn). Then φ is a diffeomorphism from Ω to its image and

|φ(Ω)| = |Ω| and d ◦ φ = a , 1

|∂Ω|

∫
∂Ω

d ◦ φ dS

imply that d ◦φ ≡ a = 0. Otherwise a 6= 0 would imply that φ(Ω) either strictly covers Ω or
is strictly contained in Ω, either of which contradicts with the first identity above. Therefore

U ∩ G = U ∩G−1{(1, 0)}.

It is easy to compute

DG(id)X = (∇ ·X, X ·N − 1

|∂Ω|

∫
∂Ω

X ·N dS) ∈ Y, ∀X ∈ W k,q(Ω,Rn).
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From the standard theory of elliptic problems with Neumann boundary conditions,

DG(id)∇h = (∆h, ∇Nh−
1

|∂Ω|

∫
Ω

∆h dx)

is an isomorphism from (W k,q
Euler)

⊥ to Y . Therefore the proposition follows from the Implicit
Function Theorem. �
Near any φ0 ∈ G, the local coordinate mapΨ composed with the right translation, Ψ(·)◦φ0,

gives a smooth local coordinate map near φ0. Therefore G is a Banach submanifold with the
model space W k,q

Euler. It is well-known [EM70] that G is not such a standard Lie group as one
needs to be careful with the smoothness of the left translations. Let C(φ1, φ2) = φ1 ◦ φ2 and
it is straightforward to verify

Proposition 2.2. C ∈ C l
((
G ∩ W k+l,q(Ω,Rn)

)
× G,G

)
and, for any φ2 ∈ G, the right

translation C(·, φ2) ∈ C∞(G).

2.2. Euler equation as an ODE on TG. It is well-known that the pressure p can be
represented in terms of the velocity field v. In fact, by taking the inner product of vt and N
on ∂Ω and the divergence of the vt and using ∇· v = 0 in Ω and N ·V = 0 on ∂Ω, we obtain

(2.9)

{
−∆p = Σn

i,j=1∂i(v
j∂jv

i) = Σn
i,j=1∂iv

j∂jv
i = tr(Dv)2 in Ω

∇Np = −N · (v · ∇)v = −∇v(v ·N) +∇vN · v = v · Π(v) on ∂Ω

where the symmetric operator Π ∈ C∞
(
Ω, L(T∂Ω)

)
is the second fundamental form of ∂Ω

defines as Π(x)(τ) = ∇τ>N with τ> ∈ Tx∂Ω being the tangential component of τ .
Based on the form of the pressure, we define the symmetric bounded bilinear mapping

B : (W k,q(Ω,Rn))2 → W k,q(Ω,Rn) as

B(X1, X2) = ∇γ
where {

−∆γ = tr(DX1DX2) = Σn
i,j=1∂iX

j
1∂jX

i
2 in Ω

∇Nγ = X1 · Π(X2) on ∂Ω.

The boundedness of B is clear from the standard elliptic theory. Note that here we do not
assume ∇ ·X1,2 = 0 in Ω or N ·X1,2 on ∂Ω in the definition of B. According to the Hodge
decomposition given through (2.8) and a similar calculation as in (2.9), it holds that

(2.10) DX1(X2) + B(X1, X2) = (X2 · ∇)X1 + B(X1, X2) ∈ W k,q
Euler, ∀X1, X2 ∈ W k,q

Euler.

As a side remark, it indicates that, when embedded in L2(Ω,Rn), B is the second fundamental
form of G at id which can be rigorously verified through a standard procedure.
Define the mapping P : G ×

(
W k,q(Ω,Rn)

)2 → W k,q(Ω,Rn) as

(2.11) P(φ,X1, X2) = B(X1 ◦ φ−1, X2 ◦ φ−1) ◦ φ.
We also define the projection Q : G ×W k,q(Ω,Rn)→ TG as
(2.12) Q(φ,X) = (X ◦ φ−1 −∇h) ◦ φ ∈ TφG
where ∇h for X ◦ φ−1 is defined in (2.7). Obviously, P is symmetrically bilinear in X1 and
X2. As in (2.10), it holds

(2.13)
((
D(X1 ◦φ−1)

)
◦φ
)

(X2) +P(φ,X1, X2) ∈ TφG = {w : Ω→ Rn | w ◦φ−1 ∈ W k,q
Euler}.
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In fact, (2.10) also leads to that, when embedded in L2, P(φ, ·, ·) is the second fundamental
form of G at φ. Euler equation (E) and (2.9) imply that the Euler equation (E) takes the
form in the Lagrangian coordinates

(2.14) utt + P(u, ut, ut) = 0, u(t) ∈ G.

Moreover, for any φ0 ∈ G, we have

(2.15) P(φ ◦ φ0, X1 ◦ φ0, X2 ◦ φ0) = P(φ,X1, X2) ◦ φ0,

i.e. P is invariant under the right translation. Therefore,

(2.16) u(t) ◦ φ0 is also a solution for any solution u(t) of (2.14).

The following proposition states that P is a smooth mapping and thus has no regularity loss
which is far from trivial even though B is a bounded bilinear operator. To see this, one note
that even the dependence of the term X1 ◦ φ ∈ W k,q on φ ∈ W k,q is not smooth unless X1

belongs to a space of better regularity. The proof of the proposition is essentially a careful
analysis of the commutator between the operations of B and the composition by φ ∈ G.

Proposition 2.3. P : G ×
(
W k,q(Ω,Rn)

)2 → W k,q(Ω,Rn) and Q : G → L
(
W k,q(Ω,Rn)

)
are

C∞ and, for any m > 0, there exist C0, K > 0 depending only on m and k such that

|(Dφ)mP(φ,X1, X2)|Wk,q ≤ C0|Dφ|KWk−1,q |X1|Wk,q |X2|Wk,q(2.17)

|(Dφ)mQ(φ,X)|Wk,q ≤ C0|Dφ|KWk−1,q |X|Wk,q .(2.18)

Here (Dφ)mP should be considered as a multilinear operator from TφG to W k,q(Ω). Since
P is bilinear in X1,2, the bounds on the derivatives of P with respect to X1,2 follow from
(2.17) for m = 0. Also, we note that |Dφ|Wk−1,q ≥ 1 since k − 1 > n

q
and detDφ ≡ 1.

Proof. We will present only the proof for P as the one for Q follows through almost exactly
the same (or even slightly simpler) procedure. Due to the invariance (2.15) of P under
the right translation, we only need to show its smoothness near φ = id. As φ belongs to
the manifold G, the smoothness of P is equivalent to the smoothness of P

(
Φ(w), X1, X2

)
with respect to w ∈ W k,q

Euler and X1,2 ∈ W k,q(Ω,Rn) for any smooth local coordinate map
Φ : Bδ(W

k,q
Euler) → G. Moreover, to prove the Fréchet smoothness of P, it suffi ces to show

the Gâteaux differentiability of P up to the m-th order for any m > 0, which would imply
that Gâteaux derivative Dm−1P is continuous and thus it is also the (m − 1)-th Fréchet
derivative. To show the Gâteaux differentiability up to the m-th order, it suffi ces to prove
the smoothness of

P
(
φ(s1, . . . , sm), X1(s1, . . . , sm), X2(s1, . . . , sm)

)
∈ W k,q(Ω,Rn)

for any φ(s1, . . . , sm) ∈ G ⊂ W k,q(Ω,Rn) and X1,2(s1, . . . , sm) ∈ W k,q(Ω,Rn) with smooth
parameters (s1, . . . , sm) ∈ U ⊂ Rm. We will show by induction

(ML) Z , ∂s1 . . . ∂smP(φ,X1, X2)|s1=...=sm=0 ∈ W k,q(Ω,Rn)

and obtain its bound in the form of (2.17).
The boundedness of the bilinear transformation B implies (2.17) and (ML) for m = 0.

Assume (ML) and (2.17) hold for 0 ≤ m < m0 and we will prove it for m = m0. Let
P(φ,X1, X2) = (∇γ) ◦ φ, where γ, defined as in the definition of B, depends on s1, . . . , sm0



10 LIN AND ZENG

through φ, X1, and X2. In the following, since it will be much easier to carry out some
calculations in the Eulerian coordinates, let

X̃j = Xj ◦ φ−1, j = 1, 2; τi = (∂siφ) ◦ φ−1, Dsi = ∂si +∇τi , i = 1, . . . ,m0

and
Z̃ = Ds1 . . .Dsm0

∇γ = Z ◦ φ−1.

Clearly, it is suffi cient to show Z̃ ∈ W k,q, which will be achieved by studying its normal
component on ∂Ω, divergence, and curl.
To start, for any vector field W ∈ W k−1+m0,q(Ω,Rn), let Y (y) =

(
Dφ(y)

)−1
W
(
φ(y)

)
, or

equivalently Dφ(Y ) = W ◦ φ, then

Dφ(∂siY ) = −Dφsi(Y ) +
(
(DW ) ◦ φ

)
φsi =⇒ ∂siY ∈ W k−1,q(Ω,Rn).

Differentiating the above identity one more time implies

Dφ(∂sjsiY ) = −Dφsj(∂siY )−Dφsi(∂sjY )−Dφsjsi(Y )+
(
(DW )◦φ

)
φsjsi+

(
(D2W )◦φ

)
(φsj , φsi)

and thus the smoothness of φ and W yield

∂sjsiY ∈ W k−1,q(Ω,Rn) if m0 ≥ 2.

Repeating this procedure we obtain ∂si1 ...sim0Y ∈ W
k−1,q(Ω,Rn) inductively. Changing from

the Eulerian coordinates to the Lagrangian coordinates, we have(
∇W Z̃ −Ds1 . . .Dsm0

(D2γ(W ))
)
◦ φ = ∇YZ − ∂s1 . . . ∂sm0∇Y

(
(∇γ) ◦ φ

)
.

Applying the induction assumption to the last term above and using the commutator formula
[∂si ,∇Y ] = ∇∂siY

to move the ∇Y to the outside to produce ∇YZ, we obtain

(2.19)
(
∇W Z̃ −Ds1 . . .Dsm0

(D2γ(W ))
)
◦ φ = ∇YZ − ∂s1 . . . ∂sm0∇Y

(
(∇γ) ◦ φ

)
∈ W k−1,q.

Taking W = e1, . . . , en of the standard basis of Rn, (2.19) and the definition of P imply
the curl ∇× Z̃ contains only the commutators terms and thus satisfies

∇× Z̃ ∈ W k−1,q.

Similarly the divergence satisfies

∇ · Z̃ +Ds1 . . .Dsm0
(tr(DX̃1)(DX̃2)) ∈ W k−1,q.

Expanding the above last term using the product rule on Dsi , it consists of terms in the
form of

(Dsi1
. . .Dsim

∂l1X̃
l2
1 )(Dsj1

. . .Dsjm0−m
∂l2X̃

l1
2 ), {i1, . . . , im, j1, . . . jm0−m} = {1, . . . ,m0}.

Move ∂l1 and ∂l2 to the outside in the same fashion as in the derivation of (2.19) (replacing
W by el1,2 and ∇γ by X̃

l1,2
1,2 ) and using the smoothness of X1,2 in s1, . . . , sm0 , it is easy to

obtain Ds1 . . .Dsm0
(tr(DX̃1)(DX̃2)) ∈ W k−1,q and thus

∇ · Z̃ ∈ W k−1,q.

Finally, using

DsiN = Π(τi), DsjDsiN = (∇τjΠ)(τi) + Π(φsjsi ◦ φ−1), . . .
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the induction assumption, and the assumption N · ∇γ = 0 on ∂Ω in the definition of P it is
straight forward to obtain

Z̃ ·N = N ·Ds1 . . .Dsm0
∇γ ∈ W k− 1

q
,q(∂Ω,R)

in the same fashion. Therefore, the standard estimates in elliptic theory implies that (ML)
holds for m = m0. Moreover, inequality (2.17) follows from the observation that the compo-
sition by φ or φ−1 only produces terms like |φ|lWk,q

in the estimates of the W k,q norms and
thus the proof of the proposition is complete. �
Proposition 2.3 provides the key element for us to prove that (2.14) is a smooth second

order ODE on the infinite dimensional configuration manifold G.
Proposition 2.4. For any u0 ∈ G and w0 ∈ Tu0G, the initial value problem of the Euler equa-
tion (2.14) has a unique solution

(
u(t), ut(t)

)
∈ TG, locally in time, depending on (t, u0, w0)

smoothly.

Proof. Due to the right translation of (2.14) given in (2.16), we may assume u0 belongs to a
small neighborhood of id. From Proposition 2.1,

(w,∇h)→ Ψ(w) +∇h
is a local diffeomorphism from W k,q

Euler× (W k,q
Euler)

⊥ to W k,q(Ω,Rn). Taking the Ψ(w) compo-
nent, we obtain a smooth Φ : id+Bδ

(
W k,q(Ω,Rn)

)
→ G such that

(2.20) u− Φ(u) ∈ (W k,q
Euler)

⊥, ∀u ∈ id+Bδ

(
W k,q(Ω,Rn)

)
and

Φ(u) = u, ∀u ∈ G ∩
(
id+Bδ

(
W k,q(Ω,Rn)

))
.

Consider a modification of (2.14)

(2.21) utt + P
(
Φ(u), ut,DΦ(u)ut

)
= 0, u ∈ Bδ

(
W k,q(Ω,Rn)

)
ut ∈ Bδ

(
W k,q(Ω,Rn)

)
.

From the smoothness of Φ and P, equation (2.21) is a smooth ODE defined on an open
subset of an infinite dimensional Banach space

(
W k,q(Ω,Rn)

)2
and thus is locally well-posed

with smooth dependence on the initial value. Moreover, any solution u(t) of (2.21) satisfying
u(t) ∈ G for all t also solves (2.14). Therefore, to complete the proof, we only need to show
that, if the initial data is given on TG, then the solution of (2.21) also stays on TG, i. e.
u(t) ∈ G and ut(t) ∈ Tu(t)G. Let v = ut ◦

(
Φ(u)

)−1
. Equation (2.21) yields

vt ◦ Φ(u) +
(
(Dv) ◦ Φ(u)

)(
DΦ(u)ut

)
= utt = −P

(
Φ(u), ut,DΦ(u)ut

)
and thus (2.13) implies vt ◦ Φ(u) ∈ TΦ(u)G or equivalently vt ∈ TidG = W k,q

Euler. Therefore
v(t) ∈ W k,q

Euler, and thus ut = v ◦Φ(u) ∈ TΦ(u)G, for all t follows from the initial assumption.
Consequently (

u− Φ(u)
)
t

=
(
I −DΦ(u)

)
ut = 0

where we also used that (2.20) implies DΦ(u)X = X for any X ∈ TΦ(u)G. Therefore
u = Φ(u) ∈ G and the proof completes. �
According to (2.16), the second order ODE (2.14) defined on the Lie group G is invariant

under the right translation. The standard procedure of taking v = ut ◦ u−1 reduces it to a
first order equation on the corresponding Lie algebra W k,q

Euler = TidG, which turns out to be
the usual form (E) of the Euler equation in the Eulerian coordinates. However, according
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to Proposition 2.2, the composition as the multiplication operation on the group G is not
smooth, this procedure induces the loss of one order of spatial derivative and make (E) into
a PDE, i. e. the right side of (E) does not define a smooth vector field on W k,q

Euler.

2.3. Euler equation near v0 as a non-autonomous ODE on TG. Even though Euler
equation is equivalent to an infinite dimensional ODE on TG, the Lagrangian frame work
also brings two complications:

• G is not flat, which means that we may have to carry out the analysis in local
coordinates on G and
• the steady velocity field v0(x) of the Euler equation (E) corresponds to a dynamic

solution
(
u0(t, y), u0t(t, y) = v0

(
u(t, y)

))
of (2.14).

It is natural to look for ways to take the advantage of the group structure of G to reduce
(2.14), localized near u0(t), to a non-autonomous second order ODE defined in local coor-
dinate neighborhood of id. Based on the comments at the end of Subsection 2.2, taking
w = u ◦ u−1

0 for u(t) near u0(t) would result in loss of regularity, which can also be seen ex-
plicitly through the simple calculation ut = wt ◦u0 + (Dw ◦u0)(v0 ◦u0) leading to wt /∈ W k,q

due to the presence of Dw. Instead, for any solution
(
u(t), ut(t) = v(t) ◦ u(t)

)
∈ TG of the

Euler equation (2.14) with u(t) close to u0(t), let

(2.22) u = Φ(t, w) , u0(t) ◦Ψ
(
w(t)

)
, w(t) ∈ Bδ0(W

k,q
Euler),

where Ψ is given in Proposition 2.1 which also implies Φ(t, ·), for any t ∈ R, is a local
diffeomorphism from W k,q

Euler to G. Therefore, the linearizations

X̃ = DΦ(t, w)X =
(
Du0 ◦Ψ(w)

)
DΨ(w)X, X ∈ W k,q

Euler

X =
(
DΦ(t, w)

)−1
X̃ =

(
DΨ(w)

)−1(
(Du0)−1 ◦Ψ(w)

)
X̃, X̃ ∈ TuG

are isomorphisms from between W k,q
Euler and TuG. Substitute (2.22) in to (2.14), one may

compute

ut = Φt(t, w) +DΦ(t, w)wt = u0t ◦Ψ(w) + (Du0 ◦Ψ(w))DΨ(w)wt(2.23)

v = ut ◦ u−1 = v0 +
(
(Du0) ◦ u−1

0

) (
(DΨ(w)wt) ◦Ψ(w)−1 ◦ u−1

0

)
(2.24)

and

utt =Φtt(t, w) + 2DΦt(t, w)wt +DΦ(t, w)wtt +D2Φ(t, w)(wt, wt)

=u0tt ◦Ψ(w) + 2 (Du0t ◦Ψ(w))DΨ(w)wt +
(
D2u0 ◦Ψ(w)

) (
DΨ(w)wt,DΨ(w)wt

)
+ (Du0 ◦Ψ(w))

(
D2Ψ(w)(wt, wt) +DΨ(w)wtt

)
.

Therefore, for u(t) close to u0(t), the Euler equation (2.14) is rewritten as

(2.25) wtt + F(t, w, wt) = 0, w ∈ Bδ0(W
k,q
Euler), wt ∈ W

k,q
Euler,

where, for w ∈ Bδ0(W
k,q
Euler) and X ∈ W

k,q
Euler, the term F(t, w,X) is arranged into the linear

and quadratic parts in X

(2.26) F(t, w,X) = A(t, w)X +B(t, w)(X,X) ∈ W k,q
Euler
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with the linear and bilinear (in X) operators A(t, w) and B(t, w) are given by

A(t, w)X =2
(
DΦ(t, w)

)−1(DΦt(t, w)X + P(u, v0 ◦ u, X̃)
)

=2
(
DΨ(w)

)−1(
(Du0)−1 ◦Ψ(w)

)(
(Dv0 ◦ u)X̃ + P(u, v0 ◦ u, X̃)

)
(2.27)

B(t, w)(X,X) =
(
DΦ(t, w)

)−1(D2Φ(t, w)(X,X) + P(u, X̃, X̃)
)

=
(
DΨ(w)

)−1(
(Du0)−1 ◦Ψ(w)

)((
Du0 ◦Ψ(w)

)
D2Ψ(w)(X,X)

+
(
D2u0 ◦Ψ(w)

)(
DΨ(w)X,DΨ(w)X

)
+ P(u, X̃, X̃)

)
,(2.28)

where

u = Φ(t, w) = u0 ◦Ψ(w) X̃ = DΦ(t, w)X =
(
Du0 ◦Ψ(w)

)
DΨ(w)X.

In the above calculation, the invariance of P under the right translation (2.15) and equa-
tion (2.14) were used in handling both utt and u0tt. Here even though the linear operator(
DΦ(t, w)

)−1
acts only on the subspace TuG, the terms A(t, w)X and B(t, w)(X,X) are

well-defined and thus F(t, w,X) ∈ W k,q
Euler. In fact, (2.13) implies

DΦt(t, w)X + P(u, v0 ◦ u, X̃) = (Dv0 ◦ u)X̃ + P(u, v0 ◦ u, X̃) ∈ TuG

and thus A(t, w) is well-defined. To see that B(t, w) is well-defined, we note the second
linearization of Φ along a line w + sX, s ∈ R, at s = 0, is given by

uss = D2Φ(t, w)(X,X) =
(
Du0◦Ψ(w)

)
D2Ψ(w)(X,X)+

(
D2u0◦Ψ(w)

)(
DΨ(w)X,DΨ(w)X

)
.

Let
Y = us ◦ u−1 = X̃ ◦ u−1 ∈ W k,q

Euler,

then
uss = Ys ◦ u+DY (X̃).

Since Ys ∈ W k,q
Euler and (2.13) implies

DY (X̃) + P(u, X̃, X̃) ∈ TuG,

we obtain
D2Φ(t, w)(X,X) + +P(u, X̃, X̃) = uss + P(u, ũs, ũs) ∈ TuG

and thus

B(t, w)(X,X) =
(
DΦ(t, w)

)−1(D2Φ(t, w)(X,X) + P(u, X̃, X̃)
)
∈ W k,q

Euler

is well-defined.

Remark. An alternative way to rewrite the Euler’s equation to derive the above form is to
follow the Lagrangian variational principle. One may first express the action

∫ ∫
Ω
|ut|2

2
dydt,

defined on TG, using (2.22) and (2.23). The Euler’s equation in terms of w follows from the
the variation of the action.

Recall we assumed in (A1) that v0 ∈ W k+r,q with r ≥ 4 and µ > µ0 ≥ 0 is a constant
fixed before (2.3).
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Lemma 2.5. The nonlinear mapping F satisfies

F ∈ Cr−4
(
R×Bδ0(W

k,q
Euler)×W

k,q
Euler,W

k,q
Euler

)
, F(t, w, 0) ≡ 0.

Moreover, there exist K > 0 depending only on r and k and C > 0 depending only on
r, n, k, q, v0, such that, for t ∈ R, w,X ∈ W k,q

Euler and |w|Wk,q < δ0, we have

|A(t, ·)|
Cr−2

(
Bδ0 (Wk,q

Euler),L(Wk,q
Euler)

) ≤ CeKµ|t|,

|B(t, ·)|
Cr−2

(
Bδ0 (Wk,q

Euler),L(Wk,q
Euler⊗W

k,q
Euler,W

k,q
Euler)

) ≤ CeKµ|t|.

Here the highest order derivative is in the Gâteaux sense which is suffi cient to yield the Cr−3,1

bounds.

Proof. The smoothness of F follows directly from its expression (2.26) —(2.28) and Propo-
sitions 2.1 —2.4. The property F(t, w, 0) ≡ 0 follows directly from (2.26) which is actually
a consequence of the right translation invariance of the Euler equation. To demonstrate the
latter, we notice that (u0 ◦ φ, u0t ◦ φ) is a solution of (2.14) for any φ ∈ G. Then (2.22)
implies that, for any w ∈ Bδ0(W

k,q
Euler), (w, 0) is a time independent solution of (2.25) and

thus F(t, w, 0) = 0. The derivation of the estimates is tedious, but straightforwardly from
Proposition 2.1 —2.3, (2.17), and (2.26) —(2.28).

�

Remark. As proved in Proposition 2.3, (2.14) is a smooth infinite dimensional ODE. How-
ever, the local coordinate systems based on the composition would always cause loss of deriv-
atives due to Proposition 2.2. Here our local coordinate mapping Φ(t, ·) allows us to obtain
some limited smoothness due to assumption (A1) of the extra regularity of v0.

2.4. Linear exponential dichotomy in Lagrangian coordinates. Since F(t, w, 0) = 0
for any small w ∈ TidG, we have DwF (t, w, 0) = 0. We can rewrite (2.25) as

(2.29) zt = A0(t)z + F (t, z), z = (z1, z2)T ∈ Bδ0(W
k,q
Euler)×W

k,q
Euler

where

A0(t) =

(
0 I
0 −A(t, 0)

)
, F (t, z) =

(
0

A(t, 0)z2 −F(t, z1, z2)

)
.

From (2.27), the explicit form of A(t, 0) is given by

A(t, 0)X = 2
(
Du0(t)

)−1
((
Dv0 ◦ u0(t)

)
Du0(t)X + P

(
u0, v0 ◦ u0(t), Du0(t)X

))
and Lemma 2.5 implies that there exists C > 0 independent of δ0 such that

(2.30) F (t, 0) = 0 = DzF (t, 0), |D2
zF (t, ·)|

Cr−4
(
Bδ0 (Wk,q

Euler)
2,Wk,q

Euler

)
)
≤ CeKµ|t|,

where again the highest order derivative is in the Gâteaux sense which is suffi cient to yield
the Cr−3,1 bounds. The linearization of (2.25) takes the form of

(2.31) wtt +DXF(t, 0, 0)wt = 0⇔ zt = A0(t)z

whose well-posedness is guaranteed by Lemma 2.5. Let T (t, t0) be the solution operator of
(2.31) with initial time t0 and terminal time t.



UNSTABLE MANIFOLDS 15

On the one hand, for w ∈ W k,q
Euler, z = (w, 0)T is a solution of (2.31). On the other hand,

linearizing (2.24) at the steady solution z = (w0, 0)T one may compute z = (w(t), wt(t))
T is

a solution of the linearization of (2.29) at z = (w0, 0)T , where

wt(t) =
(
DΨ(w0)

)−1(
(Du0(t))−1 ◦Ψ(w0)

)(
v(t) ◦ u0(t) ◦Ψ(w0)

)
and v = v(t) is a solution of (1.2). In particular, taking w0 = 0, we have that z =
(w(t), wt(t))

T is a solution solution of (2.31) where

(2.32) wt(t) =
(
Du0(t)

)−1(
v(t) ◦ u0(t)

)
.

This correspondence between the linearized solutions of (1.2) and (2.31) and assumption
(A2) would yield the (t-dependent) exponential dichotomy (W k,q

Euler)
2 = Yu(t)⊕Ycs(t) of (2.31)

such that T (t, t0)Yu,cs(t0) = Yu,cs(t) and the exponential decay rate of T (t, t0) as t→ −∞ (or
+∞) in Yu(t) (or Ycs(t)) is bounded roughly by λu (or λcs). To define Yu(t), it is natural from
(2.32) that, for (w,wt) ∈ Yu(t), wt takes the form of

(
Du0(t)

)−1(
etLv ◦ u0(t)

)
with v ∈ Xu,

where L (as well as Lu,cs) is the linear operator defined in the linearized Euler equation (1.2).
Also the decay of w as t → −∞ requires it take the form of w(t) =

∫ t
−∞wtdt

′. Therefore,
for any t ∈ R, let

Yu(t) = {
(∫ t

−∞

(
Du0(τ)

)−1(
(eτLv) ◦ u0(τ)

)
dτ,

(
Du0(t)

)−1(
etLv ◦ u0(t)

))T
| v ∈ Xu}.

The convergence of the above infinite integral follows directly from assumptions (A2) and
(A3) with K suffi cient large depending only on k. Similarly, for (w,wt) ∈ Ycs(t), wt takes
the form of

(
Du0(t)

)−1(
etLv ◦ u0(t)

)
with v ∈ Xcs, and w should take the form of

w0 +

∫ t

0

(
Du0(τ)

)−1(
(etLv) ◦ u0(τ)

)
dτ.

However, w0 ∈ W k,q
Euler is arbitrary and thus we can absorb the integral term into w0. Define

Ycs(t) = {
(
w,
(
Du0(t)

)−1(
etLv ◦ u0(t)

))T
| w ∈ W k,q

Euler, v ∈ Xcs}.

Lemma 2.6. It holds (W k,q
Euler)

2 = Ycs(t) ⊕ Yu(t). Moreover, let Pu,cs(t) ∈ L
(
(W k,q

Euler)
2
)
be

the projections associate to this decomposition and

Tu,cs(t, t0) = T (t, t0)|Yu,cs(t0).

Then for any t, t0 ≤ 0, we have Tu,cs(t, t0)Yu,cs(t0) = Yu,cs(t) and there exist constants K > 0
depending only on k and C0 ≥ 1 depending only on k, n, q, v0 such that if λu > Kµ, we have

|Pu,cs(t)|
L
(

(Wk,q
Euler)

2
) ≤ C0e

−Kµt, ∀ t ≤ 0

|Tcs(t, t0)| ≤ C0e
λcs(t−t0)−Kµt0 , ∀ 0 ≥ t ≥ t0

|Tu(t, t0)| ≤ C0e
(λu−Kµ)(t−t0)−Kµt0 , ∀ t ≤ t0 ≤ 0.

Remark. This lemma shows that unlike the traditional exponential dichotomy, the norms of
the projections in the invariant splitting here is not uniformly bounded in t and may approach
∞ as t→ −∞. This means that the angles between the unstable and center-stable subspaces
Yu,cs(t) of (2.31) may not have a uniform positive lower bound as t→ −∞.
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Proof. We first show the invariance of Ycs,u(t) under T (t, t0). In fact, for any

Yu(t0) 3 z = (w,w1)T =
(∫ t0

−∞

(
Du0(τ)

)−1(
(eτLv) ◦ u0(τ)

)
dτ,

(
Du0(t0)

)−1(
et0Lv ◦ u0(t0)

))T
,

where v ∈ Xu, let

v(t) = etLv ∈ Xu, w̃ =

∫ 0

−∞

(
Du0(τ)

)−1(
(eτLv) ◦ u0(τ)

)
dτ.

Clearly,

Yu(t) 3 z(t) =
(
w(t), w1(t)

)T , (∫ t

−∞

(
Du0(τ)

)−1(
(eτLv) ◦ u0(τ)

)
dτ,

(
Du0(t)

)−1(
etLv ◦ u0(t)

))T
=(w̃, 0)T +

(∫ t

0

(
Du0(τ)

)−1(
v(τ) ◦ u0(τ)

)
dτ,

(
Du0(t)

)−1(
v(t) ◦ u0(t)

))T
is the solution of (2.31) with initial data (w̃, v) at t = 0. Moreover, it satisfies z(t0) = z and
thus Yu(t) 3 z(t) = T (t, t0)z which implies the invariance of Yu(t).
The above arguments also leads to the decay estimate of Tu(t, t0). In fact,one may compute

w1(t) =
(
Du0(t)

)−1
((
e(t−t0)L((Du0(t0)w1) ◦ (u0(t0))−1)

)
◦ u0(t)

)
.

Since v ∈ Xu, we obtain from (2.3) and assumptions (A2) and (A3)

|w1(t)|Wk,q ≤ Ceλu(t−t0)−Kµt|w1|Wk,q , ∀ t ≤ t0 ≤ 0.

Finally from w(t) =
∫ t
−∞w1(τ)dτ , we obtain the estimate for Tu(t, t0). The proof of the

invariance of Ycs(t) and the estimate for Tcs(t, t0) are similar.
To prove the direct sum and obtain the bounds on the projection operators, let P 0

cs,u ∈
L(W k,q

Euler) be the projections given by the decomposition W
k,q
Euler = Xcs ⊕ Xu assumed in

hypothesis (A2). Given any z = (w,w1)T ∈ (W k,q
Euler)

2 and t ≤ 0, let

vcs,u(t) = P 0
cs,ue

−tL
((
Du0(t)w1

)
◦ u0(t)−1

)
∈ Xcs,u

w0(t) = w −
∫ t

−∞

(
Du0(τ)

)−1(
(eτLvu(t)) ◦ u0(τ)

)
dτ

From (2.3) and assumptions (A2) and (A3), we have

|eτLvu(t)|Wk,q ≤ Ceλu(τ−t)−Kµt|w1|Wk,q , ∀ τ ≤ t.

Let

zu =
(∫ t

−∞

(
Du0(τ)

)−1(
(eτLvu(t)) ◦ u0(τ)

)
dτ,

(
Du0(t)

)−1(
etLvu(t) ◦ u0(t)

))T
∈ Yu(t)

zcs =
(
w0(t),

(
Du0(t)

)−1(
etLvcs(t) ◦ u0(t)

))T
∈ Ycs(t).

Obvious z = zu + zcs and this splitting is unique. Therefore (W k,q
Euler)

2 = Ycs(t) ⊕ Yu(t) and
Pcs,u(t)z = zcs,u. It is straight forward to first obtain the estimates on Pu(t) based on the
above inequalities and the bound on Pcs(t) = I − Pu(t) also follows. �
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Let
Fu,cs(t, z) = Pu,cs(t)F (t, z).

Then Lemma 2.6 and (2.30) imply that there exist K > 0 and C1 > 0 such that for any
t ≤ 0, it holds

(2.33) Fcs,u(t, 0) = 0 = DzFcs,u(t, 0), |D2
zFu,cs(t, z)|Cr−4(Bδ0 (Wk,q

Euler)
2,Wk,q

Euler)
≤ C1e

−Kµt,

where again the highest order derivative is in the Gâteaux sense which is suffi cient to yield
the Cr−3,1 bounds.

2.5. Integral unstable manifolds of (2.25). We will follow the Lyapunov-Perron integral
equation method to construct the integral unstable manifolds. In the standard construction
of invariant manifolds, where the bounds on the invariant splitting and the nonlinear terms
are uniform in t, small Lipschitz constant of Fcs,u is suffi cient in the construction of local
invariant manifolds. As we do not have t-uniform estimates here, we repeatedly used the
property that F (t, z) = O(|z|2) to yield an extra |z(t)| = O(eλt) with λt < 0. This quadratic
nature of F combined with the exponential gap condition (2.36) allows us to complete the
proof of Proposition 2.7 in the below. However, similar construction would not work for the
construction of the center-stable manifold since solutions z(t) on the center-stable manifold
do not satisfy z(t)→ 0 as t→ ±∞.
For λ ∈ (λcs, λu) and δ1 ≤ δ0 to be determined, let

Γ = {z = (zu, zcs) ∈ C0
(
(−∞, 0], Bδ1(W

k,q
Euler)

2
)
| |z|λ ≤ δ1}

where zu,cs(t) ∈ Yu,cs(t) and
|z|λ , sup

t≤0
e−λt|z(t)|Wk,q .

This Γ is the set of functions with the desired backward in time decay expected to be satisfied
by the solutions on the unstable manifolds. For any z ∈ Γ and

(2.34) zu0 ∈ Yu(0), |zu0|Wk,q ≤ δ1

2C0

where C0 is given in Lemma 2.6, define L(·, zu0), where z̃ = (z̃u, z̃cs) = L(z, zu0) is defined
as, for any t ≤ 0,

(2.35)

{
z̃u(t) = Tu(t, 0)zu0 +

∫ t
0
Tu(t, τ)Fu

(
τ, z(τ)

)
dτ

z̃cs(t) =
∫ t
−∞ Tcs(t, τ)Fcs

(
τ, z(τ)

)
dτ.

Proposition 2.7. There exists K > 0 depending only on r and k such that if λ and δ1

satisfy

λ ∈
(
λcs +Kµ, λu −Kµ

)
(2.36)

C0C1δ1

( 1

λ− λcs
+

1

λu −Kµ− λ
)
<

1

2
(2.37)

where C0 and C1 are from Lemma 2.6 and (2.33), respectively, then L(·, zu0) is a contraction
on Γ with the Lipschitz constant 1

2
for any zu0 satisfying (2.34). Moreover |L|Cr−3,1 ≤ C for

some C > 0 depending only on r, k, q, n, and v0.

Remark. Assumption (A3) with a reasonably largeK, depending only on r and k, guarantees
the existence of λ and δ1 satisfying the above inequalities.
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Remark. It is standard in the invariant manifold theory (see, for example, [CL88]) to prove
that z ∈ Γ solves (2.29) with zu(0) = zu0 if and only if, z is the fixed point of L(·, zu0).
Therefore, Proposition 2.7 shows that, for any given zu0 satisfying (2.34), there exists a
unique solution of (2.29) satisfying the exponential decay as t→ −∞ with the decay rate at
least λ.

Proof. In the proof the generic constant K may change from line to line, but always depends
only on k and r. From the definition of L, Lemma 2.6, assumptions (A3), (2.36), and (2.34),
and the second order Taylor expansion of F based on (2.33), (instead of the usual small
Lipschitz estimates of F ), we obtain for t ≤ 0

e−λt|z̃u(t)|Wk,q ≤C0|zu0|Wk,q +

∫ 0

t

1

2
C0C1e

−λt+(λu−Kµ)(t−τ)−Kµτ+2λτdτ |z|2λ

≤C0|zu0|Wk,q +
1

2
C0C1|z|2λ

∫ 0

t

e(λu−Kµ−λ)(t−τ)dτ

≤C0|zu0|Wk,q +
C0C1δ1

2(λu −Kµ− λ)
|z|λ

and

e−λt|z̃cs(t)|Wk,q ≤
∫ t

−∞

1

2
C0C1e

−λt+λcs(t−τ)−Kµτ+2λτdτ |z|2λ ≤
C0C1δ1|z|λ
2(λ− λcs)

.

Therefore (2.37) implies that

(2.38) |L(z, zu0)|λ ≤ C0|zu0|Wk,q +
1

4
|z|λ ≤

3

4
δ1

and thus L(·, zu0) maps Γ into itself.
To prove L(·, zu0) is a contraction on Γ , we note that for any z1,2 ∈ Γ , (2.33) implies

|Fu,cs(t, z2(t))− Fu,cs(t, z1(t))| ≤ C1δ1e
(2λ−Kµ)t|z2 − z1|λ, ∀t ≤ 0

Therefore, we have

e−λt|z̃2
u(t)− z̃1

u(t)| ≤C0C1δ1

∫ 0

t

e(λu−Kµ−λ)(t−τ)dτ |z2 − z1|λ ≤
C0C1δ1|z2 − z1|λ
λu −Kµ− λ

e−λt|z̃2
cs(t)− z̃1

cs(t)| ≤C0C1δ1

∫ t

−∞
e(λcs−λ)(t−τ)dτ |z2 − z1|λ ≤

C0C1δ1|z2 − z1|λ
λ− λcs

and thus (2.37) implies that L(·, zu0) is a contraction.
Since L is linear in zu0, we only need to prove its smoothness in z ∈ Γ . For any z ∈ Γ ,

formally the linearization of L is given by
DzL(z, zu0)z1 = z̄1 = (z̄1u, z̄1cs)

where for t ≤ 0,

(2.39)

{
z̄1u(t) =

∫ t
0
Tu(t, τ)DzFu

(
τ, z(τ)

)
z1(τ)dτ

z̄1cs(t) =
∫ t
−∞ Tcs(t, τ)DzFcs

(
τ, z(τ)

)
z1(τ)dτ.

The same procedure as in the above shows that |DzL|λ ≤ 1
2
. To show it is indeed the

derivative of L, take z1,2 ∈ Γ , let
z̃1,2 = (z̃1,2u, z̃1,2cs) = L(z1,2, zu0), z̄ = (z̄u, z̄cs) = DzL(z1, zu0)(z2 − z1).
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It is straight forward to compute from (2.33) and Lemma 2.6, that for t ≤ 0,

e−λt|z̃2u(t)− z̃1u(t)− z̄u(t)|

=e−λt|
∫ t

0

Tu(t, τ)
(
Fu
(
τ, z2(τ)

)
− Fu

(
τ, z1(τ)

)
−DFu

(
τ, z1(τ)

)(
z2(τ)− z1(τ)

))
dτ |

≤C0C1|z2 − z1|2λ
∫ 0

t

e−λt+(λu−Kµ)(t−τ)−Kµτ+2λτdτ ≤ C0C1|z2 − z1|2λ
λu −Kµ− λ

.

The estimate for the center-stable component is very similar and this proves that DzL is
indeed the derivative of L.
Finally, we will show that DzL is Lipschitz. In fact, let

z̄1,2 = (z̄12u, z̄12cs) = DzL(z1,2, zu0)z.

Then for any t ≤ 0,

e−λt|z̄2cs(t)− z̄1cs(t)| = e−λt|
∫ t

−∞
Tcs(t, τ)

(
DzFcs(τ, z2(τ))−DzF (τ, z1(τ))

)
z(τ)dτ |

≤C0C1|z2 − z1|λ|z|λ
∫ t

−∞
e(λcs−λ)(t−τ)+(λ−Kµ)τdτ ≤ C0C1

λcs − λ
|z2 − z1|λ|z|λ.

The estimates for the unstable component is the same and the proof of the higher order
smoothness is similar. �
From the Contraction Mapping Theorem and Proposition 2.7, the mapping L has a unique

fixed point
z∗(t, zu0) =

(
z∗u(t, zu0), z∗cs(t, zu0)

)
which is Cr−3,1 in zu0 and satisfies z∗u(0, zu0) = zu0. Moreover, (2.38) implies

(2.40) |z∗(u0)|λ ≤ 2C0|zu0|Wk,q .

Like in the standard invariant manifold theory, these are solutions on the invariant integral
unstable manifold of the non-autonomous system (2.25). Define

hL(zu0) = z∗cs(0, zu0) ∈ Xcs

for all zu0 satisfying (2.34), then the Cr−3,1 graph

W u
L , graph(hL)

defines the slice of the unstable integral manifold of (2.25) for t0 = 0. Obviously the unique-
ness of the fixed point implies that z∗(·, 0) = 0 and thus hL(0) = 0 and 0 ∈ W u

L . Differenti-
ating the fixed point equation we obtain

Dzu0z∗(zu0) = Dzu0L
(
z∗(zu0), zu0

)
+DzL

(
z∗(zu0), zu0

)
Dzu0z∗(zu0)

Clearly, (2.39) implies that DzL(0, zu0) = 0 and thus

Dzu0z∗(·, 0) = Dzu0L(0, 0) =
(
Tu(·, 0), 0

)
which does not have the center-stable component. Therefore, we obtain that

Dzu0hL(0) = 0

which means that, at 0, the tangent space of the unstable integral manifold W u
L

T0W
u
L = Yu(0) = {(U(v), v)T | v ∈ Xu},
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where

(2.41) U(v) ,
∫ 0

−∞

(
Du0(τ)

)−1(
(eτLv) ◦ u0(τ)

)
dτ, |U |L(Xu,W

k,q
Euler)

≤ ∞.

Here the boundedness of U follows from (2.3), (2.36) and assumptions (A2) and (A3).

2.6. Unstable manifold in the Eulerian coordinates. From the unstable integral man-
ifold (at t = 0) W u

L constructed in the Lagrangian coordinates and the corresponding rela-
tionship given in (2.22) and (2.24), we obtain the Cr−3,1 invariant unstable manifold in the
Eulerian coordinates

W u , {v = v0 +
(
DΨ(w)w1

)
◦Ψ(w)−1 | (w,w1) ∈ W u

L}.
The above expression was derived by substituting t = 0 into (2.24).

Lemma 2.8. There exist K > 0 (depending only on r and k), δ2, C > 0 depending only on
r, k, q, n, and v0 such that
(1) There existsH ∈ Cr−3,1

(
B3δ2(Xu), Xcs

)
satisfying |H|Cr−3,1 ≤ C, H(0) = 0, DH(0) =

0, and

{v0+v1+H(v1) | v1 ∈ Bδ2(Xu)} ⊂ W u∩
(
v0+B2δ2(W

k,q
Euler)

)
⊂ {v0+v1+H(v1) | v1 ∈ B3δ2(Xu)}.

(2) For any v# ∈
(
v0 + B2δ2(W

k,q
Euler)

)
∩W u the solution v(t) of the Euler equation (E)

with the initial value v(0) = v# satisfies

v(t) ∈ W u, |v(t)− v0|Wk,q ≤ C|v# − v0|Wk,qe(λ−Kµ)t, ∀ t ≤ 0.

Proof. (1) For any v1 ∈ Xu with

|v1|Wk,q <
δ1

2C0

(
1 + |U |L(Xu,W

k,q
Euler)

) ,
let zu0 = (Uv1, v1) ∈ Yu(0), where U is defined in (2.41) and it implies zu0 satisfies (2.34),
and

G(v1) =
(
DΨ(w)w1

)
◦Ψ(w)−1 where (w,w1) = z∗(0, zu0) = zu0 + hL(zu0) ∈ W u

L .

Clearly the definition of W u
L and W

u and the properties of hL imply W u = {v0 +G(v1)} and
G(0) = 0, DG(0)v1 = w1 = v1,

and G ∈ Cr−3,1 with bounds depending only on r, k, q, n, and v0. Therefore, the existence
and properties of H follows from the Implicit Function Theorem immediately.
(2) For any

v# = v0 +
(
DΨ(w#)w1#

)
◦Ψ(w#) ∈

(
v0 +B2δ2(W

k,q
Euler)

)
∩W u, with (w#, w1#) ∈ W u

L ,

let v(t) be the solution of (E) with v(0) = v# and z(t) =
(
w(t), wt(t)

)
the solution of (2.25)

with the initial value z(0) = (w#, w1#). Since z(0) = (w#, w1#) ∈ W u
L and thus z ∈ Γ and

(2.40) implies

|w(t)|Wk,q + |wt(t)|Wk,q ≤ eλt|z|λ ≤ 2C0e
λt|zu0|Wk,q , t ≤ 0.

Therefore (2.24) implies the desired decay estimate.

|v(t)− v0|Wk,q ≤ Ce(λ−Kµ)t → 0 as t→ −∞.
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To see the local invariance of W u, fixed T ≥ 0, for t0 ∈ (−∞, T ], let

w̃(t) = Ψ−1
(
u0(t0) ◦Ψ

(
w(t+ t0)

)
◦ u0(t0)−1

)
, t ≤ 0.

Since the right translation invariance and (2.22) imply

ũ(t) = u0(t) ◦Ψ
(
w̃(t)

)
= u0(t+ t0) ◦Ψ

(
w(t+ t0)

)
◦ u0(t0)−1 = u(t+ t0) ◦ u0(t0)−1

is a solution of (2.14), we have (w̃, w̃t) is a solution of (2.25) which clearly corresponds to
the solution ṽ(t) = v(t+ t0) of the Euler equation (E). Moreover, Proposition 2.1 implies

|w̃(t)|Wk,q + |w̃t(t)|Wk,q ≤ C
(
|w(t+ t0)|Wk,q + |wt(t+ t0)|Wk,q

)
≤ Ceλ(t+t0)|zu0|Wk,q

≤ CeλT
(
1 + |U |L(Xu,W

k,q
Euler)

)
|v# − v0|Wk,q e

λt

≤ 2δ2Ce
λT
(
1 + |U |L(Xu,W

k,q
Euler)

)
eλt.

By choosing

δ2 ≤
δ1

2CeλT
(
1 + |U |L(Xu,W

k,q
Euler)

) ,
we obtain that the solution z̃(t) =

(
w̃(t), w̃t(t)

)
∈ Γ . Therefore v(t0) = ṽ(0) ∈ W u which

implies the invariance. �
The property DH(0) = 0 immediately implies, as expected, the tangent space at the

steady state v0 is given by
Tv0W

u = Xu

and the proof of Theorem 1.1 is complete.

3. Two-dimensional Euler equations

In this and the next sections, we will illustrate how assumptions (A1) — (A3) can be
satisfied for certain steady states of the Euler equation (E). In this section, we consider the
case of Ω = S1 × (−y0, y0), that is, 2π−periodic in x and with rigid walls on {y = ±y0}.
Let v = (v1, v2)T : Ω→ R2 satisfy ∇ · v = 0 in Ω and v ·N = 0 on ∂Ω. On the one hand,

let

ω = ∂xv2 − ∂yv1, s =
1

|Ω|

∫
Ω

v1dxdy

be the curl and the average horizontal momentum, respectively. We note that s is an invariant
of (E) due to the translation symmetry in x. On the other hand, v is uniquely determined
by ω and s through

(3.1) v = J∇∆−1ω + se1, J =

(
0 −1
1 0

)
, e1 = (1, 0)T

where ∆−1 is the inverse of the Laplacian with zero Dirichlet boundary condition. It is clear
that

1

C
|v|Wk,q ≤ |ω|Wk−1,q + |s| ≤ C|v|Wk,q , k ≥ 1, q > 1

for some C > 0. In the (ω, s) representation, (E) takes the form

(3.2) ωt + v · ∇ω = 0, st = 0

where v is considered as determined by (ω, s) by (3.1).
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Remark. Due to the nontrivial first cohomology group of Ω, the vorticity alone does not
determine a vector field in W k,q

Euler and thus the average horizontal momentum has to be
included in the reformulation of the problem. If one considers Ω = T 2, the 2D torus, then
both momentum invariants each of which corresponds to a nontrivial element in the first
cohomology groups should be included.

Suppose v0 ∈ W k+4,q, k > 1 + 2
q
, is a steady state of (E), which corresponds to (ω0, s0)

has Lyapunov exponent µ0 ≥ 0 (both forward and backward in time). We linearize (3.2) at
(ω0, s0) to obtain

(3.3)
(
ω
s

)
t

= −
(
v0 · ∇ω

0

)
−
(

(J∇∆−1ω + se1) · ∇ω0

0

)
, L0

(
ω
s

)
+ L1

(
ω
s

)
.

Assume that there exists an unstable eigenvalue λ0 with Reλ0 > (k − 1)µ0 of the lin-
earized Euler operator L (defined in (1.2)) on Lq, and let v ∈ Lq be the eigenfunction with
corresponding ω and s. Then obviously s = 0 and

λ0ω + v0 · 5ω = −v · ∇ω0.

An integration of above along the steady trajectory X0 (s) yields

ω =

∫ ∞
0

e−λ0sv · ∇ω0 (X0 (s)) ds.

By the standard bootstrap argument and the assumption Reλ0 > (k − 1)µ0, we get ω ∈
W k−1,q and v ∈ W k,q.
For any λ− ∈ ((k − 1)µ0,Reλ0) which does not equal the real part of any unstable eigen-

value , let

X̃cs = {(ω, s)T | ω ∈ W k−1,q | lim sup
1

t
log |et(L0+L1)ω|Wk−1,q ≤ λ−}

which is clearly a invariant subspace of eL0+L1 . Let

σcs = σ(eL0+L1 |X̃cs), σu = σ(eL0+L1 |Wk−1,q×R)\σcs, λ+ = log(inf{|λ| | λ ∈ σu}) ≥ λ−.

As the groups of bounded operators et(L0+L1) and etL are conjugate through (3.1), we also
have the invariance of Xcs,u under etL. Since etL0ω = ω ◦ u0(t)−1, inequality (2.3) implies
|etL0|L(Wk−1,q) ≤ Ce(k−1)µ|t| for any µ > µ0 and some C > 0 depending on µ. In particular,
v0 is divergence free, yields that etL0 is a group of isometries on any Lq space. Since L1 is a
compact operator acting on (ω, s)T , et(L0+L1) is a compact perturbation to etL0 in the space
W k−1,q and thus

• λ+ > λ− and σu is an isolated compact subset of σ(eL0+L1). Let X̃u be the eigenspace
of eL0+L1 corresponding to σu, and

Xcs,u = {v ∈ W k,q
Euler | (ω, s) ∈ X̃cs,u}.

• X̃u and Xu are finite dimensional and
• (A2) is satisfied for any λcs and λu with λ− < λcs < λu < λ+.

Assumption (A3) depends on the Lyapunov exponents of v0. In particular, if v0 is a
linearly unstable shear flow, µ0 = 0 and (A3) is also satisfied. An example is v0 = (sin βy, 0).

By [L03, Theorem 1.2], v0 is linearly unstable when β > 1 and
(

π
2y0

)2

< β2 − 1.
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Remark. Consider rotating flows v0 = U (r)~eθ in an annulus Ω = {a < r < b}. Then by
similar arguments as above, assumptions (A2)-(A3) are satisfied as long as v0 is linearly
unstable.

4. Three-dimensional Euler equations

In this section, we construct examples of 3D unstable steady flows for which Theorem 1.1
can be applied to get unstable (stable) manifolds. Consider Ω = T 3 to be a 3D torus with
periods Lx, Ly and Lz in x, y and z variables. For any profile U (y, z) , the 3D shear flow
~u0 = (U (y, z) , 0, 0) is a steady solution of 3D Euler equation. We construct unstable 3D
shears satisfying assumptions (A1)-(A3) in several steps.
The linearized 3D Euler equation around a 3D shear (U (y, z) , 0, 0) is

(4.1) ∂tu+ Uux + vUy + wUz = −Px,

(4.2) ∂tv + Uvx = −Py, ∂tw + Uwx = −Pz,

(4.3) ux + vy + wz = 0,

with periodic boundary conditions. There are almost no results about the the linear insta-
bility of general 3D shears. So we construct unstable 3D shears near unstable 2D shear flows
(U0 (y) , 0, 0) where U0 (y) is periodic with period Ly. First, we give a suffi cient condition for
linear instability of 2D periodic shears, which generalizes the result in [L03] for shear flows
in a channel with rigid walls.

Lemma 4.1. Consider a periodic shear profile U(y) ∈ C2 (0, Ly) with only one inflection
value Us and

(4.4) K(y) = − U ′′(y)

U(y)− Us
> 0.

Let −α2
max be the lowest eigenvalue of the Sturm-Liouville operator

(4.5) Lϕ = −ϕ′′ −K(y)ϕ

with the periodic boundary conditions on y ∈ [0, Ly]. Then the Rayleigh equation

(4.6) U ′′φ− (U − c)
(
φ′′ − α2φ

)
= 0,

with periodic boundary conditions on y ∈ [0, Ly] has unstable eigenmodes (Im c > 0) for any
α ∈ (0, αmax).

Remark. Under the assumptions in the above Lemma, the lowest eigenvalue of L is negative,
since (L (1) , 1) = −

∫
K(y)dy < 0. A typical example satisfying (4.4) is U0 (y) = sin

(
2π
Ly
y
)

for which K (y) =
(

2π
Ly

)2

.

Proof. The proof is similar to the case of rigid walls ([L03]), so we only point out some
small modifications. Let φs be the eigenfunction of L corresponding to the lowest eigenvalue
−α2

max. Then (φ, c, α) = (φs, Us, αmax) is a neutral solution to the Rayleigh equation (4.6).
By Sturm-Liouville theory, −α2

max is a simple eigenvalue and we can take φs > 0. First, we
study bifurcation of unstable modes near the neutral mode. Denote y1 to be a minimum
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point of φs and let y2 = y1 +Ly. We normalize φs such that φs (y1) = 1, φ′s (y1) = 0. Define
φ1 (y; c, ε) and φ2 (y; c, ε) to be the solutions of

(4.7) − φ′′ + U ′′

U − Us − c
φ+

(
α2

max + ε
)
φ = 0,

with φ1 (y1) = 1, φ′1 (y1) = 0 and φ2 (y1) = 0, φ′2 (y1) = 1. Here ε < 0 and Im c > 0. Define

I (c, ε) = φ1 (y2; c, ε) + φ′2 (y2; c, ε)− 2,

then the existence of a solution to the Rayleigh equation (4.7) with periodic boundary
conditions on y ∈ [y1, y2] is equivalent to the existence of a root of I with Im c > 0. When
c → 0, ε → 0− and |Re c| / Im c remains bounded, as in [L03] we can show that φ1 (y; c, ε)
(φ2 (y; c, ε)) converges to φs (y) (φz (y)) uniformly in C1[y1, y2]. Here, φz (y) ∈ C1 [y1, y2]
satisfies that φ′z (y2) = 1 and φz (y2) 6= 0 since φz (y) can not be another eigenfunction
associated with the simple eigenvalue −α2

max. By similar calculations as in [L03], it can be
shown that when c→ 0, ε→ 0− and |Re c| / Im c remains bounded,

∂I

∂ε
→ φz (y2)

∫ y2

y1

φ2
s (y) dy,

and

∂I

∂c
→ −φz (y2)

(
iπ

l∑
k=1

(
|U ′|−1

Kφ2
s

)
|y=ak + P

∫ y2

y1

(
K (y)φ2

s (y)
)
/ (U (y)− Us) dy

)
.

Here, a1, · · · , al are the inflection points such that U (ak) = Us, k = 1, · · · , l and P
∫ y2
y1

denotes the Cauchy principal part. Then by a variant of implicit function theorem as in
[L03], there exists ε0 < 0 such that for any ε0 < ε < 0 , there is an unstable solution φε with
c = c (ε) to Rayleigh’s equation (4.7). By the same arguments in [L03], such unstable modes
can be continuated to all wave numbers α ∈ (0, αmax). �
Our second step is to show that 3D shears near an unstable 2D shear are also linearly

unstable. More precisely, we have

Lemma 4.2. Let U0 (y) ∈ C2 (0, Ly) be such that the Rayleigh equation (4.6) has an unstable
solution with (α0, c0) (α0, Im c0 > 0). Fixed Lz > 0, consider U (y, z) ∈ C1 ((0, Ly)× (0, Lz))
which is Ly, Lz-periodic in y and z respectively. If ‖U (y, z)− U0 (y)‖W 1,p((0,Ly)×(0,Lz)) (p > 2) is
small enough, then there exists an unstable solution eiα0(x−ct) (u, v, w, P ) (y, z) to the lin-
earized equation (4.1)-(4.3) with |c− c0| small. Moreover, if U (y, z) ∈ C∞, then (u, v, w, P ) ∈
C∞.

The proof of above lemma is almost the same as in the case of rigid walls ([LL11]), so
we skip it here. By Lemmas 4.1 and 4.2, there exist linearly unstable 3D shears ~u0 =
(U (y, z) , 0, 0). Below, we show that the assumption (A2) of linear exponential dichotomy
is true in spaces Wm,2

Euler = Hm (m ≥ 1 is integer) for such unstable 3D shears. Then the
assumption (A3) is automatic since µ0 = 0. Let Gt = eLt be the linearized Euler semigroup
near a steady flow ~u0 (~x) and denote ress (Gt;H

m) to be the essential spectrum radius of Gt

in space Hm. By rather standard semigroup theory (see e.g. [Shi83, Section 1 ]), to get the
linear exponential dichotomy (A2), it suffi ces to show that ress (Gt;H

m) = 1. The essential
spectrum of linearized Euler operator had been studied a lot ([FV91] [LM91] [SL09] [V96])
by using the geometric optics method. We use the following characterization of ress (Gt;H

m)
in [SL09].
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Lemma 4.3. [SL09]Consider the following ODE system

(4.8)


~xt = ~u0 (~x)

~ξt = −∂~u0 (~x)T ~ξ

~bt = −∂~u0 (~x)~b+ 2
(
∂~u0 (~x)~b, ~ξ

)
~ξ
∣∣∣~ξ∣∣∣−2

,

where ~u0 (~x) is a steady flow of 3D Euler equation in T 3 and ~x ∈ T 3, ~ξ,~b ∈ R3. Denote

(4.9) Λm = lim
t→∞

1

t
ln sup

~x0∈T 3, |~ξ0|=1

~b0⊥~ξ0, |~b0|=1

∣∣∣~b (t)
∣∣∣ ∣∣∣~ξ (t)

∣∣∣m

where
(
~x (t) ,~b (t) , ~ξ (t)

)
is the solution of (4.8) with initial data

(
~x0, ~ξ0,~b0

)
. Then we have

ress (Gt;H
m) = etΛm .

Lemma 4.4. For ~u0 = (U (y, z) , 0, 0) in T 3, we have Λm = 0.

Proof. Denote

~x (t) = (x (t) , y (t) , z (t)) , ~ξ (t) = (ξ1 (t) , ξ2 (t) , ξ3 (t)) , ~b (t) = (b1 (t) , b2 (t) , b3 (t)) ,

and

~x0 = (x0, y0, z0) , ~ξ0 =
(
ξ0

1 , ξ
0
2 , ξ

0
3

)
, ~b0 =

(
b0

1, b
0
2, b

0
3

)
.

The solution of first two equations of (4.8) yield

x (t) = x0 + U (y0, z0) t, y (t) = y0, z (t) = z0

and

ξ1 (t) = ξ0
1 , ξ2 (t) = −Uyξ0

1t+ ξ0
2 , ξ3 (t) = −Uzξ0

1t+ ξ0
3 .

Plugging above forms into the equation of ~b (t), we have

(4.10) ḃ1 = − (Uyb2 + Uzb3) +
2 (ξ0

1)
2

(Uyb2 + Uzb3)∣∣∣~ξ (t)
∣∣∣2 ,

(4.11) ḃ2 =
2ξ0

1 (Uyb2 + Uzb3) (ξ0
2 − Uyξ0

1t)∣∣∣~ξ (t)
∣∣∣2 ,

(4.12) ḃ3 =
2ξ0

1 (Uyb2 + Uzb3) (ξ0
3 − Uzξ0

1t)∣∣∣~ξ (t)
∣∣∣2 .
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To show that Λm = 0, it suffi ces to prove that
∣∣∣~b (t)

∣∣∣ only has polynomial growth, uniformly
in
(
~x0, ~ξ0,~b0

)
. From equations (4.11) and (4.12), we have

d

dt
(Uyb2 + Uzb3)

=
2 (Uyb2 + Uzb3)

[
ξ0

1ξ
0
2Uy + ξ0

1ξ
0
3Uz − (ξ0

1)
2 (
U2
y + U2

z

)
t
]

∣∣∣~ξ (t)
∣∣∣2

= −(Uyb2 + Uzb3)∣∣∣~ξ (t)
∣∣∣2

d

dt

∣∣∣~ξ (t)
∣∣∣2 ,

by noting that ∣∣∣~ξ (t)
∣∣∣2 =

(
ξ0

1

)2
+
(
−Uyξ0

1t+ ξ0
2

)2
+
(
−Uzξ0

1t+ ξ0
3

)2

= 1− 2
(
ξ0

1ξ
0
2Uy + ξ0

1ξ
0
3Uz
)
t+
(
ξ0

1

)2 (
U2
y + U2

z

)
t2.

Thus
d

dt

[
(Uyb2 + Uzb3)

∣∣∣~ξ (t)
∣∣∣2] = 0

and

(4.13) (Uyb2 + Uzb3) (t) =
Uyb

0
2 + Uzb

0
3∣∣∣~ξ (t)

∣∣∣2 .

For any fixed t > 0, we find a lower bound for
∣∣∣~ξ (t)

∣∣∣2 by minimizing the function
f
(
ξ0

1 , ξ
0
2 , ξ

0
3

)
=
(
ξ0

1

)2
+
(
−Uyξ0

1t+ ξ0
2

)2
+
(
−Uzξ0

1t+ ξ0
3

)2

subject to the constraint (ξ0
1)

2
+ (ξ0

2)
2

+ (ξ0
3)

2
= 1. By calculations of Lagrange multiplier,

we get

min
|~ξ0|=1

∣∣∣~ξ (t)
∣∣∣2 =

2 +
(
U2
y + U2

z

)
t2 −

√(
2 +

(
U2
y + U2

z

)
t2
)2 − 4

2

=
2

2 +
(
U2
y + U2

z

)
t2 +

√(
2 +

(
U2
y + U2

z

)
t2
)2 − 4

So for t > 0, we get the estimate∣∣∣~ξ (t)
∣∣∣2 ≥ 1

2 +
(
U2
y + U2

z

)
t2
.

Thus by (4.13),
|(Uyb2 + Uzb3) (t)| ≤ c1t

2 + c2,

for c1, c2 > 0 independent of
(
~x0, ~ξ0,~b0

)
. By (4.10)-(4.12), we have∣∣∣ḃ1

∣∣∣ ≤ 2 |(Uyb2 + Uzb3) (t)| ,
∣∣∣ḃ2

∣∣∣ , ∣∣∣ḃ3

∣∣∣ ≤ |(Uyb2 + Uzb3) (t)| ,
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and thus ∣∣∣~b (t)
∣∣∣ ≤ c3t

3 + c4

for some constants c3, c4 > 0. This finishes the proof of the lemma. �
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