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Abstract

Consider a general linear Hamiltonian system ∂tu = JLu in a Hilbert space
X. We assume that L : X → X∗ induces a bounded and symmetric bi-linear form
〈L·, ·〉 on X, which has only finitely many negative dimensions n−(L). There is no
restriction on the anti-self-dual operator J : X∗ ⊃ D(J) → X. We first obtain a
structural decomposition of X into the direct sum of several closed subspaces so
that L is blockwise diagonalized and JL is of upper triangular form, where the
blocks are easier to handle. Based on this structure, we first prove the linear ex-
ponential trichotomy of etJL. In particular, etJL has at most algebraic growth in
the finite co-dimensional center subspace. Next we prove an instability index the-
orem to relate n− (L) and the dimensions of generalized eigenspaces of eigenvalues
of JL, some of which may be embedded in the continuous spectrum. This general-
izes and refines previous results, where mostly J was assumed to have a bounded
inverse. More explicit information for the indexes with pure imaginary eigenvalues
are obtained as well. Moreover, when Hamiltonian perturbations are considered,
we give a sharp condition for the structural instability regarding the generation
of unstable spectrum from the imaginary axis. Finally, we discuss Hamiltonian
PDEs including dispersive long wave models (BBM, KDV and good Boussinesq
equations), 2D Euler equation for ideal fluids, and 2D nonlinear Schrödinger equa-
tions with nonzero conditions at infinity, where our general theory applies to yield
stability or instability of some coherent states.
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CHAPTER 1

Introduction

In this paper, we consider a general linear Hamiltonian system

(1.1) ∂tu = JLu, u ∈ X
in a real Hilbert space X. We assume that the operator J : X∗ ⊃ D(J) → X
satisfies J∗ = −J and L : X → X∗ is bounded and satisfies L∗ = L. This abstract
equation is motivated by the linearization of a large class of Hamiltonian PDEs
at equilibria or relative equilibria. Our first goal is to understand the structural
and spectral properties of (1.1), its linear stability/instability, and the persistence
of these properties under small perturbations in a general setting. Secondly, the
general results on (1.1) will be applied to study the linearization at some coher-
ent states of nonlinear Hamiltonian PDEs such as the 2-dim incompressible Euler
equation, generalized Bullough-Dodd equation, Gross-Pitaevskii type equation, and
some long wave models like KdV, BBM, and the good Boussinesq equations.

Our main assumption is that the quadratic form 〈L·, ·〉 admits a decomposition
X = X− ⊕ kerL⊕X+, such that

dimX− = n− (L) <∞, 〈L·, ·〉|X− < 0, and 〈L·, ·〉|X+
≥ δ > 0.

An additional regularity assumption is required when dim kerL =∞ (see (H3) in
Section 2.1). We note that there is no additional restriction on the symplectic op-
erator J , which can be unbounded, noninvertible, or even with infinite dimensional
kernel.

* Background: stability/instability and local dynamics near an equilibrium. As
our motivation for studying the linear system (1.1) is to understand the stabil-
ity/instability of and the local dynamics near coherent states (steady states, travel-
ing waves, standing waves etc.) of a nonlinear PDE, we first give a brief discussion
of several standard notions of stability/instability and local dynamics. In a simple
case of an ODE system

xt = f(x), x ∈ Rn,

the local dynamics near an equilibrium x0, without loss of generality assuming
x0 = 0, is very much related to the dynamics of its linearized equation

xt = Ax, An×n = Df(0).

On the one hand, if A has an unstable eigenvalue λ (Reλ > 0), then the above
linearized equation has an exponential growing solution and is therefore linearly
unstable. Here, linear stability means etA is uniformly bounded for all t ≥ 0. While
it is clearly linearly stable if Reλ < 0 for all λ ∈ σ(A), there might be linear solutions
with polynomial growth if Reλ ≤ 0 for all λ ∈ σ(A), which is often referred to as
the spectrally stable case. Nonlinear instability immediately follows from spectral
instability for ODEs. However, it is a much more subtle issue what properties in
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2 1. INTRODUCTION

addition to the spectral (or even linear) stability would ensure nonlinear stability.
On the other hand, assume σ1 ⊂ σ(A) and Reλ < α (or Reλ > α) for all λ ∈ σ1.
Let E1 be the eigen-space of σ1 which is invariant under etA, then we have the
spectral mapping property

(SM) there exists C > 0 s.t. |etAx| ≤ Ceαt|x|, ∀x ∈ E1, t ≥ 0 (or t ≤ 0).

Suppose α+ > α− and σ(A) = σ+ ∪ σ− with Reλ > α+ for all λ ∈ σ+ and
Reλ < α− for all λ ∈ σ−. Let E± be the eigen-spaces of σ±, then the above spectral
mapping property (SM) and α+ > α− imply an exponential dichotomy of etA: in
the decomposition Rn = E+⊕E− which is invariant under etA, the relative minimal
exponential expanding rate of etA|E+

is greater than the maximal rate of etA|E− .
For the nonlinear ODE system, the classical invariant manifold theory, based on the
cornerstone of the exponential dichotomy, implies the existence of locally invariant
(pseudo-)stable and unstable manifolds near 0. They often provide more detailed
dynamic structures than the mere stability/instability and also help to organize the
local dynamics.

It often happens that f(x) and thus A depend on a small parameter ε, so
one naturally desires to understand the dynamics of the perturbed systems for
0 < |ε| << 1 based on that of ε = 0. A system is said to be structurally stable if its
dynamics does not change qualitatively under any sufficiently small perturbation.
For ODEs, it is well known that the local dynamics is structurally stable if A is
hyperbolic, namely σ(A) ∩ iR = ∅.

The above ODE results may serve as guidelines in the study of local dynamics
of PDEs near equilibria and relative equilibria while one has to keep in mind the
following issues (among others):
• Sometimes it is highly non-trivial to analyze the spectra of linearized PDEs, par-
ticularly when the linear operator is not self-adjoint and has continuous spectrum.
• On the eigen-space E1 of a spectral subset σ1, the above spectral mapping type
property (SM) may not hold for solutions of the linearized PDEs, due to the exis-
tence of continuous spectrum of the linearized operator (see e.g. [66]).
• Regularity issues in spatial variables can cause serious complications in proving
nonlinear properties (stability/instability, local invariant manifolds, etc.) based on
linear ones (spectral stability/instability, exponential dichotomy, etc.). The existing
systematic results are mainly for semilinear PDEs.

* Background: regarding Hamiltonian systems. On a Hilbert space X, a Hamil-
tonian system takes the form

(1.2) ut = J∇H (u) ,

where the symplectic operator J : X∗ → X satisfies J∗ = −J and H : X → R is the
Hamiltonian energy functional. In a more general setting, J = J(u) may depend
on u or (1.2) may be posed on a symplectic manifold M where J(u) : T ∗M → TM .
In the classical setting, the symplectic structure ω ∈ T ∗M ⊗T ∗M is a 2-form given
by

ω(u)(U1, U2) = 〈J(u)−1U1, U2〉, U1,2 ∈ TuM,

which is required to be closed, namely dω = 0. It is standard that H and ω are
invariant under the Hamiltonian flow associated with (1.2). Suppose u∗ is a steady
state of (1.2) (possibly in an appropriate reference frame, see examples in Chapter
11), then the linearized equation at u∗ takes the form of (1.1) with L = ∇2H (u∗).
In some cases, even though the nonlinear equation is not written in a straightforward
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Hamiltonian form, the linearization at an equilibrium u∗ can still be put in the
Hamiltonian form (1.1), see Section 11.5 for the example of 2D Euler equation. It
is standard for Hamiltonian ODEs and also proved for many Hamiltonian PDEs
that the spectrum σ(JL) is symmetric with respect to both real and imaginary
axes. Therefore, either (1.1) is spectrally unstable or its spectrum must lie on the
imaginary axis. Even though the latter falls into the spectral stability category,
it is often subtle to obtain properties of even the linear dynamics, such as linear
stability and exponential dichotomy, based on the spectral properties, particular
when there is continuous spectrum. Existing results in the literature often take
advantage of the conservation of H or ω.

The structural stability is also more subtle even for linear Hamiltonian PDEs.
On the one hand, the linearized operator JL associated with the linearization of
Hamiltonian PDEs arising from physics and engineering usually has most of its
spectrum lie on the imaginary axis. Therefore, the structural stability results based
on the hyperbolicity of JL are hardly applicable. On the other hand, properties of
Hamiltonian systems, such as the notions of Krein signatures and the conservation
of H and ω, provide crucial additional tools. The structural stability of linear
Hamiltonian PDEs addressed in this paper is mainly related to spectral properties
and linear exponential dichotomy.

For Hamiltonian PDEs, there have been some works on local nonlinear dy-
namics based on properties of the linearized equations. For semilinear Hamiltonian
PDEs ut = JH ′ (u) with nonlinear terms of subcritical growth, such as nonlinear
Klein-Gordon equation, nonlinear Schrödinger equation, and Gross-Pitaevskii equa-
tion, local invariant manifolds can be constructed by combining ODE techniques
with dispersive estimates (e. g. [4] [38] [62]). Such results for traveling wave solu-
tions of the generalized KdV equation had also been obtained ([37]) with the help of
smoothing estimates. The construction of invariant manifolds for quasilinear PDEs
is more difficult, and was only done in very few cases (e. g. [57]). However, the
passing from linear to nonlinear instability, which is a much weaker statement than
the existence of invariant manifolds, had been done for many quasilinear PDEs (e.g.
[27] [31] [36] [50] [51]). Several techniques were introduced to overcome the diffi-
culties of loss of derivative of nonlinear terms and the growth due to the essential
spectra of the linearized operators (see above references). The passing from spectral
(or linear) stability to nonlinear stability is more subtle, particularly when 〈Lu, u〉
is not positive definite after the symmetry reduction. When such positivity holds,
the nonlinear stability can usually be proved by using the Lyapunov functional, see
e.g. [29] [30] for Hamiltonian PDEs. If such positivity fails, there is currently no
general approach to study the nonlinear stability based on the linear one.

Our motivation of analyzing the linearized Hamiltonian system (1.1) in such
a general form is to understand the stability/instability of and the local dynamics
near a coherent state u∗ of a nonlinear Hamiltonian PDE in the form of (1.2) with
L = ∇2H(u∗). We first make some comments on the hypotheses.

On L, the assumption n− (L) < ∞ is equivalent to that H (u) has a finite
Morse index at the critical point u∗. This assumption is automatically satisfied
if u∗ is constructed by minimizing H (u) subject to finitely many constraints. In
applications to continuum mechanics (fluids, plasmas etc.), the PDEs are often of
a noncononical Hamiltonian form ut = J (u)∇H (u), with a symplectic operator
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J (u) depending on the solution u. In many cases, the linearization at an equilibrium
u∗ can still be written in the Hamiltonian form (1.1) and the assumption n− (L) <
∞ is satisfied (see Section 11.5 for the example of 2D Euler equation). The uniform
positivity of L on X+ could be relaxed to positivity by defining a new phase space
(see Chapter 10).

In the existing literature on systems in the form of (1.1), J−1 : X → X∗ is
mostly assumed to be a bounded operator, which is not only for technical con-
venience but also natural in the sense that the symplectic 2-form ω is defined in
terms of J−1. However, it happens that J does not have a bounded inverse for
many important Hamiltonian PDEs such as the KdV, BBM, the good Boussinesq
equations, 2D Euler equation, etc., see Chapter 11.

The goal of this paper regarding the general Hamiltonian PDE (1.1) is to study
its spectral structures, linear dynamics, as well as certain structural stability prop-
erties under the assumption n−(L) < ∞, but without any assumption on J in
addition to J∗ = −J . Our main general results include the symmetry of the spec-
trum σ(JL), an index theorem relating certain spectral properties of JL to n− (L)
which is useful for linear stability analysis, the linear exponential trichotomy of
etJL, and the persistence of these properties for slightly perturbed Hamiltonian
systems. These results are mostly achieved based on a structural decomposition
of (1.1). In Chapter 11, several Hamiltonian PDEs are studied using these general
results.

In the below, we briefly describe our main results and some key ideas in the
proof. More details of the main theorems can be found in Chapter 2 and proofs in
later chapters.

Structural decomposition. Most of the general theorems in this paper are
based on careful decompositions of the phase space into closed subspaces through
which L and JL take rather simple block forms. One of the most fundamental
decomposition is given in Theorem 2.1. In this decomposition,

JL←→



0 A01 A02 A03 A04 0 0
0 A1 A12 A13 A14 0 0
0 0 A2 0 A24 0 0
0 0 0 A3 A34 0 0
0 0 0 0 A4 0 0
0 0 0 0 0 A5 0
0 0 0 0 0 0 A6


,

L←→



0 0 0 0 0 0 0
0 0 0 0 B14 0 0
0 0 LX2

0 0 0 0
0 0 0 LX3 0 0 0
0 B∗14 0 0 0 0 0
0 0 0 0 0 0 B56

0 0 0 0 0 B∗56 0


,

where L takes an almost diagonal block form with LX3 ≥ δ for some δ > 0 and JL
takes a blockwise upper triangular form. Moreover, all the blocks of JL are bounded
operators except for A3 which is anti-self-adjoint with respect to the equivalent inner
product 〈LX3

·, ·〉 on X3. In particular, all other diagonal blocks are matrices and
therefore have only eigenvalues of finite multiplicity. The upper triangular form of
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JL simplifies the spectral analysis on JL tremendously and plays a fundamental
role in the proof of the exponential trichotomy of etJL, the index formula, and the
structural stability/instability of (1.1).

We briefly sketch some ideas in the construction of the decomposition here
under the assumption kerL = {0}, from which the decomposition in the general case
follows. First, we observe that JL is anti-self-adjoint in the indefinite inner product
〈L·, ·〉. Thus, by a Pontryagin type invariant subspace Theorem for symplectic
operators in an indefinite inner product space, there exists an invariant (under JL)
subspace W ⊂ X, satisfying that L|W ≤ 0 and dimW = n− (L).

It would be highly desirable to extend W to a finite dimensional invariant
subspace W̃ such that L|W̃ is non-degenerate. This would yield the invariant

decomposition X = W̃ ⊕ W̃⊥L, where W̃⊥L is the orthogonal complement of W̃
with respect to 〈L·, ·〉 and L|W̃⊥L > 0. Since JL|W̃⊥L is anti-self-adjoint in the

equivalent inner product 〈L·, ·〉 and W̃ is finite dimensional, this immediately gives
the decomposition we want.

However, such an invariant decomposition X = W̃ ⊕ W̃⊥L is in general impos-
sible since it would imply that L is non-degenerate on the subspace of generalized
eigenvectors of any purely imaginary eigenvalue of JL (Lemma 4.1), while the
counterexample in Section 8.4 shows that L can be degenerate on such subspaces
of embedded eigenvalues in the continuous spectra. Our proof is by a careful de-
composition of the invariant spaces W, W⊥L and their complements.

Exponential trichotomy. Our second result is the exponential trichotomy of
etJL in X and more regular spaces (Theorem 2.2). More precisely, we decompose
X = Eu ⊕ Ec ⊕ Es, such that: Eu,c,s are invariant under etJL,

dimEu = dimEs ≤ n−(L), Ec = (Eu ⊕ Es)⊥L ,

and A5 = etJL|Eu
(
A6 = etJL|Es

)
has exponential decay when t < 0 (t > 0) and

etJL|Ec has possible polynomial growth for all t with the optimal algebraic rate
explicitly given. Roughly speaking, the unstable (stable) spaces Eu (Es) are sub-
spaces of generalized eigenvectors of the unstable (stable) eigenvalues of JL and
the center space Ec corresponds to the spectra in the imaginary axis.

Such exponential trichotomy is an important step to prove nonlinear instability,
and furthermore to construct local invariant (stable, unstable, center) manifolds
which are crucial for a complete understanding of the local dynamics, see, for
example, [4, 16, 17]. Such exponential trichotomy or dichotomy might be tricky
to get due to the spectral mapping issue, that is, generally σ

(
etJL

)
( etσ(JL). So

even if the spectra of JL is understood, it is still a subtle issue to prove the estimates
for etJL. In the literature, the exponential dichotomy is usually obtained either by
resolvent estimates (e.g. [26]) or compact perturbations of simpler semigroups
([72] [67]). The proofs were often technical (particularly for resolvent estimates)
and only worked for specific classes of problems. Our result gives the exponential
trichotomy for general Hamiltonian PDEs (1.1) with n− (L) < ∞. Moreover, the
growth rates (particularly on the center space) obtained are sharp. In particular,
our sharp polynomial growth rate estimate on the center space implies a stronger
result than the usual spectral mapping statement. Our proof of the exponential
trichotomy which is very different from traditional methods, is based on the upper
triangular form of JL in the decomposition given in Theorem 2.1. It can be seen
that the Hamiltonian structure of (1.1) plays an important role in the proof.
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Index theorems. Our third result is an index formula to relate the counting
of dimensions of some eigenspaces of JL to n− (L). Denote the sum of algebraic
multiplicities of all positive eigenvalues of JL by kr and the sum of algebraic mul-
tiplicities of eigenvalues of JL in the first quadrant by kc. Let k≤0

i be the total
number of nonpositive dimensions n≤0(L|Eiµ) of the quadratic form 〈L·, ·〉 restricted
to the subspaces Eiµ of generalized eigenvectors of all purely imaginary eigenvalues

iµ ∈ σ(JL) ∩ iR of JL with positive imaginary parts, and k≤0
0 be the number of

nonpositive dimensions of 〈L·, ·〉 restricted to the generalized kernel of JL modulo
kerL. We note that, when all purely imaginary eigenvalues are semi-simple and
〈L·, ·〉 restricted to these kernels is non-degenerate, k≤0

i is equal to k−i which repre-
sents the number of purely imaginary eigenvalues (with positive imaginary parts)
of negative Krein signature. The situation is more complicated if the eigenvalue is
not semi-simple or even embedded into the continuous spectra. In the general case,
we have

(1.3) kr + 2kc + 2k≤0
i + k≤0

0 = n− (L) .

Two immediate corollaries of (1.3) are: n− (L) = k≤0
0 implies spectral stability and

the oddness of n− (L)−k≤0
0 implies linear instability. Since by (1.3) all the negative

directions of 〈L·, ·〉 are associated to eigenvalues of JL, conceptually the continuous
spectrum of JL is only associated to positive directions of 〈L·, ·〉.

There have been lots of work on similar index formulae under various settings
in the literature. In the finite dimensional case where L and JL are matrices, such
index formula readily follows from arguments in a paper of Mackay [59], although
was not written explicitly there. In the past decade, there have been lots of work
trying to extend it to the infinite dimensional case. In most of these papers, J
is assumed to have a bounded inverse ([18] [21] [44] [47]), or J |(ker J)⊥ has a

bounded inverse, as in the cases of periodic waves of dispersive PDEs ([11] [13]
[32] [43]). Recently, in [46] [65], the index formulae were studied for KDV type
equations in the whole line for which J = ∂x does not have bounded inverse. Our
result (1.3) gives a generalization of these results since we allow J to be an arbitrary
anti-self-dual operator. In particular, J |(ker J)⊥ does not need to have a bounded

inverse. This is important for applications to continuum mechanics (e.g. fluids and
plasmas) where J usually has an infinite dimensional kernel with 0 in the essential
spectrum of J in some appropriate sense (see Section 11.5 for the example of 2D
Euler equation).

We should also point out some differences of (1.3) with previous index for-
mulae even in the case with bounded J−1. In previous works on index formula,
it is assumed that 〈L·, ·〉 is non-degenerate on (JL)−1 (kerL) / kerL. Under this
assumption, the generalized kernel of JL only have Jordan blocks of length 2 and
k≤0

0 = n−
(
L|(JL)−1(kerL)/ kerL

)
(see Propositions 2.7 and 2.8). In (1.3), we do not

impose such non-degeneracy assumption on L|(JL)−1(kerL)/ kerL and thus the possi-

ble structures may be much richer. In the counting of (1.3), we use k≤0
i , k≤0

0 , which
are the total dimensions of non-positive directions of L restricted on the subspaces
Eiµ of generalized eigenvectors of purely imaginary eigenvalues iµ or zero eigen-
value (modulo kerL). Since 〈L·, ·〉 might be degenerate on such subspace Eiµ of
an embedded eigenvalue (see example in Section 8.4), they can not be replaced by
k−i , k

−
0 (i.e. the dimensions of negative directions of L) as used in the index formula

of some papers (e.g. [44]). However, in Proposition 2.3, we show that if a purely
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imaginary spectral point iµ is isolated, then L is non-degenerate on its generalized
eigenspace Eiµ which consists of generalized eigenvectors only. In this case, we also
get an explicit formula (2.16) for n−

(
L|Eiµ

)
by its Jordan canonical form, which

is independent of the choice of the basis realizing the canonical form. This formula
suggests that even for embedded eigenvalues which might be of infinite multiplicity,
the number and length of nontrivial Jordan chains are bounded in terms of n− (L).

Moreover, even for the case where 〈L·, ·〉 is degenerate on Eiµ, we give a block
decomposition of JL and L on Eiµ (Proposition 2.2). In this decomposition, L
is blockwise diagonal and JL takes an upper triangular form with three diagonal
blocks corresponding to the degenerate part of L, the simple eigenspaces and the
Jordan blocks of iµ of JL. Furthermore,we construct a special basis for each Jordan
block such that the corresponding L is in an anti-diagonal form (2.15). The above
decomposition of Eiµ yields formula (2.16) for the case where 〈L·, ·〉 |Eiµ is non-
degenerate and also plays an important role on the constructive proof of Pontryagin
type invariant subspace Theorem 5.1 and the proof of structural instability Theorem
2.6. To our knowledge, the formula (2.16) and the decomposition in Proposition
2.2 are new even for the finite dimensional case.

We also note that for an eigenvalue λ with Reλ 6= 0, 〈L·, ·〉 |Eλ = 0 and by
Corollary 6.1 〈L·, ·〉 |Eλ⊕E−λ̄ is non-degenerate with

(1.4) n−
(
L|Eλ⊕E−λ̄

)
= dimEλ.

Therefore, we get the matrix form

〈L·, ·〉 |Eλ⊕E−λ̄ ←→
(

0 A
A∗ 0

)
,

where A is a nonsingular n× n matrix with n = dimEλ.
Now we discuss some ideas in our proof of index formula and the decomposi-

tion in Proposition 2.2 after we briefly review previous approaches for the index
formulae. Like in the literature ([44] [21]), the index formula was usually proved
by reducing the eigenvalue problem JLu = λu to a generalized eigenvalue problem
(R− zS) v = 0 (so called linear operator pencil), where z = −λ2 and R,S are
self-adjoint operators with kerS = {0}. To get such reduction it is required that
J has a bounded inverse and L is non-degenerate on (JL)−1 (kerL) / kerL. Notice
that the operator S−1R is self-adjoint in the indefinite inner product 〈S·, ·〉. So
by the Pontryagin invariant subspace theorem ([28] [18] [48] [64]) for self-adjoint
operators, there is an n− (S)-dimensional invariant (under S−1R) subspace W such
that 〈S·, ·〉 |W ≤ 0, where

n− (S) = n− (L)− n
(
L|(JL)−1(kerL)/ kerL

)
.

Going back to the original problem JLu = λu, an index formula can be obtained
by counting the negative dimensions of L on the eigenspaces for real, complex and
pure imaginary eigenvalues. However, it should be pointed out that the counting
in some papers used the formula (1.4), for which the required non-degeneracy of
L|Eλ⊕E−λ̄ seemed to be assumed but not proved.

In [32] and later also in [13] [11] [43], the index formula was proved without
reference to the Pontryagin invariant subspace theorem. In these papers, some
conditions on J and L were imposed to ensure that the generalized eigenvectors of
JL form a complete basis of X. Then the index formula follows by the arguments
as in the finite dimensional case ([59]). Such requirement of a complete basis is
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very strong and mostly true only in some cases where the eigenvalues of JL are all
discrete.

Our proof of the index formula (1.3) is based on the decomposition in Theo-
rem 2.1, where we used the Pontryagin invariant subspace theorem for the anti-
self-adjoint operator JL in the indefinite inner product 〈L·, ·〉. The proof of the
detailed decompositions of JL and L on Eiµ given in Proposition 2.2, particularly
the construction of the special basis realizing the Jordan canonical form, is carried
out in two steps. First, in the finite dimensional case, we construct a special basis
of the eigenspace Eiµ of JL to skew-diagonalize L on the Jordan blocks by using
an induction argument on the length of Jordan chains. Second, for the infinite
dimensional case, we decompose Eiµ into subspaces corresponding to degenerate
eigenspaces, simple non-degenerate eigenspaces and Jordan blocks. Since the Jor-
dan block part is finite dimensional, the special basis is constructed as in the finite
dimensional case.

Hamiltonian perturbations. Our fourth main result is about the persistence
of exponential trichotomy and a sharp condition for the structural stability of linear
Hamiltonian systems under small Hamiltonian perturbations. Consider a perturbed
Hamiltonian system ut = J#L#u where J#, L# are small perturbations of J, L in
the sense of (2.24). This happens when the symplectic structure or the Hamiltonian
of the system depends on some parameters.

First, we show that the exponential trichotomy of etJL persists under small
perturbations. More precisely, we show in Theorem 2.4 that there exists a decom-
position X = Eu#⊕Es#⊕Ec#, satisfying that: Eu,s,c# are invariant under etJ#L# and

are obtained as small perturbations of Eu,s,c in the sense that Eu,s,c# = graph(Su,s,c# )
where

Su# : Eu → Es ⊕Ec, Ss# : Es → Eu ⊕Ec, Sc# : Ec → Es ⊕Eu, |Su,s,c# | ≤ Cε,

and ε is roughly the size of perturbations L# − L and J# − J (see (2.24)). More-
over, etJ#L# has exponential decay on Eu# and Es# in negative and positive times

respectively with at most O (ε) loss of decay rates compared with etJL|Eu,s ; on
Ec#, etJ#L# has at most small exponential growth at the rate O (ε). We note that

J#L#|Ec# might contain eigenvalues with small real parts which are perturbed from

the spectra of JL in the imaginary axis and thus the small exponential growth on
etJ#L# is the best one can get. In the perturbed decomposition Eu,s,c# , we obtain
the uniform control of the growth rate and the bounds in semigroup estimates for
etJ#L# on Eu,s,c# . Such uniform estimates of the exponential trichotomy (or di-

chotomy) are important for many applications of nonlinear perturbation problems,
such as the modulational instability of dispersive models (see Lemma 11.2).

We briefly discuss some ideas in the proof of Theorem 2.4. The spaces Eu,s#

are constructed as the ranges of the projection operators P̃u,s# by the Riesz pro-

jections associated with the operator J#L# in a contour enclosing σ (JL|Eu,s) and

Ec# =
(
Eu,s#

)⊥L#

. The smallness assumption (2.24) is used in the resolvent esti-

mates to show that Eu,s,c# are indeed O (ε) perturbations of Eu,s,c. It is actually

not so straightforward to prove the small exponential growth of etJ#L# on Ec# since

the perturbation term J(L# −L) may be unbounded. We again use the decompo-
sition Theorem 2.1, where in the decomposition for JL, only one block is infinite
dimensional, with good structure, and others blocks are all bounded.
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In Theorems 2.5 and 2.6, we prove that a pure imaginary eigenvalue iµ 6= 0 of
JL is structurally stable, in the sense that the spectra of J#L# near iµ stay in
the imaginary axis, if and only if either L|Eiµ > 0 or iµ is isolated and L|Eiµ < 0.
In particular, when 〈L·, ·〉 is indefinite on Eiµ or iµ is an embedded eigenvalue
and 〈Lu, u〉 ≤ 0 for some 0 6= u ∈ Eiµ, there exist perturbed operators JL# with
unstable eigenvalues near iµ and |L# − L| being arbitrarily small. The structural
stability of finite dimensional Hamiltonian systems had been well studied in the
literature (see [24] [59] and references therein). It was known that (see e.g. [59]) a
purely imaginary eigenvalue iµ 6= 0 is structurally stable if and only if L is definite
on Eiµ. As a consequence, for a family of Hamiltonian systems, the equilibrium can
lose spectral stability only by the collision of purely imaginary eigenvalues of op-
posite Krein signatures (i.e. sign of 〈L·, ·〉) . For Hamiltonian PDEs, the situation
is more subtle due to the possible embedded eigenvalues in the continuous spec-
trum. In [28], the linearized equation at excited states of a nonlinear Schrödinger
equation was studied and the structural instability was shown for an embedded
simple eigenvalue with negative signature. A similar result was also obtained in
[21] for semi-simple embedded eigenvalues. The assumptions in Theorems 2.5 and
2.6 are much more general and they give a sharp condition for the structural stabil-
ity of nonzero pure imaginary eigenvalues of general Hamiltonian operator JL. In
particular, in Theorem 2.6, structural instability is proved even for the case when
the embedded eigenvalue is degenerate, which was not included in [28] or [21] for
linearized Schrödinger equations.

In the below, we discuss some ideas in the proof of Theorems 2.5 and 2.6. In
the finite dimensional case, the structural stability of an eigenvalue iµ of JL with
a definite energy quadratic form L|Eiµ can be readily seen from an argument based
on Lyapunov functions. The above intuition can be used to show structural sta-
bility in Theorem 2.5 for isolated eigenvalues with definite energy quadratic forms.
The proof is more subtle for embedded eigenvalues with positive energy quadratic
forms. We argue via contradiction by showing that if there is a sequence of un-
stable eigenvalues perturbed from iµ, then this leads to a non-positive direction of
L|Eiµ . In this proof, the decomposition Theorem 2.1 again plays an important role.
The proof of structural instability Theorem 2.6 is divided into several cases. When
L|Eiµ is non-degenerate and indefinite, it can be reduced to the finite dimensional
case for which we can construct a perturbed matrix to have unstable eigenvalues.
In particular, in the case when Eiµ contains a Jordan chain on which L is non-
degenerate, we use the special basis in Proposition 2.2 to construct a perturbed
matrix with unstable eigenvalues.

The proof is more subtle for an embedded eigenvalue iµ with non-positive and
possibly degenerate 〈L·, ·〉 |Eiµ . First, we construct a perturbed Hamiltonian system

JL̃# near JL such that iµ is an isolated eigenvalue of JL̃# and there is a positive

direction of L̃#|Eiµ(JL̃#). In this construction, we use the decomposition Theorem

2.1 once again along with spectral integrals. Then by Proposition 2.3, L̃#|Eiµ(JL̃#)
is non-degenerate and is indefinite by our construction. Thus it is reduced to the
previously studied cases. In a rough sense, the structural instability is induced by
the resonance between the embedded eigenvalue (with 〈L·, ·〉 non-positive in the
directions of some generalized eigenvectors) and the pure continuous spectra whose
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spectral space has only positive directions due to the index formula (1.3).

In some applications (see e.g. Section 11.6), it is not easy to get the uniform
positivity for L|X+ (i.e. assumption (H2.b)) in an obvious space X and only the
positivity L|X+ is available. In Theorem 2.7, we show that under some additional
assumptions ((B1)-(B5) in Section 2.6), one can construct a new phase space Y
such that X is densely embedded into Y ; the extension LY of L satisfies the uniform
positivity in ‖·‖Y ; JY : D(J)∩Y ∗ → Y is the restriction of J , and (JY , LY , Y ) sat-
isfy the main assumptions (H1-3). Then we can apply the theorems to (JY , LY , Y ).

Hamiltonian PDE models. In Chapter 11 (see also Section 2.7 for a sum-
mary), we study the stabilities and related issues of various concrete Hamiltonian
PDEs based on our above general theory, including: stability of solitary and pe-
riodic traveling waves of long wave models of BBM, KDV, and good Boussinesq
types; the eigenvalue problem of the form Lu = λu′ arising from the stability of
solitary waves of generalized Bullough–Dodd equation; modulational instability of
periodic traveling waves; stability of steady flows of 2D Euler equations; traveling
waves of 2D nonlinear Schrödinger equations with nonzero condition at infinity.

This paper is organized as follows. In Chapter 2, we give the precise set-up
and list the main general results more precisely with some comments, where the
readers are directed to the corresponding subsequent sections for detailed proofs.
For some readers, who would like to see the general results but do not desire to
get into the technical details of the proofs, it is possibly sufficient to read Sections
2.1–2.6 only. The stability analysis of various Hamiltonian PDEs are outlined in
Section 2.7. The proofs of the main general results are given in Chapters 3 to 10.
Chapter 3 studies some basic properties of linear Hamiltonian systems. Chapter 4
is about the finite dimensional Hamiltonian systems. In particular, the special basis
in Proposition 2.2 is constructed. Chapter 5 is about the Pontryagin type invari-
ant subspace Theorem for anti-self-adjoint operators in an indefinite inner product
space. Two proofs are given. One is by the fixed point argument as found in the
literature ([18] [25] [48]), which provides the existence of an invariant Pontryagin
subspace abstractly. The second one in separable Hilbert spaces is via Galerkin ap-
proximation which also yields an explicit construction of a maximally non-positive
invariant subspace. Chapter 6 is to prove decomposition Theorem 2.1 which plays
a crucial role in the proof of most of the main results. Chapter 7 contains the proof
of the exponential trichotomy of etJL. In Chapter 8, the index theorem is proved.
Besides, the structures of the generalized eigenspaces are studied and more explicit
formula for the indexes k≤0

i , k≤0
0 , etc. are proved. The non-degeneracy of L|Eiµ

for any isolated spectral point iµ is also proved there. In Chapter 9, we prove the
persistence of the exponential trichotomy and the structural stability/instability
Theorems. In Chapter 10, we prove that the uniform positivity assumption (H2.b)
can be relaxed under some assumptions. We study the stability and related issues
of various Hamiltonian PDEs in Chapter 11. In the Appendix, we prove some
functional analysis facts used throughout the paper, including some basic decom-
positions of the phase space, the well-posedness of the linear Hamiltonian system,
and the standard complexification procedure.



CHAPTER 2

Main results

In this chapter, we give details of the main results described in the introduc-
tion. The detailed proofs are left for later sections.

A remark on notations: Throughout the paper, given a densely defined linear
operator T from a Banach space X to a Banach space Y we will always use T ∗ to
denote its dual operator from a subspace of Y ∗ to X∗. It would never mean the
adjoint operator even if X = Y is a Hilbert space. Given a Hilbert space X and
a linear operator L : X → X∗, since L∗ : (X∗)∗ = X → X∗, it is legitimate to
compare whether L = L∗.

2.1. Set-up

Consider a linear Hamiltonian system

(2.1) ∂tu = JLu, u ∈ X
where X is a real Hilbert space. Let (·, ·) denote the inner product on X and 〈·, ·〉
the dual bracket between X∗ and X. We make the following assumptions:

(H1) J : X∗ ⊃ D(J)→ X is anti-self-dual, in the sense J∗ = −J .
(H2) The operator L : X → X∗ is bounded and symmetric (i.e. L∗ = L) such

that 〈Lu, v〉 is a bounded symmetric bilinear form on X. Moreover, there
exists a decomposition of X into the direct sum of three closed subspaces

X = X− ⊕ kerL⊕X+, n−(L) , dimX− <∞
satisfying

(H2.a) 〈Lu, u〉 < 0 for all u ∈ X−\{0};
(H2.b) there exists δ > 0 such that

〈Lu, u〉 ≥ δ ‖u‖2 , for any u ∈ X+.

(H3) The above X± satisfy

ker i∗X+⊕X− = {f ∈ X∗ | 〈f, u〉 = 0, ∀u ∈ X− ⊕X+} ⊂ D(J)

where i∗X+⊕X− : X∗ → (X+⊕X−)∗ is the dual operator of the embedding
iX+⊕X− .

Remark 2.1. If in addition we assume

(2.2) ker i∗(kerL)⊥ = {f ∈ X∗ | 〈f, u〉 = 0,∀u ∈ (kerL)⊥} ⊂ D(J),

where

(2.3) (kerL)⊥ = {u ∈ X | (u, v) = 0, ∀v ∈ kerL},
it is possible to choose X± ⊂ (kerL)⊥. See Lemma 12.4 and Remark 12.4.

11
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Regarding the operator L, what often matters more is its associated symmetric
quadratic form 〈Lu, v〉, u, v ∈ X, (or the Hermitian symmetric form after the
complexification). We say a bounded symmetric quadratic form B(u, v) is non-
degenerate if

(2.4) inf
v 6=0

sup
u 6=0

|B(u, v)|
‖u‖‖v‖

> 0,

or equivalently, v → f = B(·, v) ∈ X∗ defines an isomorphism from X to X∗ (or a
complex conjugate (sometimes called anti-linear) isomorphism – satisfying av → āf
for any a ∈ C – after the complexification). Under assumptions (H1-3), 〈Lu, v〉 is
non-degenerate if and only if kerL = {0} (see Lemma 12.2).

Remark 2.2. It is worth pointing out that n−(L) = dimX− is actually the
maximal dimension of subspaces where 〈L·, ·〉 < 0, see Lemma 12.1. Thus n−(L)
is the Morse index of L.

By Riesz Representation Theorem, there exists a unique bounded symmetric
linear operator L : X → X such that (Lu, v) = 〈Lu, v〉. Let Πλ, λ ∈ R, denote the
orthogonal spectral projection operator from X to the closed subspace corresponding
to the spectral subset σ(L) ∩ (−∞, λ]. From the standard spectral theory of self-
adjoint operators, assumption (H2) is equivalent to that there exists δ′ > 0 such
that
i.) σ(L) ∩ [−δ′, δ′] ⊂ {0}, which is equivalent to the closeness of R(L), and
ii.) dim(Π−δ′X) <∞.
The subspaces

X− = Π− δ′2
X X+ = (I −Π δ′

2
)X,

along with kerL lead to a decomposition of X orthogonal with respect to both (·, ·)
and 〈L·, ·〉, satisfying (H2).

Remark 2.3. We would like to point out that (H3) is automatically satisfied
if dim kerL <∞. In fact in this case,

dim ker i∗X+⊕X− = dim{f ∈ X∗ | 〈f, u〉 = 0, ∀u ∈ X− ⊕X+} = dim kerL <∞.

Let {f1, . . . , fk} be a basis of ker i∗X+⊕X− . As D(J) is dense in X∗, one may take

gj ∈ D(J) sufficiently close to fj, j = 1, . . . , k. Let

X1 = {u ∈ X | 〈gj , u〉 = 0, ∀j = 1, . . . , k}.
Since X1 is close to X+ ⊕X−, it is easy to show that there exist closed subspaces
X1± ⊂ X1 satisfying (H2) and X1 = X1+ ⊕X1−.

In fact, if we had treated L and J as operators from X to X through the Riesz
Representation Theorem and X± happen to be given as in Remark 2.2 then (H3)
would take the form kerL ⊂ D(J).

Assumption (H3) does ensure that JL is densely defined, see Lemma 12.5.

Remark 2.4. Assumption (H2.b) requires that the quadratic form 〈Lu, u〉 has
a uniform positive lower bound on X+. This corresponds to that 0 is an isolated
eigenvalue of L defined in Remark 2.2, which also implies that R(L) is closed and
R(L) = {γ ∈ X∗ | 〈γ, u〉 = 0, ∀u ∈ kerL}.

For some PDE systems, (H2.b) may not hold or be hard to verify, see, e.g.
Section 11.6. In Section 2.6, we consider a framework where assumption (H2.b)
for the uniform positivity of L|X+

is weakened to the positivity of L|X+
, if some
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additional and more detailed structures are present. In that situation, we construct
a new phase space Y ⊃ X and extend the operators L and J to Y accordingly so
that (H1-3) are satisfied.

2.2. Structural decomposition

Our first main result is to construct a decomposition of the phase space X
which helps understanding both structures of JL and L simultaneously.

Theorem 2.1. Assume (H1-H3). There exist closed subspaces Xj, j = 1, . . . , 6,
and X0 = kerL such that

(1) X = ⊕6
j=0Xj, Xj ⊂ ∩∞k=1D

(
(JL)k

)
, j 6= 3, and

dimX1 = dimX4, dimX5 = dimX6, dimX1 + dimX2 + dimX5 = n−(L);

(2) JL and L take the following forms in this decomposition

(2.5) JL←→



0 A01 A02 A03 A04 0 0
0 A1 A12 A13 A14 0 0
0 0 A2 0 A24 0 0
0 0 0 A3 A34 0 0
0 0 0 0 A4 0 0
0 0 0 0 0 A5 0
0 0 0 0 0 0 A6


,

(2.6) L←→



0 0 0 0 0 0 0
0 0 0 0 B14 0 0
0 0 LX2

0 0 0 0
0 0 0 LX3

0 0 0
0 B∗14 0 0 0 0 0
0 0 0 0 0 0 B56

0 0 0 0 0 B∗56 0


.

(3) B14 : X4 → X∗1 and B56 : X6 → X∗5 are isomorphisms and there exists
δ > 0 satisfying ∓〈LX2,3

u, u〉 ≥ δ‖u‖2, for all u ∈ X2,3;
(4) all blocks of JL are bounded operators except A3, where A03 and A13 are

understood as their natural extensions defined on X3;
(5) A2,3 are anti-self-adjoint with respect to the equivalent inner product ∓〈LX2,3 ·, ·〉

on X2,3;
(6) the spectra σ(Aj) ⊂ iR, j = 1, 2, 3, 4, ±Reλ > 0 for all λ ∈ σ(A5,6), and

σ(A5) = −σ(A6);
(7) n−(L|X5⊕X6

) = dimX5 and n−(L|X1⊕X4
) = dimX1.

(8) (u, v) = 0 for all u ∈ X1 ⊕X2 ⊕X3 ⊕X4 and v ∈ kerL.

Through straightforward calculations, one may naturally rewrite the operator
J and obtain additional relations among those blocks Ajk using J∗ = −J .

Corollary 2.1. Let Pj, j = 0, . . . , 6 be the projections associated to the

decomposition in Theorem 2.1 and X̃∗j = P ∗j X
∗
j ⊂ X∗. In the decomposition



14 2. MAIN RESULTS

X∗ = Σ6
j=0X̃

∗
j , J has the block form

J ←→



J00 J01 J02 J03 J04 0 0
J10 J11 J12 J13 J14 0 0
J20 J21 J22 0 0 0 0
J30 J31 0 J33 0 0 0
J40 J41 0 0 0 0 0
0 0 0 0 0 0 J56

0 0 0 0 0 J65 0


.

where the blocks, except J00, are given by

− J∗10 = J01 = A04B
−1
14 , −J∗20 = J02 = A02L

−1
2

− J∗30 = J03 = A03L
−1
X3
, −J∗40 = J04 = A01(B∗14)−1

J11 = A14B
−1
14 , J12 = A12L

−1
X2
, J13 = A13L

−1
X3
, J14 = A1(B∗14)−1

J21 = A24B
−1
14 , J22 = A2L

−1
X2
, J31 = A34B

−1
14 , J33 = A3L

−1
X3

J41 = A4B
−1
14 , J56 = A5(B∗56)−1, J65 = A6B

−1
56 .

Due to J∗ + J = 0, we also have LXjAj +A∗jLXj=0, j = 2, 3, and

B∗14A14 +A∗14B14 = 0, LX2
A24 +A∗12B14 = 0, LX3

A34 +A∗13B14 = 0

B14A4 +A∗1B14 = 0, B56A6 +A∗5B56 = 0.

Remark 2.5. From the corollary, we have the following observations.
(i) A4 and −A∗1 are similar through B14 and thus have the same spectrum,

contained in iR and symmetric about the real axis. This in turn implies that
σ(A1) = σ(A4).

(ii) A24 and A34 can be determined by other blocks

A24 = −L−1
X2
A∗12B14, A34 = −L−1

X3
A∗13B14.

Consequently,
J21 = −L−1

X2
A∗12, J31 = −L−1

X3
A∗13.

The proof of Theorem 2.1 is given in Chapter 6, largely based on the Pontryagin
invariant subspace theorem 5.1. Theorem 2.1 decomposes the closed operator JL
into an upper triangular block form, all of which are bounded except for one block
anti-self-adjoint with respective to an equivalent norm. This decomposition plays a
fundamental role in proving the linear evolution estimates, the index theorem, the
spectral analysis, and the perturbation analysis.

2.3. Exponential Trichotomy

One of our main results is the exponential trichotomy of the semigroup etJL

on X and more regular spaces, to be proved in Chapter 7. Such linear estimates
are important for studying nonlinear dynamics, particularly, the construction of
invariant manifolds for nonlinear Hamiltonian PDEs.

Theorem 2.2. Under assumptions (H1)-(H3), JL generates a C0 group etJL

of bounded linear operators on X and there exists a decomposition

X = Eu ⊕ Ec ⊕ Es, dimEu = dimEs ≤ n−(L)

satisfying:
i) Ec and Eu, Es ⊂ D(JL) are invariant under etJL; Here, Eu = X5, E

s = X6
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are the unstable and stable spaces defined in Theorem 2.1, and the center space Ec

is defined by

Ec = {u ∈ X | 〈Lu, v〉 = 0, ∀v ∈ Es ⊕ Eu} = ⊕4
j=0Xj ;

ii) 〈L·, ·〉 completely vanishes on Eu,s, but is non-degenerate on Eu ⊕ Es;
iii) let λu = min{Reλ | λ ∈ σ(JL), Reλ > 0}, there exist M > 0 and an integer
k0 ≥ 0, such that ∣∣etJL|Es∣∣ ≤M(1 + tdimEs−1)e−λut, ∀ t ≥ 0;

|etJL|Eu | ≤M(1 + |t|dimEu−1)eλut, ∀ t ≤ 0,
(2.7)

(2.8) |etJL|Ec | ≤M(1 + |t|k0), ∀ t ∈ R,

and

k0 ≤ 1 + 2
(
n−(L)− dimEu

)
;

Moreover, for k ≥ 1, define the space Xk ⊂ X to be

Xk = D
(
(JL)k

)
= {u ∈ X | (JL)

n
u ∈ X, n = 1, · · · , k.}

and

(2.9) ‖u‖Xk = ‖u‖+ ‖JLu‖+ · · ·+ ‖(JL)ku‖.

Assume Eu,s ⊂ Xk, then the exponential trichotomy for Xk holds true: Xk is
decomposed as a direct sum

Xk = Eu ⊕ Eck ⊕ Es, Eck = Ec ∩Xk

and the estimates (2.7) and (2.8) still hold in the norm Xk.

An immediate corollary of the theorem is that there are only finitely many
eigenvalues of JL outside the imaginary axis in the complex plane.

Remark 2.6. The above growth estimates is optimal as one may easily con-
struct finite dimensional examples which achieve upper bounds in the estimates.

Remark 2.7. Naturally, the above invariant decomposition and exponential
trichotomy are based on the spectral decomposition of JL. The unstable/stable
subspaces Eu,s are the eigenspaces of the stable/unstable spectrum, which have finite
total dimensions. Therefore, it is easy to obtain the exponential decay estimates of
etJL|Eu,s . While Ec is the eigenspace of the spectrum residing on the imaginary
axis, the growth estimate of etJL|Ec is far from obvious as the spectral mapping is
often a complicated issue especially when continuous spectra is involved. Normally
some sub-exponential growth estimates, like in the form of

∀ε > 0, ∃ C > 0 =⇒ | etJL|Ec | ≤ Ceε|t|, ∀t ∈ R,

are already sufficient for some nonlinear local analysis. Our above polynomial
growth estimate on etJL|Ec with uniform bound on the degree of the polynomial
based on dimX− is a much stronger statement.

Remark 2.8. Often the invariant subspaces Eu,s,c are defined via spectral de-
compositions where the L-orthogonality between Es⊕Eu and Ec is not immediately
clear. In fact, this is a special case of more general L-orthogonality property. See
Lemma 6.2 and Corollary 6.2.
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2.4. Index Theorems and spectral properties

Roughly our next main result is on the relationship between the number of neg-
ative directions of L (the Morse index) and the dimensions of various eigenspaces of
JL, which may have some implications on dimEu,s and thus the stability/instability
of the group etJL.

We first introduce some notations. Given any subspace S ⊂ X, denote n− (L|S)
and n≤0(L|S) as the maximal negative and non-positive dimensions of 〈Lu, u〉 restricted
to S, respectively. Clearly, n−(L|s) ≤ n−(L) <∞.

In order to state and prove our results on the index theorems, we will work with
the standard complexified spaces, operators, and quadratic forms, see Appendix
(Chapter 12) for details.

For any eigenvalue λ of JL let Eλ be the generalized eigenspace, that is,

Eλ = {u ∈ X | (JL− λI)ku = 0, for some integer k ≥ 1}.

Remark 2.9. As JL generates a C0 semigroup (Proposition 12.1), (JL−λ)k is
a densely defined closed operator (see [33]) and thus Eλ is indeed a closed subspace.

It will turn out that Eλ = ker(JL−λI)2n−(L)+1 for any eigenvalue λ. See Theorem
2.3 for λ /∈ iR and Proposition 2.1 for more details.

Let kr be the sum of algebraic multiplicities of positive eigenvalues of JL and
kc be the sum of algebraic multiplicities of eigenvalues of JL in the first quadrant
(i.e. both real and imaginary parts are positive). Namely,

(2.10) kr =
∑
λ>0

dimEλ, kc =
∑

Reλ, Imλ>0

dimEλ.

For any purely imaginary eigenvalue iµ (0 6= µ ∈ R+) of JL, let

(2.11) k≤0 (iµ) = n≤0
(
L|Eiµ

)
, k≤0

i =
∑

06=µ∈R+

k≤0 (iµ) .

The index counting on E0 is slightly more subtle due to the possible presence of
nontrivial kerL ⊂ E0. Observe that, for any subspace S ⊂ X, L induces a quadratic
form 〈L·, ·〉 on the quotient space S/(kerL ∩ S). As kerL ⊂ E0, define

(2.12) k≤0
0 = n≤0

(
〈L·, ·〉|E0/ kerL

)
.

Equivalently, let Ẽ0 ⊂ E0 be any subspace satisfying E0 = kerL⊕ Ẽ0. Define

k≤0
0 = n≤0

(
L|Ẽ0

)
.

It is easy to see that k≤0
0 is independent of the choice of Ẽ0. We have the following

index formula which is proved in Section 8.1.

Theorem 2.3. Assume (H1)-(H3), we have
(i) If λ ∈ σ(JL), then ±λ,±λ̄ ∈ σ(JL).
(ii) If λ is an eigenvalue of JL, then ±λ,±λ̄ are all eigenvalues of JL. More-

over, for any integer k > 0,

dim ker(JL± λ)k = dim ker(JL± λ̄)k.

(iii) The indices satisfy

(2.13) kr + 2kc + 2k≤0
i + k≤0

0 = n− (L) .

Combining Theorems 2.2 and 2.3, we have the following corollary.
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Corollary 2.2. (i) If k≤0
0 = n− (L), then (2.1) is spectrally stable. That is,

there exists no exponentially unstable solution of (2.1).

(ii) If n− (L)− k≤0
0 is odd, then there exists a positive eigenvalue of (2.1), that

is, kr > 0. In particular, if n− (L)− k≤0
0 = 1, then kr = 1 and kc = k≤0

i = 0, that
is, (2.1) has exactly one pair of stable and unstable simple eigenvalues.

Remark 2.10. The formula (2.13) might seem more intuitive if those above
k≤0 had been replaced by k−. In fact such an index formula with k− instead of k≤0

is true only if the quadratic form 〈Lu, v〉 is non-degenerate on all Eiµ, µ ∈ R+ and

Ẽ0, which would imply n−(L|Eiµ) = n≤0(L|Eiµ). However, the degeneracy is indeed

possible and the correct choice has to be k≤0. Such an example is given in Section
8.4.

Even though we can not claim dimEiµ < ∞ for an eigenvalue iµ ∈ iR which
might be embedded in the continuous spectrum, in fact Eiµ is spanned by eigen-
vectors along with finitely many generalized eigenvectors, except for µ = 0. More
precisely, we prove the following two propositions in Lemma 3.5 and Section 8.2.

Proposition 2.1. Assume (H1)-(H3). For any µ ∈ σ(JL) ∩R\{0}, it holds

Eiµ = ker(JL− iµ)2k≤0(iµ)+1, dim
(
(JL− iµ)Eiµ

)
≤ 2k≤0(iµ).

Moreover,

E0 = ker(JL)2k
≤0
0 +2, dim

(
(JL)2E0

)
≤ 2k≤0

0 .

The above proposition does not hold if (JL)2E0 is replaced by JLE0 as in the
case of µ 6= 0. See an example in Remark 8.2 in Section 8.2.

For µ ∈ R, Theorem 2.3 and Proposition 2.1 mean that, in addition to eigen-
vectors, JL|Eiµ has only finitely many nontrivial Jordan blocks with the total di-
mensions bounded in term of n−(L). The number and the lengths of nontrivial
Jordan chains of JL|Eiµ are independent of the choice of the basis realizing the
Jordan canonical form. Intuitively if a basis consisting of generalized eigenvec-
tors simultaneously diagonalizes the quadratic form 〈Lu, u〉 and realizes the Jordan
canonical form of JL, it would greatly help us to understand the structure of (2.1).
However, usually this is not possible. Instead, we find a ‘good’ basis for the Jordan
canonical form of JL which also ‘almost’ diagonalizes the quadratic form L. To our
best knowledge, we are not aware of such a result even in finite dimensions.

Proposition 2.2. Assume (H1)-(H3). For iµ ∈ σ(JL)∩ iR\{0}, there exists
a decomposition of Eiµ into closed subspaces Eiµ = ED⊕E1⊕EG such that L and
JL take the block forms

〈L·, ·〉 ←→

0 0 0
0 L1 0
0 0 LG

 , JL←→

AD AD1 ADG
0 iµ 0
0 0 AG

 .

For µ = 0, there exists a decomposition E0 = kerL ⊕ ED ⊕ E1 ⊕ EG such that L
and JL take the block form

〈L·, ·〉 ←→


0 0 0 0
0 0 0 0
0 0 L1 0
0 0 0 LG

 , JL←→


0 A0D A01 A0G

0 AD AD1 ADG
0 0 0 0
0 0 0 AG

 .
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In both cases, all blocks are bounded operators, L1 and LG are non-degenerate,
σ(AG) = σ(AD) = {iµ}, and

dimEG ≤ 3
(
k≤0(iµ)− dimED − n−(L|E1)

)
, dimE1 ≤ ∞.

Moreover, ker(AG− iµ) ⊂ (AG− iµ)EG, namely, the Jordan canonical form of JL
on EG has non-trivial blocks only. Let 1 < k1 < · · · < kj0 be the dimensions of
Jordan blocks of AG in EG. Suppose there are lj Jordan blocks of size kj × kj. For
each j = 1, . . . , j0, there exist linearly independent vectors

(2.14) {u(j)
p,q | p = 1, . . . , lj , q = 1, . . . , kj} ⊂ EG

such that

(1) ∀ 1 ≤ p ≤ lj,{
u(j)
p,q = (JL− iµ)q−1u

(j)
p,1, q = 1, . . . , kj

}
form a Jordan chain of length kj. More explicitly ,

on span {u(j)
1,1, . . . , u

(j)
1,kj

, . . . , u
(j)
lj ,1

, . . . , u
(j)
lj ,kj
} :

AG ←→



iµ 0 · · · 0 0 · · · 0 0 · · · 0 0
1 iµ · · · 0 0 · · · 0 0 · · · 0 0

· · ·
0 0 · · · 1 iµ · · · 0 0 · · · 0 0

· · ·
0 0 · · · 0 0 · · · iµ 0 · · · 0 0
0 0 · · · 0 0 · · · 1 iµ · · · 0 0

· · ·
0 0 · · · 0 0 · · · 0 0 · · · 1 iµ


The above count for all Jordan blocks of AG of size kj.

(2) 〈Lu(j)
p,q, u

(j′)
p′,q′〉 = 0 if p 6= p′ or j 6= j′.

(3) ∀ 1 ≤ p ≤ lj, the kj × kj representation matrix of L on a chain (2.14) is

(2.15)
(
〈Lu(j)

p,q, u
(j)
p,r〉
)
q,r

=


0 0 · · · 0 a

(j)
p,1

0 0 · · · a
(j)
p,2 0

· · ·
a

(j)
p,kj

0 · · · 0 0

 ,

where the entries satisfy

a
(j)
p,q′ = (−1)q

′−qa(j)
p,q 6= 0, a

(j)
p,kj+1−q = a

(j)
p,q

and thus the above matrix is non-degenerate.

(4) If kj is odd, then a
(j)

p, 12 (kj+1)
= ±1 and the kj-th Krein signature of iµ

defined by

n−kj (iµ) =

lj∑
p=1

min{0, a(j)

p, 12 (kj+1)
}

is independent of the choices of such bases {u(j)
p,q}.
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Remark 2.11. Since 〈Lu, u〉 is symmetric (Hermitian after the complexifica-

tion), we can normalize the above a
(j)
p,q such that a

(j)
p,q = ±1 if kj is odd and a

(j)
p,q = ±i

if kj is even. In particular, when µ = 0, since the generalized eigenspace is spanned
by real functions in X, it follows that the Jordan chains in EG ⊂ E0 are all of odd
length.

In the splitting of Eiµ, we note that only E1 may be infinite dimensional, where
L is positive except in finitely many directions. If 〈L·, ·〉 is non-degenerate on Eiµ,
the subspace ED may be eliminated and many of our results can be improved.
However, this degeneracy indeed is possible. See such an example in Section 8.4.
On the positive side, in that section, we also prove the following proposition on
the non-degeneracy of L|Eiµ for isolated eigenvalues iµ. In particular, the isolation
assumption for iµ ∈ σ(JL) ∩ iR usually holds if the problem comes from PDEs
defined on bounded or periodic domains.

Proposition 2.3. If iµ ∈ σ(JL) ∩ iR is isolated in σ(JL), then
(i) iµ is an eigenvalue, i.e. Eiµ 6= {0}, and 〈L·, ·〉 is non-degenerate on Eiµ/

(kerL ∩ Eiµ).
(ii) there exists a closed subspace E# ⊂ X invariant under JL such that X =

Eiµ ⊕ E# and 〈Lu, v〉 = 0 for all u ∈ Eiµ and v ∈ E#.
(iii) σ

(
(JL)|E#

)
= σ(JL)\{iµ}.

In the case of an isolated spectral point iµ, one may define the invariant
eigenspaces and its complement eigenspace via contour integral in operator cal-
culus. Usually it is not guaranteed that such iµ is an eigenvalue and its eigenspace
coincides with Eiµ. This proposition implies that, under assumptions (H1-3), this
is exactly the case and 〈L·, ·〉 is non-degenerate on Eiµ. As a corollary, we prove

Proposition 2.4. In addition to (H1-3), we assume

(H4) 〈L·, ·〉 is non-degenerate on Eλ for any non-isolated λ ∈ σ (JL) ∩ iR\{0}
and also on E0/ kerL if 0 ∈ σ(JL) is not isolated,

then there exist closed subspaces N and M , which are L-orthogonal, such that
N⊕kerL and M⊕kerL are invariant under JL, X = N⊕M⊕kerL, dimN <∞,
and L ≥ δ on M for some δ > 0.

In particular, if eigenvalues of JL are isolated, then by Proposition 2.3, (H4) is
automatically satisfied and Proposition 2.4 holds. If we further assume kerL = {0},
then X = N ⊕M and both N and M are invariant under JL. Proposition 2.4 can
be used to construct invariant decompositions for L−self-adjoint operators. The
next proposition gives a generalization of Theorem A.1 in [23], which was proved
for a compact L-self-adjoint operator A with kerA = {0}. Such decomposition was
used to study the damping of internal waves in a stably stratified fluid ([23]).

Proposition 2.5. Let X be a complex Hilbert space along with a Hermitian
symmetric quadratic form B(u, v) = 〈Lv, u〉 defined by an (anti-linear) operator
L : X → X∗ satisfying (H2) with kerL = {0}. Let A : X → X be a L−self-adjoint
complex linear operator (i.e. 〈LAu, v〉 = 〈Lu,Av〉) such that nonzero eigenvalues
of A are isolated. If L|kerA is non-degenerate, then there exists a decomposition
X = N⊕M such that N and M are L-orthogonal and invariant under A, dimN <
∞ and L|M is uniformly positive.
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We will extend the notion of the Krein signature to eigenvalues iµ for which
〈L·, ·〉 on Eiµ is non-degenerate, and give more detailed descriptions of k−i and k−0 .
As commented above, the non-degeneracy assumption means ED is eliminated in
Eiµ. For such µ, define

Eiµ,0 = {v ∈ ker(JL− iµ) | 〈Lv, u(j)
p,q〉 = 0, ∀1 ≤ j ≤ j0, 1 ≤ p ≤ lj , 1 ≤ q ≤ kj}

which is the complementary subspace of R(JL− iµ)∩ker(JL− iµ) inside ker(JL−
iµ). It corresponds to the diagonalized part of JL|Eiµ .

Definition 2.1. For µ ≥ 0 such that 〈L·, ·〉 is non-degenerate on Eiµ, define
the first Krein signature

n−1 (iµ) = n−(L|Eiµ,0)

and kj-th Krein signatures as n−kj (iµ) given in Proposition 2.2, for odd kj = 2m−
1 ≥ 1.

Remark 2.12. The Krein signature n−kj (iµ), for odd kj = 2m−1 ≥ 1, does not

have to be defined as in Proposition 2.2 using the above special bases. In fact, for any

j, let
{
v

(j)
p,q

}
be an arbitrary complete set of Jordan chains of length kj. Define the

lj× lj matrix M̃j =
(〈
Lv

(j)
p1,m, v

(j)
p2,m

〉)
, 1 ≤ p1, p2 ≤ lj. Then n−kj (iµ) = n−

(
M̃j

)
,

the negative index (Morse index) of M̃j.

Remark 2.13. The signatures n−kj (µ) may also be defined in an intrinsic way

independent of bases. See Definition 4.1 and equation (4.2).

According to Proposition 2.2, the 2-dim subspace span{u(j)
p,q, u

(j)
p,kj+1−q} and 1-

dim subspace span{u(j)

p, 12 (kj+1)
} for odd kj are L-orthogonal to each other. With

respect to the basis {u(j)
p,q, u

(j)
p,kj+1−p} there, L takes the form of the Hermitian

symmetric matrix

(
0 a
ā 0

)
with a 6= 0, whose Morse index is clearly 1. Therefore,

we obtain the following formula for k−i .

Proposition 2.6. In addition to (H1)-(H3), assume iµ ∈ σ(JL)∩iR satisfies
that 〈L·, ·〉 is non-degenerate on Eiµ. Then we have

(2.16) k≤0(iµ) = k− (iµ) =
∑

kj even

ljkj
2

+
∑
kj odd

[
lj (kj − 1)

2
+ n−kj (iµ)

]
.

As Hamiltonian systems often possess additional symmetries which generate
nontrivial kerL, k≤0

0 deserves some more discussion if kerL 6= {0}. The following
propositions are proved in Section 8.3, based on a decomposition of the subspace
E0. Recall that for any subspace S ⊂ X, L also induces a quadratic form 〈L·, ·〉 on
the quotient space S/(S ∩ kerL).

Proposition 2.7. Assume (H1)-(H3), then (JL)−1(kerL) is a closed sub-
space. Furthermore, let

n0 = n≤0(〈L·, ·〉|(JL)−1(kerL)/ kerL).

Then
(i) k≤0

0 ≥ n0.
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(ii) If 〈L·, ·〉 is non-degenerate on (JL)−1(kerL)/ kerL, then

k≤0
0 = n0 = n−(〈L·, ·〉|(JL)−1(kerL)/ kerL).

Remark 2.14. Practically, in order to compute n0 in the above proposition, let
S ⊂ (JL)−1(kerL) be a closed subspace such that

(2.17) (JL)−1(kerL) = kerL⊕ S,

then n0 = n≤0(L|S). Often S can be taken as (kerL)⊥ ∩ (JL)−1(kerL).

It is worth comparing the above results with some classical results (e.g. [29,
30]). Consider a nonlinear Hamiltonian equation

(2.18) ∂tu = JDH(u)

which has an additional conserved quantity P (u) (often the momentum, mass etc.)
due to some symmetry. Assume that for c in a neighborhood of c0, there exists uc
such that DH(uc)− cDP (uc) = 0, which gives a relative equilibrium of (2.18) such
as traveling waves, standing waves, etc. The linearized equation of (2.18) in some
reference frame at uc0 takes the form of (2.1) with L = D2H(uc0) − c0D2P (uc0).
It can be verified that JDP (uc0) ∈ kerL and L∂cuc|c=c0 = DP (uc0). In the case
where kerL = span{JDP (uc0)} and J is one to one (not necessarily with bounded
J−1 as assumed in [29, 30]), we have

(JL)−1(kerL) = span{JDP (uc0), ∂cuc|c=c0}

when d
dcP (uc)|c=c0 6= 0 and

n0 =

{
0 if d

dcP (uc)|c=c0 < 0
1 if d

dcP (uc)|c=c0 > 0
.

If we further assume n−(L) = 1, then the combination of Proposition 2.7 and
Theorem 2.3 implies the result in [29] that equation (2.1) is stable if d

dcP (uc)|c=c0 ≤
0 and unstable if d

dcP (uc)|c=c0 > 0.

In the following special cases, k≤0
0 as well as n0 can be better estimated, which

is often useful in applications.

Lemma 2.1. Assume (H1)-(H3). we have

(i) 〈Lu, v〉 = 0, ∀u ∈ ker(JL), v ∈ R(J).
(ii) 〈Lu, u〉 is non-degenerate on ker(JL)/ kerL if and only if it is non-degenerate

on R(J)/
(

kerL ∩R(J)
)
.

While the statement of the lemma and the following proposition in the language
of quotient spaces make them independent of choices of subspaces transversal to
kerL, practically it might be easier to work with subspaces. The following is an
equivalent restatement of Lemma 2.1 using subspaces. Actually the proof in Section
8.3 will be carried out by using subspaces.

Corollary 2.3. Let S1, S
# ⊂ X be closed subspaces such that

(2.19) ker(JL) = kerL⊕ S1, R(J) =
(
R(J) ∩ kerL

)
⊕ S#.

We have that 〈L·, ·〉 is non-degenerate on S1 if and only if it is non-degenerate on
S#.

Under this non-degeneracy, we have
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Proposition 2.8. Assume (H1)-(H3), and that 〈Lu, u〉 is non-degenerate on

ker(JL)/ kerL which is equivalent to ker(JL) ∩R(J) ⊂ kerL, then

(i) X = ker(JL) +R(J) and

n−(L) = n−
(
L|ker(JL)/ kerL

)
+ n−

(
L|
R(J)/

(
kerL∩R(J)

)).
(ii) Let

S̃ = R(J) ∩ (JL)−1(kerL).

Then
k≤0

0 ≥ n−(L|ker(JL)/ kerL) + n≤0(L|S̃/(kerL∩S̃)).

(iii) If, in addition, 〈Lu, u〉 is non-degenerate on S̃/(kerL ∩ S̃), then

k≤0
0 = n−(L|ker(JL)/ kerL) + n−(L|S̃/(kerL∩S̃))

kr + 2kc + 2k≤0
i = n−

(
L|
R(J)/

(
kerL∩R(J)

))− n− (L|S̃/(kerL∩S̃)

)
.

(2.20)

We notice that the last equality is only a consequence of the previous two
equalities on n− and k≤0

0 and the index Theorem 2.3.
In terms of subspaces, equivalently we have

Corollary 2.4. Let S1, S
# ⊂ X be closed subspaces assumed in Corollary 2.3

and S2 ∈ X be a closed subspace such that

(2.21) R(J) ∩ (JL)−1(kerL) = S2 ⊕
(
R(J) ∩ kerL

)
.

Assume the non-degeneracy of 〈Lu, u〉 on S1. Under this condition, we have

X = kerL⊕ S1 ⊕ S#,

and this decomposition is orthogonal with respect to the quadratic form 〈L·, ·〉. More-
over, we have

n−(L) = n−(LS1
) + n−(L|S#) and k≤0

0 ≥ n−(L|S1
) + n≤0(L|S2

).

The additional non-degeneracy assumption of 〈Lu, u〉 on S̃/(kerL∩ S̃) is equivalent
to its non-degeneracy on S2 and it implies

k−0 = n− (L|S1) + n− (L|S2)

kr + 2kc + 2k−i = n−
(
L|S#

)
− n− (L|S2

) .

Very often subspaces S1, S
#, S2 can be taken as various intersections with

(kerL)⊥.

2.5. Structural stability/instability

Our next main result is on the spectral properties of the Hamiltonian operator
JL under small bounded perturbations. Consider the perturbed linear Hamiltonian
system

(2.22) ut = J#L#u, J# = J + J1, L# = L+ L1, u ∈ X.
We assume the perturbations satisfy

(A1) J and L satisfies (H1-2) and the perturbations J1 : X∗ → X and L1 :
X → X∗ are bounded operators with J∗1 = −J1 and L∗1 = L1.

(A2) dim kerL <∞;
(A3) D(JL) ⊂ D(JL1).
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We note that (A2) implies (H3) for JL by Remark 2.3. From the Closed
Graph Theorem, JL1 is a bounded operator on the Hilbert space D(JL) equipped
with the graph norm

(2.23) ||u||2G , ||u||2 + ||JLu||2, u ∈ D(JL); |JL1|G , sup
||u||G=1

||JL1u||.

We first point out that assumptions (A1-3) imply (H1-3) for J#L# when the
perturbations are sufficiently small as assumed in Theorem 2.4 below. See Lemma
9.1. As indicated in assumption (A1) we consider bounded perturbations to both
the symplectic structure J and the energy quadratic form L, while the Hamil-
tonian structure is preserved. Assumption (A2) ensures n−(L#) < ∞ so that
the perturbed problem is still in our framework. Assumption (A3) is a regular-
ity assumption which implies that J#L# is not more unbounded compared to JL.
Therefore, the resolvent (λ − J#L#)−1 is a small perturbation of (λ − JL)−1 as
proved in Lemma 9.2.

Let Eu,s,c be the unstable/stable/center subspaces of JL, as well as the con-
stants λu > 0, as given in Theorem 2.2. The next theorem and the following
proposition will be proved in Section 9.1.

Theorem 2.4. Assume (A1-3). There exist C, ε0 > 0 depending only on J and
L such that, if

(2.24) ε , |J1|+ |L1|+ |JL1|G ≤ ε0,
then

(a) There exist bounded operators

Su# : Eu → Es ⊕ Ec, Ss# : Es → Eu ⊕ Ec, Sc# : Ec → Es ⊕ Eu,
such that

|Su,s,c# | ≤ Cε, etJ#L#Eu,s,c# = Eu,s,c# , where Eu,s,c# = graph(Su,s,c# ),

for all t ∈ R. Moreover,∣∣∣etJ#L# |Es#
∣∣∣ ≤ C(1 + tdimEs−1)e−(λu−Cε)t, ∀ t ≥ 0;

|etJ#L# |Eu# | ≤ C(1 + |t|dimEu−1)e(λu−Cε)t, ∀ t ≤ 0,
(2.25)

(2.26) |etJ#L# |Ec# | ≤ Ce
Cε|t|, ∀ t ∈ R.

(b) 〈L#·, ·〉 vanishes on Eu,s# , but is non-degenerate on Es# ⊕ Eu#, and

Ec# = {u | 〈L#u, v〉 = 0, ∀v ∈ Eu# ⊕ Es#}.
(c) If 〈L·, ·〉 ≥ δ > 0 on Ec, then there exists C ′ > 0 depending on δ, J , and

L such that |etJ#L# |Ec# | ≤ C
′ for any t ∈ R.

Due to assumption (A3), the resolvent (λ−J#L#)−1 is only a small perturba-
tion of (λ−JL)−1 as proved in Lemma 9.2. Therefore, the existence of the invariant
subspaces Eu,s,c# as a small perturbation to Eu,s,c follows immediately. Statements

(b) and (c) basically result from the Hamiltonian structure and the estimates of
etJ#L# on Eu,s# are basically due to their finite dimensionality. If J#L# − JL had

been a bounded operator, estimate (2.26) would follow easily from the standard
spectral theory as well. However, since J : X∗ ⊃ D(J) → X is only assumed to
satisfy J∗ = −J∗, the term JL1 may not be bounded and thus (2.26) does not
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follow from the standard spectral theory. Our proof heavily relies on the decompo-
sition given by Theorem 2.1. In fact, the usual resolvent estimate often neglects the
Hamiltonian structure of the problem which actually plays an essential role here.
Otherwise a counterexample without the Hamiltonian structure is J = J# = i and
L# = ∂xx + ε∂x with X = H1(S1,C), for which the equation ut = J#L#u is not
even well-posed in X for ε 6= 0.

Another consequence of Lemma 9.2 of the resolvent estimate and Lemma 6.2
is the following structural stability type result.

Proposition 2.9. Suppose closed subsets σ1,2 ⊂ σ(JL) satisfy

(1) σ(JL) = σ1 ∪ σ2, σ1 ∩ σ2 = ∅, and σ2 is compact.
(2) For any λ ∈ σ1 and 0 6= u ∈ Eλ, it holds 〈Lu, u〉 > 0.

Then there exist α, ε0 > 0 depending only on J and L such that (2.24) implies

{λ ∈ σ(J#L#) | d(λ, σ2) > α} ⊂ iR.
From Proposition 6.2, any λ ∈ σ(JL)\iR is an eigenvalue, i.e. Eλ 6= {0}, and

〈L·, ·〉 vanishes on Eλ. Therefore, it must hold that σ1 ⊂ iR. Even though the
second assumption on σ1 seems weaker than that 〈L·, ·〉 is uniformly positive on its
eigenspaces, it along with Theorem 2.3 actually implies the latter. This proposition
means that, under small perturbations, unstable eigenvalues can not bifurcate from
such σ1.

In the next we consider the deformation of purely imaginary spectral points of
JL under perturbations as they are closely related to generation of linear instability.
The next two theorems are proved in Section 9.2. Firstly we prove that if iµ ∈ σ(JL)
and 〈L·, ·〉 has certain definite sign on Eiµ, then σ(J#L#) would not have nearby
unstable eigenvalues.

Theorem 2.5. Assume (A1-3), iµ ∈ σ(JL) ∩ iR, and either a.) there exists
δ > 0 such that 〈Lu, u〉 ≥ δ||u||2 for all u ∈ Eiµ or b.) iµ is isolated in σ(JL)and
〈Lu, u〉 ≤ −δ‖u‖2 for all u ∈ Eiµ, then there exist α, ε0 > 0 depending on J , L, µ,
and δ such that, if (2.24) holds, then

{λ ∈ σ(J#L#) | |λ− iµ| ≤ α} ⊂ iR.
Remark 2.15. On the one hand, note that in the above theorem, we do not

require iµ being an isolated eigenvalue or even an eigenvalue of JL. If iµ is not
an eigenvalue, Eiµ = {0} and the sign definiteness assumption is automatically
satisfied. On the other hand, if iµ is an isolated spectral point, then Proposition 2.3
implies that Eiµ is nontrivial and is precisely the eigenspace of iµ. Moreover, from
Lemma 3.4 and the sign definiteness of L on Eiµ, we have Eiµ = ker(JL− iµ).

On the one hand, the above theorem indicates that under Hamiltonian pertur-
bations, hyperbolic (i.e. stable and unstable) eigenvalues can not bifurcate from
either a.) any iµ ∈ σ(JL), whether isolated or not, for which 〈L·, ·〉 is positive
on Eiµ, or b.) any isolated eigenvalue iµ where 〈L·, ·〉 has a definite sign on Eiµ.
Theorem 2.5, as well as Theorem 2.4 can be viewed as robustness or structural
stability type results.

On the other hand, as given in the next theorem, the structural stability con-
ditions in Theorem 2.5 are also necessary for an eigenvalue iµ 6= 0. As in many
applications parameters mostly appear in the energy operator L instead of the sym-
plectic operator J , we will study perturbations only to L for possible bifurcations
of unstable eigenvalues near iµ.
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Theorem 2.6. Assume that (J, L) satisfies (H1-3) and 0 6= iµ ∈ σ(JL) ∩ iR
satisfies

(1) 〈L·, ·〉 is neither positive nor negative definite on Eiµ or
(2) iµ is non-isolated in σ(JL) and there exists u ∈ Eiµ with 〈Lu, u〉 ≤ 0,

then for any ε > 0, there exist a symmetric bounded linear operator L1 : X →
X∗ such that: |L1| < ε and there exists λ ∈ σ

(
J(L + L1)

)
with Reλ > 0 and

|λ− iµ| < Cε, for some constant C depending only on µ, J, L.

It is easy to see that conditions in Theorem 2.6 are exactly complementary
to those in Theorem 2.5 for iµ 6= 0 and thus they give necessary and sufficient
conditions on whether unstable eigenvalues can bifurcate from 0 6= iµ ∈ σ(JL)∩ iR
under Hamiltonian perturbations.

Remark 2.16. In [28], Grillakis proved that an embedded purely imaginary
eigenvalue with negative energy of the linearized operator at excited states of a
semilinear nonlinear Schrödinger equation is ‘structurally unstable’ under small
perturbations and unstable eigenvalues can be generated. The linearized operator is
of the form JL, where

J =

(
0 1
−1 0

)
, L =

(
−∆ + V1 (x) 0

0 −∆ + V2 (x)

)
.

Here, V1 (x) , V2 (x) → ω > 0 exponentially when |x| → ∞. Under some assump-
tions, Theorem 2.4 in [28] implies that that if iµ 6= 0 is an embedded eigenvalue
of JL with 〈Lu, u〉 < 0 for some eigenfunction u, then an unstable eigenvalue may
bifurcate from iµ under Hamiltonian perturbations. Similar result was also obtained
in [21]. This is a special case of the above theorem. Actually, we can relax the struc-
tural instability condition to be that 〈L·, ·〉 is not positive definite on Eiµ, including
cases of degeneracy of L|Eiµ or with Jordan chains.

However, it should be pointed out that it is not clear that the above structural
instability may be realized by the linearized equation of the nonlinear Schrödinger
equation at a perturbed excited state. It would be interesting to see if one can prove
the structural instability in the sense that there is linear instability for nearby excited
states.

Remark 2.17. The case µ = 0 is not included in Theorem 2.6 since this may
be related to some additional degeneracy of L or J . See for example Cases 3b and
3d in Section 9.2. The analysis of possible bifurcations of unstable eigenvalues from
µ = 0 could be carried out in a similar fashion based on the Propositions 2.2, 2.3,
Lemma 9.4, etc., but more carefully. We feel that it might be easier to work on
this case directly in concrete applications and thus do not include it in the above
theorem.

2.6. A theorem where L does not have a positive lower bound on X+

Among our global assumptions (H1-3), (H2) requires that the phase space
X is decomposed into the direct sum of three subspaces X = X− ⊕ kerL ⊕ X+,
such that the quadratic form 〈L·, ·〉 is uniformly positive/negative on X±. This
assumption plays a crucial role in the analysis throughout the paper. However,
in some Hamiltonian PDEs L, which usually appears as the Hessian of the energy
functional at a steady state, may not have a positive lower bound on X+. One
such simple example is X = H1(Rn) and L = −∆ +a(x) where lim|x|→∞ a(x) = 0.
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Even if a > 0 which implies L > 0, but for any δ > 0, there exists u ∈ H1 such that
〈Lu, u〉 < δ‖u‖2H1 . A potential resolution to this issue in this specific example is

to take a different phase space such as Ḣ1 instead of H1. In Chapter 10, we show
that this observation may be applied in a rather general setting. As a non-trivial
example of this case, the stability of traveling waves of a nonlinear Schrödinger
equation in 2-dim with non-vanishing condition at |x| =∞ is considered in Section
11.6.

In this section, let X be a real Hilbert space with the inner product (·, ·) and
we assume

(B1) Q0, Q1 : X → X∗ are bounded positive symmetric linear operators such
that

〈(Q0 +Q1)u, v〉 = (u, v), Q∗0,1 = Q0,1, 〈Q0,1u, u〉 > 0, ∀ 0 6= u, v ∈ X.

(B2) J : X → X is a bounded linear operator satisfying

J−1 = −J, 〈Q0Ju, Ju〉 = 〈Q0u, u〉, ∀u ∈ X.

Let J = JQ−1
0 : X∗ ⊃ Q0(X)→ X.

(B3) L : X → X∗ is a bounded symmetric linear operator such that L1 = L−Q1

satisfies

|〈L1u, v〉|2 ≤ c0(〈Q0u, u〉〈Q0v, v〉+ 〈Q0u, u〉〈Q1v, v〉+ 〈Q1u, u〉〈Q0v, v〉).

(B4) There exist closed subspaces X± ⊂ X such that

X = X− ⊕ kerL⊕X+, n−(L) , dimX− <∞,(2.27)

± 〈Lu±, u±〉 > 0, 〈Lu+, u−〉 = 0, ∀ 0 6= u± ∈ X±.(2.28)

(B5) Subspaces X± satisfy

ker i∗X+
= {f ∈ X∗ | 〈f, u〉 = 0, ∀u ∈ X+} ⊂ Q0(X) = D(J)

where i∗X+
: X∗ → X∗+ is the dual operator of the embedding iX+

.

Obviously the assumption in (B1) that Q1 + Q0 is the Riesz representation
of the inner product can be weakened to that it is the Riesz representation of
an equivalent inner product. It is also easy to verify that J is closed and anti-
symmetric, namely, J ⊂ −J∗. Roughly the L-orthogonal decomposition of X can
be constructed a.) by taking kerL ⊕ X+ as the L-orthogonal complement of a
carefully chosen X− and then X+ as any complimentary subspace of kerL there;
or b.) from a spectral decomposition of the linear operator on X corresponding to
the quadratic form 〈L·, ·〉 through certain inner product. In a typical application
as in Section 11.6, Q1 is often a uniformly positive elliptic operator of order 2s, L1

is a perturbation containing lower order derivatives with variable coefficients, and
Q0 corresponds to the L2 duality. It is convenient to start with X = Hs initially.
The assumption n−(L) < ∞ may come from the construction of the steady state
via some variational approach. The lack of a positive lower bound of L restricted
to X+ ⊂ Hs is often due to the missing control of the L2 norm by 〈L·, ·〉. This also
forces us to make the slightly stronger assumption (B5) than (H3). In Chapter 10
we prove

Theorem 2.7. There exists a Hilbert space Y such that
(a) X is densely embedded into Y ;
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(b) L can be extended to a bounded symmetric linear operator LY : Y → Y ∗;
(c) (Y,LY , JY ) satisfy (H1-3), where JY : D(J) ∩ Y ∗ → Y is the restriction of J .

It is natural to define Y through the completion of X under a norm based on
L. To prove this theorem, the key is to show (H1) and (H3) are satisfied.

2.7. Some Applications to PDEs

We briefly discuss the applications of the general theory to several PDE models
in Chapter 11. First, we consider the stability of traveling waves of dispersive wave
models of KDV, BBM and good Boussinesq types. These PDE models arise as
approximation long wave models for water waves etc. We treat general dispersion
symbols including nonlocal ones.

For solitary waves, the linearized equations are written in a Hamiltonian form
where the symplectic operators J turn out to be non-invertible unbounded oper-
ators. The index formula and the exponential trichotomy estimates are obtained
from Theorems 2.2 and 2.3.

For periodic waves, the linearized equations for perturbations of the same period
are again written in the Hamiltonian form with J having nontrivial kernels. This
brings changes to the index counting formula and stability criteria. In recent years,
similar index formula had been studied in various cases. Our results give a unified
treatment for general dispersion symbols. For both solitary waves and periodic
waves, the linear stability conditions are also shown to imply nonlinear orbital
stability. For the unstable cases, the exponential dichotomy can be used to show
nonlinear instability and even to further construct local invariant (stable, unstable
and center) manifolds near the traveling wave orbit in the energy space. Moreover,
when a.) the negative dimension of the linearized energy functional is equal to the
unstable dimension of the linearized equation and b.) the kernel of the linearized
energy functional is generated exactly by the symmetry group of the system, the
orbital stability and local uniqueness on the center manifold could be obtained.
These invariant manifolds also give a complete description of dynamics near the
orbit of unstable profiles. For more details, we refer to recent papers ([37] [38]) on
the construction of invariant manifolds near unstable traveling waves of supercritical
KDV equation and 3D Gross-Pitavaeskii equation.

We then consider the linearized problems arisen from the modulational (Benjamin-
Feir, side-band) instability of period waves. Besides obtaining an index formula for
each Floquet-Block problem, we also carry out some perturbation analysis to jus-
tify that unstable modes in the long wave limit can only arise from zero eigenvalue
of the co-periodic problem. Subsequently we obtain the semigroup estimates for
both multi-periodic and localized perturbations, which played an important role on
the recent proof ([36]) of nonlinear modulational instability of various dispersive
models.

As another application, we consider the eigenvalue problem of the form Lu =
λu′, which arises in the stability of traveling waves of generalized Bullough–Dodd
equation (11.43). Let J = ∂−1

x , then it is equivalent to the Hamiltonian form
JLu = λu. Thus general theorems can be applied to get instability index formula
and the stability criterion which generalize the results in [69] by relaxing some
restrictions. In particular it implies the linear instability of any traveling wave of
generalized Bullough–Dodd equation (11.43), removing the convexity assumption
in [69].
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Next, we consider stability/instability of steady flows of 2D Euler equation in
a bounded domain. For a large class of steady flows, the linearized Euler equation
can be written in a Hamiltonian form satisfying (H1)-(H3). Here, the symplectic
operator J has an infinite dimensional kernel. The index formula is obtained in
terms of a reduced operator related to the projection to kerL. By using the pertur-
bation theory in Section 2.5, the structural instability in the case of the presence
of embedded eigenvalues is shown. The Hamiltonian structures are also useful in
studying the enhanced damping and inviscid damping problems.

Lastly, we study the stability of traveling waves of 2D nonlinear Schrödinger
equations with nonzero condition at infinity. When written in the Hamiltonian form
JL, the quadratic form 〈L·, ·〉 does not have uniform lower bound on the positive
subspace X+. The strategy used for the 3D case ([53]) does not work in 2D. We use
the theory in Section 2.6 to construct a new and larger phase space to recover the
uniform positivity of 〈L·, ·〉 on the positive space. Then the theory in Section 2.4 is
used to prove the stability criterion in terms of the sign of dP/dc, where P (c) is the
momentum of a traveling wave of speed c. As a somewhat unusual application of
the index formula, we prove the positivity of the momentum P for traveling waves
(in both 2D and 3D) with general nonlinear terms.



CHAPTER 3

Basic properties of Linear Hamiltonian systems

In this chapter, we present a few basic qualitative properties of the linear equa-
tion (2.1), including the conservation of energy, some elementary spectral proper-
ties, etc. As our problem is set up in a functional analysis theoretical framework,
in some cases we have to follow the painful rigor at an orthodox level. To make
it less tedious, we only keep those basic results directly related to the dynamics of
(2.1) in this chapter, while some more elementary properties of (2.1), including its
well-posedness (Proposition 12.1), are left in Chapter 12, the Appendix.

Like any Hamiltonian flow, we have the conservation of energy and the sym-
plectic structure of the flow defined by (2.1).

Lemma 3.1 ([59]). For any solutions u(t), v(t) of (2.1), then we have

(1) d
dt 〈Lu(t), v(t)〉 = 0;

(2) R(J) is invariant under etJL; and
(3) if J is one-to-one (J−1 not necessarily bounded) and u(0) ∈ R(J), then

d
dt

〈
J−1u(t), v(t)

〉
= 0.

Proof. Property (1) is clearly true if u(0), v(0) ∈ D(JL) and then the general
case follows immediately from a density argument. To prove (2), we first notice,
for x ∈ D(JL),

etJLx− x = J

∫ t

0

Let
′JLxdt′.

Since J is closed andD(JL) is dense, a density argument implies that
∫ t

0
Let

′JLxdt′ ∈
D(J) for all x and the above equality holds for all x and thus R(J) is invariant
under etJL. For (3), first consider v(0) ∈ D(JL) and the above equality yields

d

dt

〈
J−1u(t), v(t)

〉
= 〈Lu(t), v(t)〉+ 〈J−1u(t), JLv(t)〉 = 0

where we used the assumption that J is anti-self-adjoint. Again the general case of
(3) follows from the density of D(JL). �

An immediate consequence of the conservation of the quadratic form 〈L·, ·〉 is
on invariant subspaces.

Lemma 3.2. Suppose a subspace X1 ⊂ X is invariant under etJL, i.e. etJLX1 ⊂
X1 for all t ∈ R, then etJLX2 ⊂ X2 for all t ∈ R where the closed subspace
X2 = {u ∈ X | 〈Lu, v〉 = 0, ∀v ∈ X1}.

Proof. For any u ∈ X2, v ∈ X1, and t ∈ R, Lemma 3.1 and the invariance of
X1 imply

〈LetJLu, v〉 = 〈Lu, e−tJLv〉 = 0

which yields the conclusion. �

29
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While in a substantial part of the paper, we shall work with the real Hilbert
space X and real operators J, L, etc., for considerations where complex eigenvalues
are involved, we have to work with their standard complexification. See the
Appendix (Chapter 12) for details.

Let λ be an eigenvalue of JL (i.e. λ ∈ σ (JL)) and

Eλ = {u ∈ X | (JL− λI)ku = 0, for some integer k ≥ 1}.

Then by Lemma 3.1, we have

Lemma 3.3 (Lemma 2 in [59] or Lemma 2.7 in [32]). If v1 ∈ Eλ1 , v2 ∈ Eλ2

and λ1 + λ̄2 6= 0, then 〈Lv1, v2〉 = 0.

The following lemma will be repeatedly used to analyze the structure of Eiµ,
µ ∈ R.

Lemma 3.4. For any iµ ∈ σ (JL) (µ ∈ R), u1 ∈ (JL − iµ)lX, and u2 ∈
ker(JL− iµ)l, then 〈Lu1, u2〉 = 0.

Proof. First, we observe that for any u, v ∈ X,

(3.1) 〈L (JL− iµ)u, v〉 = −〈Lu, (JL− iµ) v〉 .

Let v ∈ X such that (JL− iµ)lv = u1, then we have

〈Lu1, u2〉 = 〈L(JL− iµ)lv, u2〉 = (−1)l〈Lv, (JL− iµ)lu2〉 = 0.

�

The following lemma is a direct consequence of Lemma 3.4 and (3.1).

Lemma 3.5. For any iµ ∈ σ(JL) ∩ iR, it holds

Eiµ = ker(JL− iµ)2k≤0(iµ)+1, µ 6= 0, and E0 = ker(JL)2k
≤0
0 +2.

Remark 3.1. As JL−iµ is a generator of a strongly C0 semigroup, (JL−iµ)m

is closed for any m and thus Eiµ is a closed subspace and JL|Eiµ is a bounded
operator with σ(JL|Eiµ) = {iµ}.

Proof. We first consider µ 6= 0 and argue by contradiction. Suppose u ∈ Eiµ
such that

(JL− iµ)Ku = 0, (JL− iµ)K−1u 6= 0, K ≥ 2k≤0(iµ) + 2.

For any K − 1 ≥ j1, j2 ≥ K − k≤0(iµ)− 1, we obtain from Lemma 3.4

〈L(JL− iµ)j1u, (JL− iµ)j2u〉 = 0.

Therefore, the quadratic form 〈L·, ·〉 vanishes on span{(JL−iµ)K−1u, (JL−iµ)K−2, . . . , (JL−
iµ)K−k

≤0(iµ)−1u}, whose dimension is k≤0(iµ) + 1. This contradicts the definition
of k≤0(iµ).

To finish the proof, we consider µ = 0. Again we argue by contradiction.
Suppose u ∈ E0 is such that

(JL)Ku = 0, (JL)K−1u 6= 0, K ≥ 2k≤0
0 + 3.

Case 1. (JL)K−1u /∈ kerL. In this case, clearly

span{(JL)ju | 0 ≤ j ≤ K − 1} ∩ kerL = {0}.
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Let Ẽ0 ⊂ E0 be a subspace such that E0 = Ẽ0 ⊕ kerL and (JL)ju ∈ Ẽ0 for any
0 ≤ j ≤ K − 1. Much as in the above, 〈L·, ·〉 vanishes on

Z , span{(JL)K−1u, (JL)K−2u, . . . , (JL)K−k
≤0
0 −1u} ⊂ Ẽ0.

Since dimZ = k≤0
0 + 1, this is a contradiction to the definition of k≤0

0 .
Cases 2. (JL)K−1u ∈ kerL\{0}. Clearly,

span{(JL)ju | 0 ≤ j ≤ K − 2} ∩ kerL = {0}.
Let Ẽ0 ⊂ E0 be a subspace such that E0 = Ẽ0 ⊕ kerL and (JL)ju ∈ Ẽ0 for any
0 ≤ j ≤ K − 2. Let

Z , span{(JL)K−2u, (JL)K−3u, . . . , (JL)K−k
≤0
0 −2u} ⊂ Ẽ0.

According to Lemma 3.4, for K − k≤0
0 − 2 ≤ j1, j2 ≤ K − 2 and j1 + j2 ≥ K, we

have 〈L(JL)j1u, (JL)j2u〉 = 0. If K − k≤0
0 − 2 ≤ j1, j2 ≤ K − 2 and j1 + j2 < K, it

must hold j1 = j2 = K − k≤0
0 − 2 and K = 2k≤0

0 + 3. Using (3.1) we obtain

〈L(JL)K−k
≤0
0 −2u, (JL)K−k

≤0
0 −2u〉 = (−1)K−k

≤0
0 −2〈L(JL)K−1u, u〉 = 0

where in the last equality we used (JL)K−1u ∈ kerL. Therefore, 〈L·, ·〉 vanishes

on Z. Since dimZ = k≤0
0 + 1, this is again a contradiction to the definition of k≤0

0 .
The proof of the lemma is complete. �

To end the chapter of basic properties, we prove the following Lemma on the
symmetry of σ (JL) about both axes.

Lemma 3.6. Assume (H1)-(H3), except for n− (L) <∞. Suppose λ ∈ σ (JL),
then we have

i) ±λ,±λ̄ ∈ σ (JL).
ii) Suppose λ is an eigenvalue of JL and assume in addition kerL = {0} or

λ 6= 0, then λ̄ is also an eigenvalue of JL and −λ,−λ̄ are eigenvalues of (JL)∗ =
−LJ . Moreover, for any k > 0,

(3.2) ker(JL− λ̄)k = {ū | u ∈ ker(JL− λ)k}
and

(3.3) L : ker(JL− λ)k → ker
(
(JL)∗ + λ̄

)k
= ker(LJ − λ̄)k

is an anti-linear isomorphism.
iii) Suppose λ is an isolated eigenvalue of JL with finite algebraic multiplicity,

then −λ,±λ̄ are also eigenvalues of JL with the same algebraic and geometric
multiplicities.

Here the operators J and L are understood as their complexification, and thus
are anti-linear mappings satisfying (12.9).

Proof. As i) is trivial if λ = 0, so we assume λ 6= 0 or kerL = {0}.
Due to (12.12) which states that JL is real, (3.2) and λ̄ ∈ σ(JL) follow imme-

diately. We are left to prove −λ,−λ̄ ∈ σ(JL) and (3.3).
The anti-linearity property (12.9) implies

(3.4) L(JL− λ)u = (LJ − λ̄)Lu = −((JL)∗ + λ̄)Lu, ∀u ∈ D(JL).

Therefore, we have that, for any integer k > 0,

(3.5)
(
(JL)∗ + λ̄

)k
Lu = (−1)kL(JL− λ)ku, ∀u ∈ D

(
(JL)k

)
.
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It follows from (3.5) that L
(

ker(JL − λ)k
)
⊂ ker

(
(JL)∗ + λ̄

)k
. Under the

assumption λ 6= 0 or kerL = {0}, it holds kerL ∩ Eλ = {0} and thus L is one-
to-one on Eλ. Therefore, if λ is an eigenvalue of JL, then Eλ is nontrivial which

implies L
(

ker(JL − λ)k
)
, as well as ker

(
(JL)∗ + λ̄

)k
, are nontrivial. We obtain

that −λ̄, as well as −λ, is an eigenvalue of (JL)∗. Consequently −λ,−λ̄ ∈ σ(JL).
To finish the proof of (3.3), we only need to show

L
(

ker(JL− λ)k
)
⊃ ker

(
(JL)∗ + λ̄

)k
.

This is obvious from (3.5) if kerL = {0}. In the case of λ 6= 0, it is clear ker
(
(JL)∗+

λ̄
)k ⊂ R(L). Therefore, for any v ∈ ker

(
(JL)∗+ λ̄

)k
, there exists u1 ∈ X such that

v = Lu1. Equation (3.5) again implies

w = (JL− λ)ku1 ∈ kerL.

As λ 6= 0, let u = u1 − (−λ)−kw, then since (JL− λ)w = (−λ)w, we have v = Lu

and u ∈ ker(JL−λ)k due to (JL−λ)kw = (−λ)
k
w. Therefore, ker

(
(JL)∗+ λ̄

)k ⊂
L ker(JL−λ)k and thus L is an one to one correspondence (actually an anti-linear

isomorphism) from ker(JL− λ)k to ker
(
(JL)∗ + λ̄

)k
.

Finally, suppose λ 6= 0 and R(JL− λ) 6= X, we will show R
(
(JL)∗ + λ̄

)
6= X∗

which implies −λ̄,−λ ∈ σ
(
(JL)∗

)
= σ (JL) and thus completes the proof of (i).

Assume one the contrary R
(
(JL)∗ + λ̄

)
= X∗. Let γ ∈ D(J)\R(L), according

to Remark 2.4, there exists u ∈ kerL such that 〈γ, u〉 6= 0. One can compute
〈
(
(JL)∗ + λ̄

)
γ, u〉 = λ̄〈γ, u〉 6= 0 and thus

(
(JL)∗ + λ̄

)
γ /∈ R(L). Therefore, if

R
(
(JL)∗ + λ̄

)
= X∗, it must hold

(
(JL)∗ + λ̄

)(
R(L)

)
= R(L), which is the range

of the right side of (3.4). However, since λ 6= 0, we have (JL − λ)(kerL) = kerL.
Along with R(JL − λ) 6= X, it implies R(L) 6⊂ R

(
L(JL − λ)

)
, which is the range

of the left side of (3.4). We obtain a contradiction and thus R
(
(JL)∗ + λ̄

)
6= X∗.

If λ ∈ σ (JL) is isolated and of finite multiplicity, then the same is true for λ̄. By
i) and ii), −λ,−λ̄ ∈ σ

(
(JL)∗

)
are also isolated and of the same multiplicities, this

implies that −λ,−λ̄ ∈ σ (JL) have the same (geometric and algebraic) multiplicities
(see [42] P. 184). �

Remark 3.2. As in the proof of Lemma 12.3 and Corollary 12.3, the assump-
tion n−(L) <∞ is not required in the above proof. So Lemma 3.6 holds even when
n−(L) =∞. On the other hand, this lemma gives the symmetry of σ(JL), but not
for general eigenvalues, except for purely imaginary eigenvalues or isolated eigenval-
ues of finite multiplicity. If λ ∈ σ (JL) is a nonzero eigenvalue which is non-isolated
or of infinite multiplicity, then above lemma implies that −λ,−λ̄ are eigenvalues
of σ

(
(JL)∗

)
. In general, we can not exclude the possibility that −λ,−λ̄ are not

eigenvalues of JL. However, when n−(L) < ∞, any λ ∈ σ (JL) with Reλ 6= 0
must be isolated and of finite multiplicity, and the symmetry of eigenvalues and the
dimensions of their eigenspaces are given in Corollary 6.1.



CHAPTER 4

Finite dimensional Hamiltonian systems

In this chapter, we consider the case where the energy space X of (2.1) is
X = Rn which is complexified to Cn. The assumptions (H.1-3) become that J is
a real anti-symmetric n × n matrix and L is a real symmetric n × n matrix. The
counting formula (2.13) essentially follows from [59], except for the formula (2.16).
We do not need to assume that J is invertible as assumed in [59].

For λ ∈ σ (JL) , define

Iλ = Eλ ⊕ E−λ̄ if λ /∈ iR, and Iλ = Eλ if λ ∈ iR.
We have Cn = Iλ1

⊕ · · · ⊕ Iλl , where λj ∈ σ (JL) are all distinct eigenvalues of JL
with Reλj ≥ 0. By Lemma 3.3, we have

(4.1) n− (L) =
∑
j

n−
(
L|Iλj

)
.

Based on Lemma 3.6 of the symmetry of σ(JL), to prove Theorem 2.3 in the finite
dimensional case, it suffices to compute n− (L|Iλ) for any 0 6= λ ∈ σ (JL) \iR.

Lemma 4.1 ([59]). Let λ ∈ σ (JL). Assume kerL = {0} or λ 6= 0, then the
restriction 〈L·, ·〉 |Iλ is non-degenerate.

Proof. Suppose 〈L·, ·〉 |Iλ is degenerate. Then there exists 0 6= u ∈ Iλ such
that 〈Lu, v〉 = 0 for any v ∈ Iλ. Since Cn is the direct sum of all different Iλ′ ,
λ′ ∈ σ(JL), this implies that 〈Lu, v〉 = 0 for any v ∈ Cn by Lemma 3.3. So Lu = 0
and thus 0 6= u ∈ Iλ ∩ kerL. It implies that λ = 0 and kerL 6= {0}, a contradiction
to our assumptions. �

Lemma 4.2 ([59] or [32]). If Reλ > 0 and let mλ to be the algebraic multiplicity
of λ. Then n− (L|Iλ) = mλ.

Proof. From Lemma 3.3, the quadratic form 〈L·, ·〉 on Iλ = Eλ⊕E−λ̄ can be

represented in the block form

(
0 A
A∗ 0

)
. Lemma 4.1 implies the non-degeneracy

of A and thus the lemma follows. �

The counting formula (2.13) in the finite dimensional case follows from these
lemmas and (4.1).

In the rest of this section, we carefully analyze k−(iµ) = n−
(
L|Eiµ

)
, µ ∈ R,

and obtain Proposition 2.2 in finite dimensions. Based on Lemma 3.4 and equation
(3.1), we first prove

Lemma 4.3. Suppose iµ ∈ σ (JL) (µ ∈ R) and K > 0 is an integer, then

(1) for u, v ∈ ker(JL− iµ)K ,

QK(u, v) , iK−1〈L(JL− iµ)K−1u, v〉

33
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defines a Hermitian form on ker(JL− iµ)K ; and
(2) assume kerL = {0} or µ 6= 0, then

YK ,
(

ker(JL− iµ)K ∩R(JL− iµ)
)

+ ker(JL− iµ)K−1 = kerQK .

Proof. That QK is a Hermitian form on ker(JL − iµ)K is an immediate
consequence of equation (3.1). Lemma 3.4 also implies YK ⊂ kerQK . We will show
YK = kerQK under the additional assumption kerL = {0} or µ 6= 0. Suppose
u ∈ ker(JL− iµ)K is such that

QK(u, v) = iK−1〈L(JL− iµ)K−1u, v〉 = 0, ∀ v ∈ ker(JL− iµ)K .

By duality, it implies that

L(JL− iµ)K−1u ∈
(
(JL− iµ)K)

)∗
(Cn) = (LJ − iµ)K(Cn).

Therefore, there exists w ∈ Cn such that

L(JL− iµ)K−1u = (LJ − iµ)Kw.

Since µ 6= 0 or L is surjective, the above equation implies w ∈ R(L) and thus there
exists w̃ ∈ Cn such that w = Lw̃. Consequently,

(LJ − iµ)K−1L
(
u− (JL− iµ)w̃

)
= L(JL− iµ)K−1u− (LJ − iµ)Kw = 0

which along with Lemma 3.6 implies

L
(
u− (JL− iµ)w̃

)
∈ ker(LJ − iµ)K−1 = L ker(JL− iµ)K−1.

Therefore, there exists v ∈ ker(JL− iµ)K−1 such that

y = u− (JL− iµ)w̃ − v ∈ kerL.

If µ 6= 0, let w1 = w̃ + 1
iµy. If kerL = {0}, we have y = 0 and let w1 = w̃. In both

cases, we have

u = v + (JL− iµ)w1, v ∈ ker(JL− iµ)K−1 ⊂ ker(JL− iµ)K .

Therefore, (JL− iµ)w1 ∈ R(JL− iµ)∩ker(JL− iµ)K and then u ∈ YK . The proof
is complete. �

Corollary 4.1. Assume kerL = {0} or µ 6= 0, then QK induces a non-
degenerate Hermitian form on the quotient space ker(JL− iµ)K/YK .

If K is odd, for any u, v ∈ ker(JL− iµ)K , clearly

(4.2) QK(u, v) = 〈L(JL− iµ)
K−1

2 u, (JL− iµ)
K−1

2 v〉.

Definition 4.1. For odd K, define n−K(iµ) to be the negative index of the
quadratic form QK .

The above quotient space ker(JL−iµ)K/YK is closely related to Jordan chains.
Suppose a basis of Cn realizes the Jordan canonical form of JL, and there are totally
l Jordan blocks of size K×K corresponding to iµ. There must be l Jordan chains of
length K in such basis, each of which is generated by some v ∈ ker(JL− iµ)K/YK
as

v, (JL− iµ)v, . . . , (JL− iµ)K−1v.

From standard linear algebra, we have the following lemma.
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Lemma 4.4. Vectors v1,1, . . . , vl,1 generate all l Jordan chains of length K in
the sense that

vj,k = (JL− iµ)k−1vj,1, 1 ≤ k ≤ K, 1 ≤ j ≤ l,

are in a basis of Cn realizing all l Jordan blocks of size K of JL corresponding to
iµ ∈ σ(JL), if and only if

v1,1 + YK , . . . , vl,1 + YK

form a basis of ker(JL− iµ)K/YK .

The following lemma would lead to the realization of the Jordan canonical form
of JL and skew-diagonalization of L simultaneously.

Lemma 4.5. Assume kerL = {0} or µ 6= 0 where iµ ∈ σ(JL) ∩ iR. Suppose
dim ker(JL− iµ)K/YK = l > 0 and Z ⊂ ker(JL− iµ)K satisfies

JL(Z) = Z and Z/(YK ∩ Z) = ker(JL− iµ)K/YK ,

then there exist v1, . . . , vl ∈ Z such that

(4.3) 〈L(JL− iµ)mvj , vk〉 = ±iK−1δj,kδm,K−1, 0 ≤ m ≤ K − 1.

Proof. Since QK induces a non-degenerate Hermitian form on ker(JL−iµ)K/
YK = Z/(Z ∩YK), there exist w1, . . . , wl ∈ Z such that w1 +YK , . . . , wl +YK form
a basis of ker(JL− iµ)K/YK and diagonalize QK , that is,

〈L(JL− iµ)K−1wj , wk〉 = (−i)K−1QK(wj , wk) = ±iK−1δj,k.

Therefore, we have found w1, . . . , wl satisfying (4.3) for m = K − 1.
Suppose 1 ≤ m0 +1 ≤ K−1 and we have found w1, . . . , wl ∈ Z satisfying (4.3)

for m ≥ m0 + 1. Denote

α = K − 1−m0 ≥ 1, QK(wj , wk) = bj,k = ±δj,k, 〈L(JL− iµ)m0wj , wk〉 = cj,k.

In the next step we will construct v1, . . . , vl satisfying (4.3) for m ≥ m0 in the form
of

vj = wj +

j∑
j′=1

aj,j′(JL− iµ)αwj′ ∈ Z.

According to (3.1), 〈L(JL− iµ)m·, ·〉 is Hermitian or anti-Hermitian. Without loss
of generality, we may consider only j ≤ k in (4.3). Compute using (3.1)

〈L(JL− iµ)mvj , vk〉 = (−1)α
k∑

k′=1

ak,k′〈L(JL− iµ)α+mwj , wk′〉

+ 〈L(JL− iµ)mwj , wk〉+

j∑
j′=1

aj,j′〈L(JL− iµ)α+mwj′ , wk〉

+ (−1)α
j∑

j′=1

k∑
k′=1

aj,j′ak,k′〈L(JL− iµ)2α+mwj′ , wk′〉.

(4.4)

If m+α = K−1−m0 +m ≥ K, the induction assumption and the above equation
imply

〈L(JL− iµ)mvj , vk〉 = 〈L(JL− iµ)mwj , wk〉 = ±iK−1δj,kδm,K−1
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and thus (4.3) for m ≥ m0 + 1 holds for these v1, . . . , vl with any choices of aj,j′ .
For m = m0, i.e. m+ α = K − 1, if j < k, (4.4) implies

〈L(JL− iµ)m0vj , vk〉 = cj,k + (−1)α(−i)K−1ak,jbj,j .

Noticing bj,j = ±1 and letting

ak,j = (−1)α+1(−i)K−1cj,kbj,j , j < k,

then we have
〈L(JL− iµ)m0vj , vk〉 = 0, j < k.

If j = k,

〈L(JL− iµ)m0vk, vk〉 = ck,k + (−i)K−1bk,k
(
ak,k + (−1)αak,k)

)
.

Let

ak,k = −1

2
iK−1bk,kck,k = −1

2
iαbk,ki

m0ck,k.

Since (3.1) implies ck,j = (−1)m0cj,k, we have im0ck,k ∈ R and thus iαak,k ∈ R
which makes it easy to verify

〈L(JL− iµ)m0vk, vk〉 = 0.

Therefore, v1, . . . , vl ∈ Z satisfy (4.3) for all m ≥ m0 and the lemma follows from
the induction. �

We are in a position to prove Proposition 2.2 in finite dimensions.

Proof of Proposition 2.2 assuming dimX < ∞ and kerL = {0}: Let
ED = {0}, then 1 < k1 < · · · < kj0 are the dimensions of nontrivial Jordan blocks
in Eiµ, µ ∈ R, and there are lj > 0 Jordan blocks of size kj . For each 1 ≤ j ≤ j0,
we will find linearly independent

{u(j)
p,q | p = 1, . . . , lj , q = 1, . . . , kj} ⊂ Eiµ

which form all Jordan chains of length kj and satisfy the desired properties. The
construction is by induction on j.

For j = j0, applying Lemma 4.5 to Z = ker(JL − iµ)kj0 = Eiµ, where

dim ker(JL− iµ)kj0/Ykj0 = lj0 according to Lemma 4.4, there exist u
(j0)
1,1 , . . . , u

(j0)
lj0 ,1

such that

(4.5) 〈L(JL− iµ)mu
(j0)
p1,1

, u
(j0)
p2,1
〉 = ±ikj0−1δp1,p2δm,kj0−1, 0 ≤ m ≤ j0 − 1.

In particular we have QK(u
(j0)
p1,1

, u
(j0)
p2,1

) = ±δp1,p2
. Lemma 4.3 and Corollary 4.1

imply that u
(j0)
1,1 +Ykj0 , . . . , u

(j0)
lj0 ,1

+Ykj0 form a basis of ker(JL− iµ)kj0/Ykj0 . From

Lemma 4.4, we obtain that

u(j0)
p,q = (JL− iµ)q−1u

(j0)
p,1 , q = 1, · · · , kj0 , p = 1, . . . , lj0

form lj0 Jordan chains realizing all Jordan blocks of size kj0 of JL corresponding
to iµ ∈ σ(JL). Moreover, equation (4.5) implies

〈Lu(j0)
p1,q1 , u

(j0)
p2,q2〉 = ±ikj0−1δp1,p2

δq1+q2,kj0+1.

Suppose 0 ≤ j∗ < j0 and we have constructed linearly independent u
(j)
p,q for all

j∗ < j ≤ j0, 1 ≤ p ≤ lj , 1 ≤ q ≤ kj satisfying

(4.6) u(j)
p,q = (JL− iµ)q−1u

(j)
p,1, 〈Lu(j)

p1,q1 , u
(j)
p2,q2〉 = ±ikj−1δp1,p2

δq1+q2,kj+1.
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Clearly,

Z1 = span{u(j)
p,q | j∗ < j ≤ j0, 1 ≤ p ≤ lj , 1 ≤ q ≤ kj} ⊂ Eiµ

is a subspace invariant under JL. Moreover, vectors {u(j)
p,q} form a basis of Z1

realizing the Jordan canonical form of JL on Z1 consisting of all those Jordan
blocks of JL corresponding to iµ of size greater than kj∗ . According to (4.6), the
quadratic form 〈L·, ·〉 is non-degenerate on Z1. In the next step we will construct

u
(j∗)
p,q for 1 ≤ p ≤ lj∗ and 1 ≤ q ≤ kj∗ . Let

Z = {u ∈ Eiµ | 〈Lu, v〉 = 0, ∀v ∈ Z1}.
Due to the non-degeneracy of 〈L·, ·〉 on both Z1 and Iiµ = Eiµ (Lemma 4.1), we
have Eiµ = Z1 ⊕ Z. For any u ∈ Z and v ∈ Z1, due to the symmetry of L and J ,
we have

〈LJLu, v〉 = −〈Lu, JLv〉 = 0, as JLv ∈ Z1

which implies JL(Z) ⊂ Z. Since the Jordan canonical form of JL on Z1 includes
all Jordan blocks of JL on Eiµ of size greater than kj∗ , the Jordan canonical form
of JL on Z must be those Jordan blocks of JL on Eiµ of size no greater than
kj∗ . Therefore, Z ⊂ ker(JL − iµ)kj∗ and then Lemma 4.4 implies Z/(Z ∩ Ykj∗ ) =

ker(JL − iµ)kj∗/Ykj∗ . Lemma 4.5 provides vectors u
(j∗)
1,1 , . . . , u

(j∗)
lj∗ ,1

∈ Z. It is easy

to verify that u
(j)
p,q, j∗ ≤ j ≤ j0, satisfy the induction assumption for j∗ ≤ j ≤ j0.

Therefore, by induction, we find all u
(j)
p,q satisfying (4.6) and realizing all Jordan

blocks of JL on Eiµ of size greater than 1. It is straightforward to verify all the
properties in Proposition 2.2. In particular, Lemma 4.4 and equation (4.2) imply
that the Krein signature defined in Proposition 2.2 and Remark 2.12 coincides with
the one in the above Definition 4.1 in terms of QK . Therefore, it is independent of
the choice of the basis (Jordan chains) realizing the Jordan canonical form.

Finally, let

E1 = {v ∈ Eiµ | 〈Lu(j)
p,q, v〉 = 0, ∀ 1 ≤ j ≤ j0, 1 ≤ p ≤ lj , 1 ≤ q ≤ kj}.

Much as in the invariance of Z in the above, JL(E1) ⊂ E1. Since all the Jordan
blocks are realized by{

u(j)
p,q, 1 ≤ j ≤ j0, 1 ≤ p ≤ lj , 1 ≤ q ≤ kj

}
,

we have E1 ⊂ ker(JL− iµ). This completes the proof. �
Based on Proposition 2.2, we give the following result to be used later.

Lemma 4.6. Let J, L be real n × n matrices. Assume J is anti-symmetric
and L is symmetric and nonsingular. Then there exists an invariant (under JL)
subspace W of Cn such that dimW = n− (L) and 〈L·, ·〉 |W ≤ 0.

Proof. For any purely imaginary eigenvalue λ = iµ ∈ iR, we start with
the special basis of Eiµ given by Proposition 2.2 (as well as Remark 2.11). For

each Jordan chain
{
u

(j)
p,1, · · · , u

(j)
p,kj

}
of even length, define the subspace Ziµ,j,p =

span
{
u

(j)
p,1, · · · , u

(j)
p,kj/2

}
. For each Jordan chain

{
u

(j)
p,1, · · · , u

(j)
p,kj

}
of odd length

kj ≥ 1, define the subspace

Ziµ,j,p =

{
span{u(j)

p,1, · · · , u
(j)
p,(kj−1)/2} if 〈Lu(j)

p,(kj+1)/2, u
(j)
p,(kj+1)/2〉 > 0,

span{u(j)
p,1, · · · , u

(j)
p,(kj+1)/2} if 〈Lu(j)

p,(kj+1)/2, u
(j)
p,(kj+1)/2〉 < 0.
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Proposition 2.2 implies that 〈Lu, u〉 ≤ 0 for all u ∈ Ziµ,j,p defined above. For any
eigenvalue λ of JL with Reλ > 0, recall 〈Lu, u〉 = 0 for all u ∈ Eλ by Lemma 3.3.
Define

Ziµ = ⊕kjj=0 ⊕
lj
p=1 Ziµ,j,p

and
W = ⊕Reλ>0Eλ ⊕iµ∈σ(JL)∩iR Ziµ.

Then 〈L·, ·〉 |W ≤ 0 since these subspaces are pairwise orthogonal in 〈L·, ·〉. More-
over, dimW = n− (L) due to the counting formula (2.13) and (2.16). �



CHAPTER 5

Invariant subspaces

In this chapter, we study subspaces of X invariant under JL, including both
positive and negative results. As the first step to prove our main results, a non-
positive (with respect to 〈L·, ·〉) invariant subspace of the maximal possible dimen-
sion n−(L) is derived in Section 5.1. The existence of such subspaces is not only
useful for the linear dynamics, but also a rather interesting and delicate result
as demonstrated in the discussions and examples in Section 5.2. Throughout this
chapter, we work under the non-degeneracy assumption that (2.4) holds for L which
is equivalent to L : X → X∗ is an isomorphism.

5.1. Maximal non-positive invariant subspaces

Theorem 5.1. In additional to hypotheses (H-3), assume L satisfies the non-
degeneracy assumption (2.4), then

(1) dimW ≤ n−(L) holds for any subspace W ⊂ X satisfying 〈Lu, u〉 ≤ 0 for
any u ∈W ; and

(2) there exists a subspace W ⊂ D(JL) such that

dimW = n−(L), JL(W ) ⊂W, and 〈Lu, u〉 ≤ 0, ∀u ∈W.

Remark 5.1. Though the theorem is stated for real Hilbert spaces, the same
proof shows that it also holds for complex Hilbert space X and Hermitian forms L
and J . Furthermore, the invariance of W under JL implies that W ⊂ ∩∞k=1D

(
(JL)k

)
.

This theorem is basically equivalent to the classical Pontryagin invariant sub-
space theorem which is usually stated for a self-adjoint operator A with resect to
some indefinite quadratic form 〈L·, ·〉 on X with finitely many negative directions
(i.e. L satisfies (H2) with n− (L) <∞ and kerL = {0}). It states that there exists
a subspace W ⊂ X such that W is invariant under A, 〈L·, ·〉 |W ≤ 0 and dimW =
n− (L) (i.e. maximal non-positive dimension). Such theorems have been proved
in the literature (e.g. see [28] [18] and the references therein). We believe that it
will play a fundamental role in further studies of Hamiltonian systems and deserves
more attention than it currently does. For the Hamiltonian PDE (2.1) considered
in this paper, one important observation is that the operator JL is anti-self-adjoint
with respect to the inner product 〈L·, ·〉. Since both anti-self-adjoint and self-adjoint
operators are related to unitary operators by the Cayley transform, the Pontryagin
invariant subspace theorems can be equivalently stated for unitary, self-adjoint or
anti-self-adjoint cases. By Lemma 3.1, etJL is unitary in 〈L·, ·〉. But to study the
eigenvalues of JL more directly, we still use Cayley transform to relate JL to an
unitary operator and then apply the Pontryagin invariant subspace theorem. For
the sake of completeness, in the following we outline a proof of Theorem 5.1 by the
arguments given in [18] for the proof of Pontryagin invariant subspace theorem via

39
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unitary operators which is based on compactness and fixed point theorems (see also
[25] [48]).

We also give another more constructive proof of Theorem 5.1, by using the
Hamiltonian structure of (2.1) and Galerkin approximation. It provides more in-
formation about the invariant subspace W .

Proof. The assumption (2.4) is equivalent to kerL = {0}. The first statement
of the Theorem follows by the same proof of Lemma 12.1. Below we give two
different proofs of the construction of the invariant subspace W in the second part
of the Theorem.

Proof (#1.) Here we sketch a proof of Theorem 5.1 by using the arguments in
[18]. Let X± ⊂ X be given by Lemma 12.4. Assumptions (H2-3) and (2.4) ensure
that

X = X− ⊕X+, X∗ = X̃∗− ⊕ X̃∗+, ±〈Lu, u〉 ≥ δ‖u‖2, ∀u ∈ X±,

where X̃∗± = P ∗±X
∗
± and P± are the associated projections. As in the proof of

Lemma 12.5, let iX± : X± → X be the embedding and

L± = ±P ∗±i∗X±LiX±P±, (u, v)L , 〈(L+ + L−)u, v〉.

There exists δ > 0 such that 〈L±u, u〉 ≥ δ‖u‖2, for all u ∈ X± and the quadratic

form (·, ·)L induces an equivalent norm |u|L ,
√

(u, v)L on X. We denote the

Hilbert space
(
X, 〈(L+ + L−)·, ·〉

)
by XL.

Step 1. It is clear that J(L+ + L−) is an anti-self-adjoint operator on XL and
JL− is a bounded linear operator of finite rank on XL as L−X− = P ∗−X

∗
− ⊂ D(J).

Writing JL = J(L+ + L−) − 2JL−, we obtain that there exists a > 0 such that
α /∈ σ(JL) if |Reα| ≥ a. Let

T = (JL+ a)(JL− a)−1, then 〈LTu, Tv〉 = 〈Lu, v〉, ∀u, v ∈ X
through straightforward calculation using J = −J∗ and that L is bounded and
symmetric. In some sense, JL is anti-self-adjoint with respect to the quadratic
form 〈L·, ·〉 and thus T is formally the Cayley transformation.

Step 2. Let XL± be the subspaces X± equipped with the inner product (·, ·)L
which is equivalent to ±〈LX± ·, ·〉 on X±, where LX± is defined in (12.1). One
may prove (see Lemma 3.6 in [18]) that a subspace W ⊂ XL satisfies dimW =
n−(L) and 〈Lu, u〉 ≤ 0 for all u ∈ W if and only if W is the graph of a bounded
linear operator S : XL− → XL+

with operator norm |S| ≤ 1. Denote this set of
operators, i.e. the unit ball of L(XL−, XL+), by B1(XL−, XL+). This proves the
first statement.

Step 3. For any S ∈ B1(XL−, XL+), since T preserves the quadratic form 〈L·, ·〉,
one may show that T

(
graph(S)

)
is still the graph of some S′ ∈ B1(XL−, XL+).

Hence we define a transformation T on B1(XL−, XL+) as

graph
(
T (S)

)
= T

(
graph(S)

)
.

Step 4. The space of bounded operators L(XL−, XL+) equipped with the
weak topology is a locally convex topological vector space. Since XL− is finite
dimensional, the unit ball B1(XL−, XL+) is convex and compact under the weak
topology. Using the boundedness and the finite dimensionality of XL−, one may
prove (see [18] for details) that T is continuous under the weak topology. Ac-
cording to the Tychonoff fixed point theorem (sometimes referred as the Schauder-
Tychonoff fixed point theorem, see [76]), T has a fixed point S ∈ B1(XL−, XL+).
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Let W = graph(S) and thus T (W ) ⊂W . According to the definition of T , we have

(JL− a)−1 =
1

2a
(T − I)

which implies that W is invariant under (JL−a)−1. As W is finite dimensional and
(JL− a)−1 is bounded and injective, it is clear that W = (JL− a)−1W ⊂ D(JL)
and thus JL(W ) ⊂W . �

Alternative proof (#2) of Theorem 5.1 via Galerkin approximation on
separable X. On the one hand, the above proof given in [18] is elegant and is based
on fixed point theorems involving compactness, which does not yield much detailed
information of the invariant subspace W. On the other hand, clearly Theorem
5.1 is a generalization into Hilbert spaces of Lemma 4.6 whose constructive proof
provides more explicit information of the invariant subspaces. In fact, assuming X
is separable, in the rest of this chapter we give an alternative proof of Theorem 5.1
based on Lemma 4.6.

Denote

(5.1) [·, ·] = 〈L·, ·〉 on X.

Let X± be the same subspaces of X chosen as in the above proof #1 (as well as in
the proof of Proposition 12.1). We will study the eigenvalues of JL by a Galerkin
approximation. Choose an orthogonal (with respect to [·, ·]) basis {ξk}∞k=1 of X
such that ξk ∈ D (JL),

X− = span
{
ξ1, · · · , ξn−(L)

}
, X+ = span {ξk}∞k=n−(L)+1,

and [ξk, ξj ] = 0 if k 6= j; [ξj , ξj ] = −1 if 1 ≤ j ≤ n− (L) ; [ξj , ξj ] = 1 if j ≥
n− (L)+1. For each n > n− (L), define X(n) = span {ξ1, · · · , ξn} and denote πn be
the orthogonal projection with respect to the quadratic form [·, ·] from X to X(n).

Let X, JL, and [·, ·] (as a Hermitian symmetric form) also denote their com-
plexifications as in Chapter 3. Still {ξ1, ξ2, . . .} form a basis of the complexified X.
Define the operator F (n) : X(n) → X(n) by

F (n)v = πnJLv.

Notice that, for j, k ≤ n,[
F (n)ξk, ξj

]
= [πnJLξk, ξj ] = 〈LJLξk, ξj〉 = 〈Lξj , JLξk〉 ,

(
J (n)

)
jk
,

where the n×n matrix
(
J (n)

)
is real and anti-symmetric. Let v =

∑n
j=1 yjξj ∈ X(n)

and denote ~y(n) = (y1, · · · , yn)
T

and the n× n matrix

H(n) = ([ξk, ξj ]) = diag

−1, · · · ,−1︸ ︷︷ ︸
1 to n−(L)

, 1, · · · , 1︸ ︷︷ ︸
n−(L)+1 to n

 .

Then F (n)v =
∑n
k=1 akξk, where

~a(n) = (a1, · · · , an)
T

= H(n)J (n)~y(n).

So the eigenvalue problem F (n) (v) = λv is equivalent to

(5.2) H(n)J (n)~y(n) = λ~y(n),
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Let ~z(n) = H(n)~y(n), then the eigenvalue problem (5.2) becomes

J (n)H(n)~z(n) = λ~z(n).

For any n ≥ n− (L), since n−
(
H(n)

)
= n− (L), by Lemma 4.6, there exists

a subspace Z(n) ⊂ Cn of dimension n− (L), such that Z(n) is invariant under
J (n)H(n) and

〈
H(n)z, z

〉
≤ 0 for any z ∈ Z(n). Define Y (n) = H(n)Z(n) and

W (n) =


n∑
j=1

yjξj | (y1, · · · , yn)
T ∈ Y (n)

 .

Then W (n) is invariant under the linear mapping F (n), dim
(
W (n)

)
= n− (L) and

the quadratic functions

〈L·, ·〉 |W (n) =
〈
H(n)·, ·

〉
|Y (n) =

〈
H(n)·, ·

〉
|Z(n) ≤ 0.

As in the proof (#1) above, denote P± : X → X± to be the projection operators
with kerP± = X∓. Since the definitions of X+ and W (n) imply W (n) ∩X+ = {0},
it holds that P−

(
W (n)

)
= X−. So we can choose a basis {w(n)

1 , · · · , w(n)
n−(L)} of

W (n) such that w
(n)
j = ξj + w

(n)
j+ with w

(n)
j+ ∈ X+. For each j ≤ n−(L), since

0 ≥ 〈Lw(n)
j , w

(n)
j 〉 = 〈Lξ(n)

j , ξ
(n)
j 〉+ 〈Lw(n)

j+ , w
(n)
j+ 〉 ≥ −1 + δ0‖w(n)

j+ ‖
2,

so ‖w(n)
j ‖ ≤ C for some constant C independent of j and n. Therefore, as n→∞,

subject to a subsequence, we have w
(n)
j ⇀ w∞j ∈ X weakly and P−(w∞j ) = ξj . The

subspace W∞ = span
{
w∞j

}n−(L)

j=1
is of dimension n− (L) since P− (W∞) = X−.

We now show that: i)W∞ is invariant under the operator JL and ii) 〈Lu, u〉 ≤ 0
for any u ∈ W∞. To prove i), first note that since W (n) is invariant under F (n),
we have

F (n)w
(n)
k =

n−(L)∑
j=1

a
(n)
kj w

(n)
j , a

(n)
ij ∈ C.

For any integer l ∈ N and a fixed w ∈ X(l), when n ≥ l,
n−(L)∑
j=1

a
(n)
kj [w

(n)
j , w] = [F (n)w

(n)
k , w] = 〈LJLw(n)

k , w〉(5.3)

= −〈Lw(n)
k , JLw〉 = −[w

(n)
k , JLw].

We claim that
{
a

(n)
ij

}
is uniformly bounded for 1 ≤ k, j ≤ n− (L) and n > n− (L).

Suppose otherwise, there exists 1 ≤ k0, j0 ≤ n− (L) and a subsequence {nm} → ∞,
such that, for all j ≤ n−(L),∣∣∣a(nm)

k0j0

∣∣∣ = max
1≤j≤n−(L)

{∣∣∣a(nm)
k0j

∣∣∣}→∞ and ∀j, ck0,j = lim
m→∞

a
(nm)
k0j

/a
(nm)
k0j0

exists .

Then from (5.3), we get

n−(L)∑
j=1

a
(nm)
k0j

a
(nm)
k0j0

[
w

(nm)
j , w

]
= − 1

a
(nm)
k0j0

[
w

(nm)
k0

, JLw
]
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and letting m→∞, we obtain

(5.4)

n−(L)∑
j=1

ck0,j

[
w∞j , w

]
= 0

where in particular we also notice |ck0,j0 | = 1. By a density argument, the identity

(5.4) holds also for any w ∈ X. Therefore,
∑n−(L)
j=1 ck0,j w

∞
j = 0 by the non-

degeneracy of [·, ·]. This is in contradiction to the independency of {w∞k }. So

{a(n)
kj } is uniformly bounded. Let n → ∞ in (5.3), subject to a subsequence, we

obtain

n−(L)∑
j=1

a∞kj
[
w∞j , w

]
= −

[
w∞j , JLw

]
= [JLw∞k , w] , where a∞kj = lim

n→∞
a

(n)
kj .

By a density argument again the above equality is also true for any w ∈ X, which
implies

JL (w∞k ) =

n−(L)∑
j=1

a∞kj w
∞
j .

So W∞ is invariant under JL.
Now we prove the above claim ii), that is, 〈L·, ·〉 |W∞ ≤ 0. For any

u =

n−(L)∑
j=1

cjw
∞
j ∈W∞.

denote

u(n) =

n−(L)∑
j=1

cjw
(n)
j ∈W (n).

Clearly, u(n) ⇀ u weakly in X and
〈
Lu(n), u(n)

〉
≤ 0, which converges subject to a

subsequence. Since

lim
n→∞

〈
LP−u

(n), P−u
(n)
〉

= 〈LP−u, P−u〉 ,

which is due to P−w
∞
j = ξj and therefore P−u

(n) → P−u strongly in X, and

lim
n→∞

〈
LP+u

(n), P+u
(n)
〉
≥ 〈LP+u, P+u〉 .

as 〈Lx, x〉 1
2 is a norm on X+. Therefore,

0 ≥ lim
n→∞

〈
Lu(n), u(n)

〉
= 〈LP−u, P−u〉+ lim

n→∞

〈
LP+u

(n), P+u
(n)
〉

(5.5)

≥ 〈LP−u, P−u〉+ 〈LP+u, P+u〉 = 〈Lu, u〉 .

This complete the proof of claim ii) and thus the proof of Theorem 5.1 under the
separable assumption on X. �
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5.2. Further discussions on invariant subspaces and invariant
decompositions

Continuous dependence of invariant subspaces on JL. In perturbation prob-
lems, the operator JL may depend on a perturbation parameter ε. One would
naturally wish that a family Wε of non-positive invariant subspaces of dimension
n−(L) may be found depending on ε at least continuously. However, this turns
out to be impossible in general, even if L is assumed to be non-degenerate. See an
example in Section 8.3.

Invariant splitting, I. In the presence of W invariant under JL with dimW =
n−(L), it is natural to ask whether it is possible to make it into an invariant (under
JL) decomposition of X, i.e. whether there exist such W and a codim-n−(L)
invariant subspace W1 ⊂ X such that X = W ⊕W1. This is usually not possible
as in the following example

J =


0 −1 1 0
1 0 0 1
−1 0 0 0
0 −1 0 0

 , L =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 , JL =


0 −1 1 0
1 0 0 1
0 0 0 −1
0 0 1 0

 .

Here n−(L) = 2 and the only eigenvalues are σ(JL) = {±i}. The only possi-
ble non-positive 2-dim invariant subspace, where the eigenvalues of the restriction
of JL are contained in σ(JL), has to be the geometric kernel of ±i and thus
W = {x3 = x4 = 0}. There does not exist any 2-dim invariant subspace W1 such
that R4 = W ⊕W1 since the restriction of JL on W1 has to have eigenvectors of
±i as well.

Invariant Splitting, II. In light of Lemma 3.2,

W⊥L = {u ∈ X | 〈Lu, v〉 = 0, ∀v ∈W}
is invariant under etJL. While one may wish X = W ⊕W⊥L , the only obstacle
is that W⊥L may intersect W nontrivially as LW , as defined in (12.1), may be
degenerate as in the above example. A more natural question is whether it is
possible to enlarge W to some closed W̃ ⊃W such that

dim W̃ <∞, JL(W̃ ) ⊂ W̃ , and LW̃ an isomorphism.

If so, Lemmas 12.2 and 3.2 would imply

W̃⊥L = {u ∈ X | 〈Lu, v〉 = 0, ∀v ∈ W̃}
is invariant under etJL and X = W̃⊕W̃⊥L . Moreover, LW̃⊥L is positive definite due

to Theorem 5.1 and thus etJL is stable on W̃⊥L . Consequently all the index counting
and stability analysis related to etJL can be reduced to the finite dimensional W̃ ,
which has been analyzed in Chapter 4. For example, we would have a counting
theorem like Theorem 2.3, in particular with k≤0

0 and k≤0
i replaced by k−0 and k−i ,

respectively.
Unfortunately the above splitting is not always possible either, as can be seen

from a counterexample in Section 8.4. In Proposition 2.4, we give conditions to get
such a decomposition.



CHAPTER 6

Structural decomposition

In this chapter, we prove Theorem 2.1 and Corollary 2.1 on the decomposition
of X. Our first step to decompose X is the following proposition based on the
invariant subspace Theorem 5.1.

Proposition 6.1. In addition to (H1-H3), assume kerL = {0}. There exist
closed subspaces Yj, j = 1, 2, 3, 4, such that X = ⊕4

j=1Yj and

(6.1) dimY1 = dimY4 = n−(L)− dimY2 <∞, Y1,2,4 ⊂ ∩∞k=1D
(
(JL)k

)
,

and accordingly the linear operator JL and the quadratic form 〈L·, ·〉 take the block
forms

JL←→


Ã1 Ã12 Ã13 Ã14

0 Ã2 0 Ã24

0 0 Ã3 Ã34

0 0 0 Ã4

 , L←→


0 0 0 B̃
0 LY2 0 0
0 0 LY3

0

B̃∗ 0 0 0

 .

Here B̃ : Y4 → Y ∗1 is an isomorphism and the quadratic forms LY2 ≤ −δ0 and

LY3 ≥ δ0 for some δ0 > 0. Moreover, Ã3 : D(Ã3) = Y3 ∩ D(JL) → Y3 is closed,

while all other blocks are bounded operators. The operators Ã2,3 are anti-self-adjoint
with respect to the equivalent inner product ∓〈LY2,3 ·, ·〉.

Before we give the proof the proposition, we would like to make two remarks.
Firstly we observe that (JL)k takes the same blockwise form as the above one of

JL. Secondly, the bounded operator Ã13 should be understood as the closure of
P1JL|Y3

, which may not be closed or everywhere defined itself. Here Pj : X → Yj
is the projection to Yj , j = 1, 2, 3, 4, according to the decomposition.

Proof. Theorem 5.1 states that there existsW ⊂ D
(
(JL)k

)
such that dimW =

n−(L), JL(W ) ⊂ W , and 〈Lu, u〉 ≤ 0 for all u ∈ W . Let Y1 = W ∩W⊥L (⊥L
defined as in Lemma 12.2), Ỹ2 ⊂W , and Ỹ3 ⊂W⊥L be closed subspaces such that

W = Y1 ⊕ Ỹ2 and W⊥L = Y1 ⊕ Ỹ3. Recall the notation LY as defined in (12.1) for
any closed subspace Y .

Claim. LY1 = 0 and there exists δ0 > 0 such that LỸ2
≤ −δ0 and LỸ3

≥ δ0.

In fact, since the quadratic form 〈Lu, u〉 ≤ 0, for all u ∈ W , the variational
principle yields that u ∈ W satisfies 〈Lu, u〉 = 0 if and only if 〈Lu, v〉 = 0 for
all v ∈ W , or equivalently u ∈ W ∩W⊥L = Y1. Therefore, 〈Lu, u〉 < 0 for any

u ∈ Ỹ2\{0} which along with dim Ỹ2 <∞ implies LỸ2
≤ −δ0 for some δ0 > 0.

If there exists u ∈ W⊥L\W satisfying 〈Lu, u〉 ≤ 0, the definition of W⊥L

would imply 〈Lu, v〉 ≤ 0 for all v ∈ W̃ = W ⊕Ru and dim W̃ = n−(L) + 1. This

would contradict Theorem 5.1 and thus we obtain 〈Lu, u〉 > 0 for all u ∈ Ỹ3\{0}.

45
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Consequently, Lemma 12.2 implies that LỸ3
≥ δ0 for some δ0 > 0 and the claim is

proved.
Since L is assumed to non-degenerate, it is easy to see codim-(W + W⊥L) =

dimY1 <∞. Let Ỹ4 be a subspace such thatX = (W+W⊥L)⊕Ỹ4 = Y1⊕Ỹ2⊕Ỹ3⊕Ỹ4

and Ỹ4 ⊂ ∩∞k=1D
(
(JL)k

)
, which is possible as ∩∞k=1D

(
(JL)k

)
is dense and dim Ỹ4 =

dimY1 <∞. With respect to this decomposition, L takes the form

L←→


0 0 0 B̃∗41

0 LỸ2
0 B̃∗42

0 0 LỸ3
B̃∗43

B̃41 B̃42 B̃43 LỸ4

 .

The non-degeneracy of L implies that B̃41 = i∗
Ỹ4
LiY1 : Y1 → Ỹ ∗4 is an isomorphism.

Let

S4 = −1

2
B̃−1

41 LỸ4
: Ỹ4 → Y1, Sj = −B̃−1

41 B̃4j : Ỹj → Y1, j = 2, 3.

For any u, v ∈ Ỹ4, we have

〈L(u+ S4u), v + S4v〉 =〈LỸ4
u, v〉+ 〈

(
LS4 + (LS4)∗

)
u, v〉

=〈LỸ4
u, v〉+ 〈

(
B̃41S4 + (B̃41S4)∗

)
u, v〉 = 0.

Similarly, for any u ∈ Ỹj , j = 2, 3, and v ∈ Ỹ4,

〈L(u+ Sju), v + S4v〉 = 〈B̃4ju, v〉+ 〈B̃41Sju, v〉 = 0.

Let Yj = (I + Sj)Ỹj . Clearly, it still holds X = ⊕4
j=1Y4. Moreover, Y1,2,4 ⊂

∩∞k=1D
(
(JL)k

)
, the dimension relationship in (6.1) holds, and in this decomposition

L takes the desired form as in the statement of the proposition. Due to W = Y1⊕Y2

and W⊥L = Y1⊕Y3, the same claim as above implies the uniform positivity of −LY2

and LY3
. The non-degeneracy of B̃ follows from the non-degeneracy assumption of

L.
The invariance of W , and thus the invariance of W⊥L due to Lemma 3.2, yields

the desired form of JL. The properties that Ã2,3 are anti-self-adjoint with respect
to 〈LY2,3 ·, ·〉 and the boundedness of other blocks can be proved by applying Lemma
12.3 repeatedly to the splitting based on X = (Y1 ⊕ Y4)⊕ (Y2 ⊕ Y3). �

The following general functional analysis lemma on invariant subspaces will be
used several times in the rest of the paper.

Lemma 6.1. Let Z be a Banach space and Z1,2 ⊂ Z be closed subspaces such
that Z = Z1⊕Z2. Suppose A is a linear operator on X which, in the above splitting,

takes the form

(
A1 A12

0 A2

)
, such that

• A1,2 : Z1,2 ⊃ D(A1,2)→ Z1,2 are densely defined closed operators, one of
which and A12 : Z2 → Z1 is bounded and
• σ(A1) ∩ σ(A2) = ∅,

then there exists a bounded operator S : Z2 → Z1 such that

(1) SZ2 ⊂ D(A1) and

(2) A
(
Z̃2 ∩D(A)

)
⊂ Z̃2, where Z̃2 = (I + S)Z2 = {z2 + S(z2) | z2 ∈ Z2}.
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Remark 6.1. Clearly, the above properties also imply D(A)∩Z̃2 = (I+S)D(A2)

is dense in the closed subspace Z̃2 and A|Z̃2
: D(A)∩ Z̃2 → Z̃2 is a closed operator.

By using the splitting Z = Z1 ⊕ Z̃2, A is block diagonalized into diag(A1, A2).
Moreover, if A2 is bounded, then the closed graph theorem implies that A|Z̃2

is also
bounded.

The proof of this lemma may be found in some standard functional analysis
textbook. For the sake of completeness we also give a proof here.

Proof. Let us first consider the case when A2 is bounded. Since σ(A2) is
compact and σ(A2) ∩ σ(A1) = ∅, there exists an open subset Ω ⊂ C with compact
closure and smooth boundary Γ = ∂Ω such that σ(A2) ⊂ Ω ⊂ Ω ⊂ C\σ(A1). We
have

1

2πi

∮
Γ

(λ−A1)−1dλ = 0,
1

2πi

∮
Γ

(λ−A2)−1dλ = I.

Define

S =
1

2πi

∮
Γ

T (λ)dλ, where T (λ) = (A1 − λ)−1A12(A2 − λ)−1.

Since (Aj − λ)−1, j = 1, 2, is analytic from C\σ(Aj) to L(Zj), it is clear that
S : Z2 → Z1 is bounded. In particular, observing T (λ)z ∈ D(A1) for any z ∈ Z2,
one may verify

(6.2) T (λ)A2z −A1T (λ)z = (A1 − λ)−1A12z −A12(A2 − λ)−1z , T̃ (λ)z,

where T̃ (λ) ∈ L(Z2, Z1) is also analytic in λ.
We first show that Sz ∈ D(A1) for any z ∈ Z2. In fact, let Sn, n ∈ N, be the

values of a sequence of Riemann sums of the integral defining S, such that Sn → S.
Clearly, the discrete Riemann sums satisfy Snz ∈ D(A1) and along with (6.2) we
obtain that

SnA2z −A1Snz = T̃nz →
1

2πi

∮
Γ

T̃ (λ)zdλ = A12z

where T̃nz is the corresponding Riemann sum of the integral on the right side.
Therefore, we obtain from the closedness of A1 that Sz ∈ D(A1) and

(6.3) SA2 −A1S = A12.

From this equation it is straightforward to verify, for any z ∈ Z2,

(6.4) A(z + Sz) = A2z + SA2z.

In the other case where A1 is bounded, the proof is similar. In fact, let Ω ⊂ C
be an open subset with compact closure and smooth boundary Γ = ∂Ω such that
σ(A1) ⊂ Ω ⊂ Ω ⊂ C\σ(A2). Define

S = − 1

2πi

∮
Γ

T (λ)dλ ∈ L(Z2, Z1).

It holds trivially Sz ∈ D(A1) = Z1 for any z ∈ Z2. The same calculation, based
on (6.2) but without the need of going through the Riemann sum as D(A1) = Z1,
leads us to (6.3) which implies (6.4) for any z ∈ D(A2). The proof is complete. �

In the next step, we remove the non-degeneracy assumption on L and split the
phase space X into the direct sum of the hyperbolic (if any) and central subspaces of
JL. In particular, the non-degeneracy of the quadratic form 〈L·, ·〉 on the hyperbolic
subspace Xu ⊕Xs is of particular importance in the decomposition of JL.
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Proposition 6.2. Assume (H1-3). There exist closed subspaces Xu,s,c ⊂ X
such that

(1) X = Xc ⊕ Xu ⊕ Xs, Xu,s ⊂ D(JL), dimXu = dimXs ≤ n−(L), and
kerL ⊂ Xc;

(2) with respect to this decomposition, JL and L take the forms

JL←→

Ac 0 0
0 Au 0
0 0 As

 , L←→

LXc 0 0
0 0 B
0 B∗ 0

 ;

(3) B : Xu → X∗s is an isomorphism, Ac is densely defined, closed, and the
spectral sets satisfy σ(Ac) ⊂ iR and ±Reλ > 0 for any λ ∈ σ(Au,s).

Proof. Let X0 = kerL and Y = X− ⊕ X+ where X± are given in Lemma
12.4. Let P : X → Y be the projection associated to X = Y ⊕ X0 and JY =
PJP ∗. Lemma 12.3 implies that (Y,LY , JY ) satisfy assumptions (H1-3), with LY
being an isomorphism. Applying Proposition 6.1, we obtain closed subspaces Yj ,
j = 1, 2, 3, 4, such that X = X0 ⊕ (⊕4

j=1Yj) and JL and L take the forms

JL←→


0 Ã01 Ã02 Ã03 Ã04

0 Ã1 Ã12 Ã13 Ã14

0 0 Ã2 0 Ã24

0 0 0 Ã3 Ã34

0 0 0 0 Ã4

 , L←→


0 0 0 0 0

0 0 0 0 B̃
0 0 LY2

0 0
0 0 0 LY3 0

0 B̃∗ 0 0 0

 ,

where B̃ is an isomorphism, LY2 ≤ −δ0, LY3 ≥ δ0, for some δ0 > 0, and Ã2,3 are
anti-self-adjoint with respect to the equivalent inner products ∓〈LY2,3

·, ·〉 on Y2,3.

The upper triangular structure of JL implies σ(JL) = {0}
⋃
∪4
j=1σ(Ãj). Moreover,

we have σ(Ã2,3) ⊂ iR due to the anti-self-adjointness of Ã2,3.
For j = 1, 4, as dimYj < ∞, let Yj = Yjc ⊕ Yjh, where Yjc and Yjh, are the

eigenspaces of Ãj corresponding to all eigenvalues with zero and nonzero real parts,
respectively. For any x1,4 ∈ Y1,4, the above form of JL and L imply

〈B̃x4, Ã1x1〉+ 〈B̃Ã4x4, x1〉 =〈LÃ1x1, x4〉+ 〈LÃ4x4, x1〉
=〈LJLx1, x4〉+ 〈LJLx4, x1〉 = 0.

Much as in the proof of Lemma 3.3, due to the difference in eigenvalues, we obtain

(6.5) 〈B̃x4h, x1c〉 = 0 = 〈B̃x4c, x1h〉, ∀xjc ∈ Yjc, xjh ∈ Yjh, j = 1, 4.

Therefore, the non-degeneracy of B̃ implies that

(6.6) 〈B̃x4h, x1h〉 and 〈B̃x4c, x1c〉 are non-degenerate quadratic forms

on Y1h × Y4h and Y1c × Y4c.
Applying Lemma 6.1 to X0 ⊕ Y1h and JL|X0⊕Y1h

, we obtain a linear operator

S1 : Y1h → X0 such that X1h , (I +S1)Y1h ⊂ D(JL) satisfies JL(X1h) = X1h and

σ(JL|X1h
) = σ(Ã1|Y1h

). Clearly, we still have the decomposition

X = X0 ⊕ Y1c ⊕X1h ⊕ Y2 ⊕ Y3 ⊕ Y4c ⊕ Y4h.

Applying again Lemma 6.1 to

Z = X0 ⊕ Y1c ⊕ Y2 ⊕ Y3 ⊕ Y4h
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and the projection (with the kernel X1h ⊕ Y4c) of JL|Z to Z, we obtain a bounded
linear operator

S4 : Y4h → X0 ⊕ Y1c ⊕ Y2 ⊕ Y3

such that X4h , (I + S4)Y4h ⊂ D(JL) satisfies JL(X4h) ⊂ X1h ⊕ X4h. Let
Xh = X1h ⊕X4h, we have

Xh ⊂ D(JL), JL(Xh) = Xh, σ(JL|Xh) = σ(JL)\iR = σ(Ã1|Y1h
) ∪ σ(Ã4|Y4h

).

According to (6.5) and the form of L, it holds

〈L(I + S1)x1h, (I + S4)x4h〉 = 〈Lx1h, x4h〉 = 〈B̃x4h, x1h〉.
Therefore, we obtain the non-degeneracy of 〈L·, ·〉 on Xh from (6.6) and the con-
struction ofXh. LetXh = Xu⊕Xs, whereXu,s are the eigenspaces of all eigenvalues
λ ∈ σ(JL|Xh) with ±Reλ > 0. Lemma 3.3 implies 〈Lu, v〉 = 0 on both Xu and
Xs and thus 〈L·, ·〉 is a non-degenerate quadratic form on Xu × Xs due to the
non-degeneracy of 〈L·, ·〉 on Xh. This also yields

dimXu = dimXs =
1

2
dimXh ≤ dimY1 ≤ n−(L).

Let
Xc = X⊥Lh = {u ∈ X | 〈Lu, v〉 = 0, ∀v ∈ Xh}.

By Lemmas 12.2 and 3.2, X = Xh⊕Xc and Xc is invariant under etJL. Therefore,
JL is densely defined on Xc and Ac

(
D(Ac) ∩Xc

)
⊂ Xc where Ac = JL|Xc . More-

over, from the non-degeneracy of 〈L·, ·〉 on Xh, it is straightforward to show that Xc

can be written as a graph of a bounded linear operator fromX0⊕Y1c⊕Y2⊕Y3⊕Y4c to
Xh. Therefore, due to the upper triangular structure of JL, the spectrum σ(JL|Xc)
is given by the union of the spectrum of those diagonal blocks of JL complementary
to Y1h and Y4h and thus σ(JL|Xc) ⊂ iR. �

As a by-product, we prove the symmetry of eigenvalues of σ(JL).

Corollary 6.1. Suppose λ ∈ σ(JL).
(i) If λ ∈ σ(JL)\iR, then λ is an isolated eigenvalue of finite algebraic multi-

plicity. Its eigenspace consists of generalized eigenvectors only. Moreover, let mλ

to be the algebraic multiplicity of λ, then

(6.7) n−
(
L|Eλ⊕E−λ̄

)
= dim (Eλ) = mλ.

(ii) If λ is an eigenvalues of JL, then ±λ,±λ̄ are also eigenvalues of JL.
Moreover, for any integer k > 0, dim ker(JL− a)k are the same for a = ±λ,±λ̄.

For an eigenvalue λ ∈ iR, it may happen dim ker(JL− λ) =∞.

Proof. According to Lemma 3.6, we only need to prove λ ∈ σ(JL)\iR im-
plies that λ is an isolated eigenvalue of finite multiplicity and dim ker(JL− λ)k =
dim ker(JL+ λ̄)k.

In fact, if λ ∈ σ(JL)\iR, then Proposition 6.2 implies that λ ∈ σ(Au)∪ σ(As).
As Au,s are finite dimensional matrices, λ must be an isolated eigenvalue of JL
with finite algebraic multiplicity. Moreover, from the blockwise forms of L and JL
and J∗ = −J , it is easy to compute

J ←→

JXc 0 0
0 0 Au(B∗)−1

0 AsB
−1 0

 .
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Again since J∗ = −J , we have As = −B−1A∗uB. As Au,s are finite dimensional
matrices and eigenvalues of JL with positive (or negative) real parts coincide with
eigenvalues of Au (or As), the statement in the corollary follows from this similarity
immediately.

Since by Proposition 6.2 L|Xu⊕Xs is non-degenerate, formula (6.7) follows from
Lemma 4.2 in the finite dimensional case. �

Proof of Theorem 2.1. Let X5,6 = Xu,s and JXc = PcJP
∗
c , where Xu,s,c are

obtained in Proposition 6.2 and Pc : X → Xc be the projection associated to
X = Xc ⊕Xu ⊕Xs. According to Lemma 12.3, (Xc, LXc , JXc) satisfy assumption
(H1-3) as well. Since Proposition 6.2 also ensures the non-degeneracy of LX5⊕X6

and dimX5,6 ≤ n−(L), the finite dimensional results in Chapter 4 (Lemma 3.6 and
4.2) imply the symmetry between the spectra σ(A5) and σ(A6) and n−(L|X5⊕X6

) =
dimX5. Therefore, we obtain, from the L-orthogonality between Xc and Xu⊕Xs,

n−(LXc) = n−(L)− dimX5.

Recall X0 = kerL = kerLXc ⊂ Xc. Let X± be given by Lemma 12.4 applied
to (Xc, LXc , JXc), Y = X+ ⊕ X−, PY : X → Y be the associated projection,
and JY = PY JP

∗
Y . Again Lemma 12.3 implies (Y, LY , JY ) satisfy (H1–3) with LY

being an isomorphism. Applying Proposition 6.1 to Y and we obtain subspaces X̃j ,
j = 1, 2, 3, 4. To ensure the orthogonality between X0 = kerL and Xj , j = 1, 2, 3, 4,
we modify the definition of Xj as

Xj = {u ∈ X0 ⊕ X̃j | (u, v) = 0, ∀v ∈ kerL}, j = 1, 2, 3, 4.

It is straightforward to verify the desired properties of the decomposition X =
⊕6
j=0Xj by using Propositions 6.1 and 6.2. The proof of Theorem 2.1 is complete.
�

To finish this chapter, we give the following lemma on the L-orthogonality
between certain eigenspaces defined by spectral integrals.

Lemma 6.2. Let Ω ⊂ C be an open subset symmetric about iR with smooth
boundary Γ = ∂Ω and compact closure such that Γ ∩ σ(JL) = ∅. Let

P =
1

2πi

∮
Γ

(z − JL)−1dz.

and then it holds that 〈L(I − P )u, Pv〉 = 0, for any u, v ∈ X.

The above P is simply the standard spectral projection operator.

Proof. We first observe for any w,w′ ∈ X, (12.8) and (12.10) imply

1

2πi

∮
Γ

〈Lw, (z − JL)−1w′〉dz = 〈Lw,Pw′〉,(6.8)

1

2πi

∮
Γ

〈L(z − JL)−1w,w′〉dz̄ = −〈LPw,w′〉,(6.9)

where the first equality is used in the derivation of the second equality. Here the
dz̄ and the minus sign in the second equality are due to the anti-linear nature of L
in (12.10).
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Let Ω1 ⊂ Ω be an open subset symmetric about iR such that Γ1 = ∂Ω1 ⊂ Ω is
smooth and σ(JL) ∩ (Ω\Ω1) = ∅. Clearly,

P =
1

2πi

∮
Γ1

(z − JL)−1dz,

due to the analyticity of (z − JL)−1. Denote

ũ(z) = (z − JL)−1u, ṽ(z) = (z − JL)−1v, ∀z /∈ σ(JL).

For z1, z2 /∈ σ(JL) satisfying z̄1 +z2 6= 0, one may compute using (12.8) and (12.10)

1

z̄1 + z2

(
〈L(z1 − JL)−1u, v〉+ 〈Lu, (z2 − JL)−1v〉

)
=

1

z̄1 + z2

(
〈Lũ(z1), (z2 − JL)ṽ(z2)〉+ 〈L(z1 − JL)ũ(z1), ṽ(z2)〉

)
=〈Lũ(z1), ṽ(z2)〉 = 〈L(z1 − JL)−1u, (z2 − JL)−1v〉.

Due to the definition of Γ1 and its symmetry about the imaginary axis, z̄1 + z2 6= 0
for any z1 ∈ Γ and z2 ∈ Γ1. Integrating the above equality along these curves,
where Γ1 is enclosed in Γ, we obtain from the Cauchy integral theorem and (6.8)
and (6.9)

〈LPu, Pv〉 =
−1

(2πi)2

∮
Γ

∮
Γ1

〈L(z1 − JL)−1u, (z2 − JL)−1v〉dz2dz̄1

=
−1

(2πi)2

∮
Γ

∮
Γ1

1

z̄1 + z2
〈L(z1 − JL)−1u, v〉dz2dz̄1

+
−1

(2πi)2

∮
Γ1

∮
Γ

1

z̄1 + z2
〈Lu, (z2 − JL)−1v〉dz̄1dz2.

Since −z̄1 is not enclosed in Γ1 while −z̄1 is enclosed in Γ, the above first integral
vanishes and the we obtain from (6.8) and the Cauchy integral theorem

〈LPu, Pv〉 = 〈Lu, Pv〉.

This proves the lemma. �

The above lemma implies that 〈Lu, v〉 = 0 for any u ∈ kerP and v ∈ PX,
where X = PX ⊕ kerP is a spectral decomposition of X invariant under JL. As a
corollary, we give the following extension of Lemma 3.3.

Let σ̃ ⊂ σ(JL) be compact and also open in the relative topology of σ(JL),
namely σ̃ is isolated in σ(JL). There exists an open domain Ω ⊂ C with compact
closure and smooth boundary such that Ω ∩ σ(JL) = σ̃. Let

Pσ̃ =
1

2πi

∮
∂Ω

(z − JL)−1dz, Xσ̃ = Pσ̃X, Xσ̃c = kerPσ̃.

According to the Cauchy integral theorem, the projection operator Pσ̃ as well as
the above subspaces, which are invariant under JL, are independent of the choice
of Ω and JLPσ̃ = Pσ̃JL. Moreover,

σ(JL|Xσ̃ ) = σ̃, σ(JL|Xσ̃c ) = σ(JL)\σ̃.

Corollary 6.2. Suppose σj ⊂ σ(JL), j = 1, 2, are compact and also open in
the relative topology of σ(JL). In addition, assume

σ1 ∩ σ̃2 = ∅, where σ̃2 = {λ ∈ C | λ ∈ σ2 or λ̄ ∈ σ2}.
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Then 〈Lu, v〉 = 0 for any u ∈ Xσ1
and v ∈ Xσ2

where Xσ1,2
are defined as in the

above.

Proof. According to our assumptions, there exists an open domain Ω ⊂ C,
symmetric about iR with smooth boundary and compact closure such that Ω ∩
σ(JL) = σ̃2 and ∂Ω ∩ σ(JL) = ∅. The corollary follows from Lemma 6.2 and the
facts Xσ1

⊂ kerPσ̃2
and Xσ2

⊂ Pσ̃2
X. �



CHAPTER 7

Exponential trichotomy

We prove Theorem 2.2 on the exponential trichotomy in this chapter. The proof
is based on the decomposition Theorem 2.1 and we follow the notations there.

Let

Eu = X5, Es = X6, Ec = ⊕4
j=0Xj ,

where Xj , j = 0, . . . , 6, are given by Theorem 2.1. Based on Theorem 2.1, it only
remains to prove the growth estimates.

Since A2,3 are anti-self-adjoint with respect to the equivalent inner product
∓〈LX2,3 ·, ·〉, there exists a constant C > 0 such that

(7.1) |etA2 |, |etA3 | ≤ C, ∀t ∈ R.

Since dimX5 = dimX6 <∞ and σ(A5) = −σ(A6), it is clear

|etA5 | ≤ C(1 + |t|dimX5−1)eλut, ∀t < 0,

|etA6 | ≤ C(1 + |t|dimX6−1)e−λut, ∀t > 0
(7.2)

for some C > 0 and λu = min{Reλ | λ ∈ σ(A5)}. Finally, as dimX1 = dimX4 <∞
and σ(A1,4) ⊂ iR, we also have

(7.3) |etA1,4 | ≤ C(1 + |t|dimX1−1), ∀t ∈ R.

For any x ∈ X, write

etJLx =

6∑
j=0

xj(t), xj(t) ∈ Xj ,

whereXj , j = 0, . . . , 6, are given by Theorem 2.1. One can write down the equations
explicitly:

(7.4)



∂tx0 = A01x1 +A02x2 +A03x3 +A04x4

∂tx1 = A1x1 +A12x2 +A13x3 +A14x4

∂tx2 = A2x2 +A24x4

∂tx3 = A3x3 +A34x4

xj(t) = etAjxj(0), j = 4, 5, 6.

For j = 2, 3, we obtain from Theorem 2.1 and inequalities (7.1) and (7.3) that

‖xj(t)‖ =‖etAjxj(0) +

∫ t

0

e(t−τ)AjAj4e
τA4x4(0)dτ‖

≤C
(
‖xj(0)‖+ (1 + |t|dimX1)‖x4(0)‖

)(7.5)
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for some C > 0. Regrading x1(t), we have from (7.1), (7.3), and (7.5)

‖x1(t)‖ ≤‖etA1x1(0) +

∫ t

0

e(t−τ)A1
(
A12x2(τ) +A13x3(τ) +A14e

τA4x4(0)
)
dτ‖

≤C
(

1 + |t|dimX1−1 +

∫ |t|
0

1 + |t− τ |dimX1−1|τ |dimX1dτ
)
‖x(0)‖

≤C(1 + |t|2 dimX1)‖x(0)‖.(7.6)

Much as on the above we also have

(7.7) ‖x0(t)‖ ≤ C(1 + |t|2 dimX1+1)‖x(0)‖,
The above inequalities prove the desired exponential trichotomy estimates.

Finally, repeatedly applying JL to equation (2.1) and using the above inequal-
ities yield the trichotomy estimates in the graph norms on D

(
(JL)k

)
.



CHAPTER 8

The index theorems and the structure of Eiµ

Our goal in this chapter is to complete the proof of the index theorems and
related properties.

8.1. Proof of Theorem 2.3: the index counting formula

The symmetry of σ(JL), the eigenvalues of JL, and the dimensions of the
spaces of generalized eigenvectors have been proved in Lemma 3.6 and Corollary
6.1. The index formula (2.13) will be proved in the next two lemmas. Recall the
notations n−(L|Y ) and n≤0(L|Y ) for a subspace Y ⊂ X and indices kr, kc, k

≤0(iµ),

k≤0
i , k≤0

0 etc. defined in Section 2.4.

Lemma 8.1. Under hypotheses (H1-3), it holds

kr + 2kc + 2k≤0
i + k≤0

0 ≥ n− (L) .

Proof. Let Xj , j = 0, . . . , 6, be the closed subspaces constructed in Theo-
rem 2.1 and Z = ⊕2

j=0Xj . From Theorem 2.1, Z is an invariant subspace of JL
containing kerL satisfying σ(JL|Z) ⊂ iR. For any eigenvalue iµ ∈ σ(JL|Z), let
Eiµ(Z) = Eiµ∩Z be the subspace of generalized eigenvectors of iµ in Z, and denote
the corresponding non-positive index of L|Z by

k≤0
i (Z) = Σiµ∈σ(JL|Z)∩iR+k≤0(iµ, Z),

where k≤0(iµ, Z) = n≤0(L|Eiµ(Z)).
On the one hand, for any eigenvalue iµ 6= 0, it clearly holds Eiµ(Z) ⊂ Eiµ

and thus k≤0(iµ, Z) ≤ k≤0(iµ). Therefore, we have k≤0
i (Z) ≤ k≤0

i . For the same

reason, we also have k≤0
0 (Z) ≤ k≤0

0 as kerL ⊂ E0(Z), where k≤0
0 (Z) has a similar

definition as k≤0
0 (defined in (2.12)) except applied to E0(Z) instead of E0. From

Theorem 2.1 and the finite dimensionality of X5, it is clear kr + 2kc = dimX5.
Consequently, we obtain

(8.1) kr + 2kc + 2k≤0
i + k≤0

0 ≥ dimX5 + 2k≤0
i (Z) + k≤0

0 (Z).

On the other hand, due to the finite dimensionality of Xj , j = 1, 2, and the
blockwise upper triangular form of JL, we have Z = ⊕iµ∈σ(JL|Z)∩iREiµ(Z). More-
over, since L is non-positive on Z according to Theorem 2.1, we have

2k≤0
i (Z) + k≤0

0 (Z) = dimX1 + dimX2 = n−(L)− dimX5.

Combining it with (8.1), we obtain the conclusion of the lemma. �

Lemma 8.2. Under hypotheses (H1-3), it holds

kr + 2kc + 2k≤0
i + k≤0

0 ≤ n− (L) .
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Proof. Let Xj , j = 0, . . . , 6, be the closed subspaces constructed in Theo-
rem 2.1 and Y = ⊕6

j=1Xj . Let PY be the projection associated to X = kerL ⊕
Y . Lemma 12.3 implies that (Y,LY , JY ) satisfies assumptions (H1-3), where
n−(LY ) = n−(L). The definitions of JY and LY also imply JY LY = PY (JL).

Let iµ ∈ σ(JL) ∩ iR+. By the definition of k≤0(iµ), there exists a subspace

E≤0
iµ ⊂ Eiµ such that dimE≤0

iµ = k≤0(iµ) and 〈Lu, u〉 ≤ 0, for all u ∈ E≤0
iµ . Since

µ 6= 0 and thus Eiµ ∩ kerL = {0}, we have dimPY E
≤0
iµ = dimE≤0

iµ . For µ < 0, let

E≤0
iµ = {ū | u ∈ E≤0

−iµ}. For µ = 0, let Ẽ0 = E0 ∩ Y where clearly E0 = kerL⊕ Ẽ0.

There exists a subspace E≤0
0 ⊂ Ẽ0 such that dimE≤0

0 = k≤0
0 and 〈Lu, u〉 ≤ 0, for

all u ∈ E≤0
0 . Let

W = X5 ⊕ E≤0
0 ⊕ (⊕iµ∈σJL∩iRPY E≤0

iµ ) ⊂ Y.

It is clearly (the complexification of) a real subspace of Y satisfying ū ∈ W for all
u ∈W . Theorem 2.1 implies

dimW = dimX5 + k≤0
0 + 2k≤0

i = kr + 2kc + k≤0
0 + 2k≤0

i .

From Lemma 3.3, we haveX5 and PY E
≤0
iµ (iµ ∈ σJL ∩ iR) are mutually L-orthogonal.

Therefore, our construction of W yields that 〈Lu, u〉 ≤ 0 for all u ∈ W ⊂ Y . Ap-
plying Theorem 5.1 to (Y,LY , JY ) implies dimW ≤ n−(LY ) = n−(L) and thus the
lemma is proved. �

8.2. Structures of subspaces Eiµ of generalized eigenvectors

In this section, we will prove Propositions 2.1 and 2.2. We complete the proof
in several steps.

Lemma 8.3. Let iµ ∈ σ(JL) ∩ iR and E ⊂ Eiµ be a closed subspace such that
JL(E) ⊂ E. In addition to (H1-3), assume 〈L·, ·〉 is non-degenerate (in the sense

of (2.4)) on both X and E. Then there exist closed subspaces E1, Ẽ ⊂ E such that

E = E1 ⊕ Ẽ and L, JL take the following forms on E

〈L·, ·〉 ←→
(
LE1 0

0 LẼ

)
, JL←→

(
iµ 0

0 Ã

)
,

and ker(JL− iµ) ∩ Ẽ ⊂ (JL− iµ)Ẽ with non-degenerate LE1 and LẼ and

dim Ẽ ≤ 3
(
n−(L|E)− n−(L|E1)

)
, dim

(
(JL− iµ)E

)
≤ 2
(
n−(L|E)− n−(L|E1)

)
.

Remark 8.1. The property ker(JL − iµ) ∩ Ẽ ⊂ (JL − iµ)Ẽ, or equivalently

ker(Ã − iµ) ⊂ (Ã − iµ)Ẽ, is equivalent to that the Jordan canonical form of Ã
contains only nontrivial Jordan blocks.

Proof. From Lemma 3.5, Eiµ = ker(JL − iµ)K for some K > 0 and JL :
Eiµ → Eiµ is a bounded operator. Let

E0 = {u ∈ E ∩ ker(JL− iµ) | 〈Lu, v〉 = 0, ∀v ∈ E ∩ ker(JL− iµ)},
E1 = {u ∈ E ∩ ker(JL− iµ) | (u, v) = 0, ∀v ∈ E0}.

Obviously, ker(JL − iµ) ∩ E = E0 ⊕ E1. Moreover, for any u ∈ E1\{0}, there
must exist v ∈ E1 such that 〈Lu, v〉 6= 0, otherwise it would lead to u ∈ E0, a
contradiction. Applying statement 2 of Lemma 12.2 to Y = E1, we obtain that
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〈L·, ·〉 is non-degenerate on E1. Since 〈L·, ·〉 is assumed to be non-degenerate on
both X and E, we apply statement 1 of Lemma 12.2 to obtain

(8.2) X = E1 ⊕ (E1)⊥L and E = E1 ⊕ Ẽ, where Ẽ = E ∩ (E1)⊥L .

Here (E1)⊥L ⊂ X is the subspace L-perpendicular to E1. Clearly, E0 ⊂ Ẽ.

Claim. 1.) dim Ẽ < ∞, 2.) 〈L·, ·〉 is non-degenerate on Ẽ, and 3.) JL(Ẽ) ⊂
Ẽ.

The invariance of Ẽ under JL follows directly from the invariance of E and
E1 and Lemma 3.2. The non-degeneracy of 〈L·, ·〉 on both E and E1 implies that

〈L·, ·〉 is non-degenerate on Ẽ as well. To complete the proof of the claim, we only

need to prove dim Ẽ <∞.
On the one hand, from the above definitions, 〈Lu, v〉 = 0 for any u, v ∈ E0.

The non-degeneracy of 〈L·, ·〉 on E and Theorem 5.1 along with Remark 5.1 imply

(8.3) dimE0 ≤ n−(L|Ẽ).

On the other hand, it is clear from the definitions of Ẽ and the non-degeneracy of
〈L·, ·〉 on E1 that

(8.4) Ẽ ∩ ker(JL− iµ) = E0.

Moreover, from Lemma 3.5, E ⊂ Eiµ = ker(JL − iµ)K for some K > 0, and each

Jordan chain in Ẽ contains a vector in E0, we obtain

dim Ẽ ≤ K dimE0 ≤ Kn−(L|E),

from the invariance of Ẽ under JL. The claim is proved.
Now we complete the proof of the lemma by reducing it to a finite dimensional

problem satisfying our framework. Firstly, to replace Ẽ by the complexification of
some real Hilbert space, let

ẼR = {u+ v̄ | u, v ∈ Ẽ}

which satisfies ū ∈ ẼR for any u ∈ ẼR. Since u ∈ Eiµ implies ū ∈ E−iµ, we have

ẼR = Ẽ if µ = 0. If µ 6= 0, from (12.12) and Lemma 3.3 we obtain

〈Lū, v〉 = 0, 〈Lū, v̄〉 = 〈Lu, v〉, ∀u, v ∈ Ẽ.

Therefore, ẼR satisfies the same properties as in the above claim whether µ = 0 or
not. Using the non-degeneracy of 〈L·, ·〉 on X and ẼR, and applying Lemma 12.3 to

the splitting X = ẼR ⊕ (ẼR)⊥L with the associated projections PẼR and I −PẼR ,

we have that the combination (ẼR, LẼR , JẼR) satisfies assumptions (H1-3), where
JẼR = PẼRJP

∗
ẼR

. We may apply Proposition 2.2, whose finite dimensional case

under the non-degeneracy assumption on 〈L·, ·〉 has been proved in Chapter 4. As

Ẽ = ẼR ∩ ker(JL− iµ)K , that canonical form implies

dim
(
(JL− iµ)Ẽ

)
≤ 2n−(L|Ẽ), ker(JL− iµ) ∩ Ẽ ⊂ (JL− iµ)Ẽ,

where (8.4) is also used along with the canonical form. We notice (JL − iµ)E =

(JL− iµ)Ẽ, as E1 ⊂ ker(JL− iµ), and thus

dim
(
(JL− iµ)E

)
≤ 2n−(L|Ẽ) = 2

(
n−(L|E)− n−(LE1)

)
.

The block forms of L and JL follow from the L-orthogonality and the invariance
of the splitting E = E1⊕ Ẽ. Finally, the estimate on dim Ẽ follows from the above
inequality and (8.3) and (8.4). The proof is complete. �
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Next we study Eiµ by assuming the non-degeneracy of L.

Lemma 8.4. In addition to (H1-3), assume 〈L·, ·〉 is non-degenerate. Let iµ ∈
σ(JL) ∩ iR. There exist subspaces ED,1,G ⊂ Eiµ such that

Eiµ = ED ⊕ E1 ⊕ EG, dim
(
(JL− iµ)Eiµ

)
≤ 2
(
k≤0(iµ)− n−(L|E1)

)
,

dimEG ≤ 3
(
k≤0(iµ)− dimED − n−(L|E1)

)
,

and L and JL take the block forms on E

〈L·, ·〉 ←→

0 0 0
0 L1 0
0 0 LG

 , JL←→

AD AD1 ADG
0 iµ 0
0 0 AG


where all blocks are bounded operators and L1 and LG are non-degenerate. More-
over, ker(AG − iµ) ⊂ (AG − iµ)EG.

Proof. Again, to apply previous results directly it would be easier to consider
the complexifications of real Hilbert spaces

Iiµ , Eiµ + E−iµ = {u+ v̄ | u, v ∈ Eiµ}.

Due to Lemma 3.5, JL|Iiµ is bounded with

L(Iiµ) ⊂ D(J), JL(Iiµ) ⊂ Iiµ, σ(JL|Iiµ) = {±iµ}.

We split the spaces by starting with

ED = {u ∈ Eiµ | 〈Lu, v〉 = 0, ∀v ∈ Eiµ}, ID = {u+ v̄ | u, v ∈ ED},
ENDiµ = {u ∈ Eiµ | (u, v) = 0, ∀v ∈ ED}, IND = {u+ v̄ | u, v ∈ ENDiµ }.

From the anti-symmetry of JL with respect to 〈L·, ·〉 and the invariance of Eiµ
along with (12.12), we have JL(ID) ⊂ ID. In the splitting Iiµ = ID ⊕ IND, 〈L·, ·〉
and JL can be represented in the following block forms

〈L·, ·〉 ←→
(

0 0
0 LND

)
, JL←→

(
AD AD,ND
0 AND

)
,

where all blocks are bounded real (satisfying (12.12)) operators. In particular,
ker(L|Iiµ) = ID and Iiµ = ID ⊕ IND and thus Lemma 12.2 implies that LND :

IND → (IND)∗ is an isomorphism. The anti-symmetry of JL with respect to 〈L·, ·〉
yields LNDAND +A∗NDLND = 0. Therefore,

JND = ANDL
−1
ND : (IND)∗ → IND

is an anti-symmetric bounded operator satisfying AND = JNDLND. Clearly,
the combination (IND, LND, JND) satisfies (H1-3) with the non-degenerate LND.
Moreover, σ(JNDLND) = {±iµ} with the eigenspace of iµ given by ENDiµ where
〈LND·, ·〉 is also non-degenerate. Therefore, we may apply Lemma 8.3 (with X and
E replaced by IND and ENDiµ , respectively) to obtain the splitting ENDiµ = E1⊕EG
and the desired block forms of L and JL follow. The desired estimate on dimEG

is obtained by noting

(8.5) k≤0(iµ) = n−(L|ENDiµ ) + dimED.

Moreover, according to Lemma 8.3, we have

dim(AND − iµ)ENDiµ ≤ 2
(
n−(L|ENDiµ )− n−(L|E1)

)
.
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Along with (8.5) and the block form of JL, it implies

dim(JL− iµ)Eiµ ≤ dimED + dim(AND − iµ)ENDiµ

≤dimED + 2
(
n−(L|ENDiµ )− n−(L|E1)

)
≤ 2
(
k≤0(iµ)− n−(L|E1)

)
which finishes the proof. �

Proof of Proposition 2.1 and Proposition 2.2. What remains to be proved
in these two propositions can be obtained in a similar framework and we complete
their proofs together here.

Let X± be given by Lemma 12.4 and X1 = X− ⊕X+. Clearly, X = X0 ⊕X1,
where X0 = kerL, with the associated projections PX0,1 . According to Lemma
12.3, 〈L·, ·〉 and JL take the following block forms

〈L·, ·〉 ←→
(

0 0
0 LX1

)
, JL←→

(
0 A1

0 JX1LX1

)
,

where A1 : X1 → kerL is bounded and LX1
= i∗X1

LiX1
: X1 → X∗1 and JX1

=
PX1JP

∗
X1

. Moreover, Lemmas 12.3 and 12.4 imply that (X1, LX1 , JX1) satisfies

assumptions (H1-3) with the isomorphic LX1 and n−(LX1) = n−(L). For any
eigenvalue iµ ∈ iR, let E1

iµ be the subspace of generalized eigenvectors of iµ for
JX1

LX1
, possibly {0} if µ = 0. From Lemma 3.5 and 8.4, for some K > 0,

E1
iµ = ker(JX1

LX1
− iµ)K , dim(JX1

LX1
− iµ)E1

iµ ≤ 2n≤0(LX1
|E1
iµ

).

For any integer k > 0, (JL− iµ)k takes the block form

(JL− iµ)k ←→
(

(−iµ)k Ak
0 (JX1

LX1
− iµ)k

)
,

where the linear operator Ak : X1 → kerL can be computed inductively

Ak+1 = (−iµ)kA1 +Ak(JX1
LX1
− iµ), D

(
(JX1

LX1
− iµ)k

)
⊂ D(Ak+1).

It is straightforward to show

(8.6) u ∈ Eiµ ⇐⇒ PX1
u ∈ E1

iµ and (−iµ)KPX0
u+AKPX1

u = 0.

We first consider µ 6= 0. We obtain from (8.6)

Eiµ = {u− (−iµ)−KAKu | u ∈ E1
iµ},

i.e. vectors in Eiµ are determined only by their X1-component. From Lemma 3.5
and Remark 3.1, E1

iµ and Eiµ are both subspaces. Therefore, AK is a bounded
operator. Since

〈L
(
u− (−iµ)−KAKu

)
, v − (−iµ)−KAKv〉 = 〈Lu, v〉, ∀u, v ∈ E1

iµ,

we obtain from Lemma 8.4

dim(JL− iµ)Eiµ = dim(JX1
LX1
− iµ)E1

iµ

≤2n≤0(LX1
|E1
iµ

) = 2n≤0(LEiµ) = 2k≤0(iµ).

This proves the desired estimate on dim(JL − iµ)Eiµ in Proposition 2.1. Along
with Lemma 3.5, it completes the proof of Proposition 2.1 in the case of µ 6= 0.

To prove Proposition 2.2, let E1
iµ = ẼD ⊕ Ẽ1 ⊕ ẼG where these subspaces are

given by Lemma 8.4 for JX1LX1 . Let

ED,1,G = {u− (−iµ)−KAKu | u ∈ ẼD,1,G}.
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It is easy to verify that they satisfy the properties in Proposition 2.2. Since
dimEG < ∞, the ‘good’ basis of EG has been constructed in the finite dimen-
sional cases in Chapter 4 and the proof of Proposition 2.2 is complete.

For µ = 0, it is easy to see from the above block forms

E0 = X0 ⊕ E1
0 .

Therefore, we have

(JL)2E0 = (JL)2E1
0 = JL(PX1

JLE1
0) = JL(JX1

LX1
E1

0),

which along with Lemma 8.4 implies

dim (JL)2E0 ≤ dim JX1
LX1

E1
0 ≤ 2k≤0

0 .

This completes the proof of Proposition 2.1 in the case of µ = 0.
To prove Proposition 2.2, let E1

0 = ED ⊕ E1 ⊕ EG where these subspaces are
given by Lemma 8.4 for JX1

LX1
and µ = 0. It is easy to verify that they satisfy

the properties in Proposition 2.2. Again since dimEG <∞, the ‘good’ basis of EG

has been constructed in the finite dimensional cases in Chapter 4 and the proof of
Proposition 2.2 is complete. �

Remark 8.2. In the case of µ = 0, we can not replace (JL)2E0 by JLE0, as
seen from the following counterexample. Consider X = Y ⊕Y ⊕R2 where Y is any
Hilbert space. Let

J =


0 I 0 0
−I 0 0 0
0 0 0 −1
0 0 1 0

 , L =


0 0 0 0
0 I 0 0
0 0 1 0
0 0 0 −1

 , JL =


0 I 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 .

It is clear that k≤0
0 = 0, kerL = X0 = Y ⊕{0}⊕{(0, 0)T }, E0 = Y ⊕Y ⊕{(0, 0)T },

and dim JLE0 = dim kerL = dimY .

8.3. Subspace of generalized eigenvectors E0 and index k≤0
0

In this Section we prove Propositions 2.7, 2.8, Lemma 2.1 and Corollary 2.3,
2.4 on the subspace E0 and the non-positive index k≤0

0 for the eigenvalue 0.
Proof of Proposition 2.7. According to Corollary 12.1, LJ : D(J) → X is

closed and thus LJL is also closed. Therefore, (JL)−1(kerL) = ker(LJL) is also
closed.

Since (JL)−1(kerL) ⊂ E0, due to the hyperbolicity of JL on X5,6, we have
(JL)−1(kerL) ⊂ ⊕4

j=0Xj , where the decomposition of X = kerL ⊕ ⊕6
j=1Xj is

given in Theorem 2.1. Let

S = (JL)−1(kerL) ∩ ⊕4
j=1Xj .

Since X0 = kerL ⊂ (JL)−1(kerL), we have kerL ⊕ S = (JL)−1(kerL) ⊂ E0.

Therefore, from the definition of k≤0
0 it is clear k≤0

0 ≥ n0 = n≤0(L|S) and we only
need to prove (ii) of Proposition 2.7.

Assume in addition that 〈L·, ·〉 is non-degenerate on (JL)−1(kerL)/ kerL. We
claim

(8.7) E0 = (JL)−1(kerL).
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In fact, suppose u ∈ E0\
(
(JL)−1(kerL)

)
. There exists m > 0 such that

u1 , (JL)m−1u /∈ (JL)−1(kerL)

u0 , JLu1 = (JL)mu ∈ (JL)−1(kerL)\ kerL.

It follows that, for any v ∈ (JL)−1(kerL),

JLv ∈ kerL =⇒ 〈Lu0, v〉 = 〈L(JL)u1, v〉 = −〈Lu1, JLv〉 = 0.

The existence of such u0 would imply 〈L·, ·〉 is degenerate on (JL)−1(kerL)/ kerL,
contradictory to our assumption. Therefore, (8.7) is proved and consequently we

obtain from the definition of k≤0
0 that

k≤0
0 = n≤0(〈L·, ·〉|(JL)−1(kerL)/ kerL

)
= n−(〈L·, ·〉|(JL)−1(kerL)/ kerL

)
due to the non-degeneracy assumption. This completes the proof of the proposition.
�

We will prove Lemma 2.1, Proposition 2.8, and Corollary 2.3 and 2.4 in the
rest of the section. We first observe that it is straightforward to show 〈Lu, v〉 = 0,
for any u ∈ ker(JL) and v ∈ R(J). Through a density argument, we obtain

(8.8) 〈Lu, v〉 = 0, ∀u ∈ ker(JL), v ∈ R(J).

Throughout the rest of this section, let S1, S2, S
# be defined as in Corollaries 2.3

and 2.4, i.e.

ker(JL) = kerL⊕ S1, R(J) =
(
R(J) ∩ kerL

)
⊕ S#

and

R(J) ∩ (JL)−1(kerL) = S2 ⊕
(
R(J) ∩ kerL

)
.

Lemma 8.5. Suppose 〈L·, ·〉 is non-degenerate on S#, then it is also non-
degenerate on S1 and moreover,

(8.9) X = ker(JL)⊕ S# = kerL⊕ S1 ⊕ S#.

Proof. The non-degeneracy of 〈L·, ·〉 on S# implies the non-degeneracy of
LS# : S# → (S#)∗, which is defined in (12.1). For any u ∈ X, as in the proof of
Lemma 12.2, let

u# = L−1
S#i
∗
S#Lu ∈ S#

which satisfies

〈Lu1, v〉 = 0, ∀v ∈ S#, where u1 = u− u#.

By the definition of S#, we also have

〈Lu1, v〉 = 0, ∀v ∈ R(J).

Since J∗ = −J , we obtain

Lu1 ∈ ker J∗ = ker J =⇒ u1 ∈ ker(JL) = kerL⊕ S1.

Therefore, u = u1 + u# ∈ ker(JL) + S# and thus X = ker(JL) + S#.
For any u ∈ S# ∩ ker(JL), from (8.8) we obtain 〈Lu, v〉 = 0, for any v ∈

ker(JL)+R(J) ⊃ ker(JL)+S# = X. Therefore, u ∈ kerL. Since u ∈ S#∩kerL =
{0}, we have u = 0 and thus X = ker(JL)⊕ S# = kerL⊕ S1 ⊕ S#.

From Lemma 12.2, 〈L·, ·〉 is non-degenerate on S#⊕S1. Since it is also assumed
to be non-degenerate on S#, the non-degeneracy of 〈L·, ·〉 on S1 follows from the
L-orthogonality (8.8) between S1 and S#. �
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Lemma 8.6. Suppose 〈L·, ·〉 is non-degenerate on S1, then it is also non-
degenerate on S#.

Proof. Like in the proof of the previous lemma, the non-degeneracy of 〈L·, ·〉
on S1 implies the non-degeneracy of LS1

: S1 → S∗1 . For any u ∈ X, as in the proof
of Lemma 12.2, let

u1 = L−1
S1
i∗S1
Lu ∈ S1

which satisfies

〈Lu∗, v〉 = 0, ∀v ∈ ker(JL) = kerL⊕ S1, where u∗ = u− u1.

Since JL = −(LJ)∗, we obtain Lu∗ ∈ R(LJ).

Claim: R(LJ) = L(S#). In fact, it is easy to see L(S#) ⊂ L
(
R(J)

)
⊂ R(LJ)

due to the boundedness of L. In the following we will prove that R(LJ) ⊂ L(S#).

Let y ∈ R(LJ), there exists a sequence yn = LJxn such that yn → y as n→ +∞.

Since R(J) = kerL⊕ S#, let Jxn = zn,0 + z0,# where zn,0 ∈ kerL and zn,# ∈ S#.
As yn = LJxn = Lzn,# → y and the non-degeneracy assumption of 〈L·, ·〉 on S#

implies that L|S# : S# → L(S#) is an isomorphism, we obtain that {zn,#} is a
Cauchy sequence. Let zn,# → z# ∈ S# and then y = Lz# ∈ L(S#). The claim is
proved.

We can now finish the proof of the lemma. Since we have proved

L(u− u1) = Lu∗ ∈ R(LJ) = L(S#),

there exists u# ∈ S# such that L(u−u1) = Lu#. Let u0 = u−u1−u#. Clearly, u0 ∈
kerL. Therefore, u = u0 +u1 +u# and thus X = kerL⊕S1⊕S# = ker(JL)⊕S#.
The proof of ker(JL)∩S# = {0} and consequently the non-degeneracy of 〈L·, ·〉 on
S1 is the same as in the proof of the last lemma. �

The conclusion in Lemma 2.1 is already contained in the above lemmas.
Proof of Proposition 2.8 and equivalently Corollary 2.4. The property

X = ker(JL) + R(J) is a direct consequence of (8.9). Along with (8.8), it also

implies R(J) ∩ ker(JL) = R(J) ∩ kerL ⊂ kerL.
From the L-orthogonality (8.8), the decomposition (8.9), and the non-degeneracy

of 〈L·, ·〉 on S1, S
#, and S1⊕S#, we immediately obtain n− = n−(L|S1

)+n−(L|S#).
From the decomposition (8.9) and the definitions of S1 and S2, we have

(JL)−1 kerL = kerL⊕ S1 ⊕ S2.

Therefore, k≤0
0 ≥ n−(L|S1) + n≤0(L|S2) follows from Proposition 2.7.

Finally, let us assume, in addition, that 〈L·, ·〉 is non-degenerate on S2. Immedi-
ately we have the non-degeneracy of 〈L·, ·〉 on (JL)−1(kerL)/ kerL and Proposition

2.7 implies k≤0
0 = n−(L|S1

) + n≤0(L|S2
). The proof is complete. �

8.4. Non-degeneracy of 〈L·, ·〉 on Eiµ

In Proposition 2.2, the presence of the subspace ED ⊂ Eiµ is due to the possi-
ble degeneracy of 〈L·, ·〉 on Eiµ. Otherwise the statement of the proposition would
be much more clean and some results can be improved. However, in case when iµ
is not isolated in σ(JL), it is indeed possible that 〈L·, ·〉 degenerates on Eiµ even if
it is non-degenerate on X.
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Example of degenerate 〈L·, ·〉 on Eiµ. Consider X = R2n ⊕R2n ⊕X1, where
X1 is a Hilbert space. Here we identify Hilbert spaces and their dual spaces via
Riesz Representation Theorem. Let µ ∈ R and
• A : X1 ⊃ D(A)→ X1 be an anti-self-adjoint operator such that iµ ∈ σ(A) is not
an eigenvalue;
• A1 : R2n → X1 such that kerA1 = {0} and, after the complexification of A and
A1 into complex linear operators, R(A1) ∩R(A± iµ) = {0}, which is possible due
to the spectral assumption on A; and

• J =

 0 J2n 0
J2n J2n −B−1A∗1
0 A1B

−1 A

 , L =

 0 B 0
B 0 0
0 0 IX1

, where B2n×2n is any

symmetric matrix and J2n =

(
0 −In×n

In×n 0

)
.

One may compute

JL =

J2nB 0 0
J2nB J2nB −B−1A∗1
A1 0 A

 .

Lemma 8.7. For any integer k > 0,

ker(JL− iµ)k = {(0, x, 0)T | x ∈ ker(J2nB − iµ)k} ⊂ R2n ×R2n ×X1.

Consequently, 〈L·, ·〉 vanishes on E±iµ.

Remark 8.3. The embedding from R2n to {0} ×R2n × {0} ⊂ X– an invari-
ant subspace under JL, serves as a similarity transformation between the 2n-dim
Hamiltonian operator J2nB and the restriction of the infinite dimensional one JL.
If iµ ∈ σ(J2nB), then J2nB and JL have exactly the same structures on the sub-
spaces Eiµ(J2nB) and Eiµ of generalized eigenvectors of iµ. However, the energy
structure is completely destroyed. Namely the 2n-dim Hamiltonian operator J2nB
has a non-trivial energy 〈B·, ·〉 while the energy 〈L·, ·〉 of JL vanishes completely
on R2n to {0} ×R2n × {0} ⊂ X.

Proof. Using the invariance under JL of {0}×R2n×{0} and {0}×R2n×X1,
it is easy to compute inductively

(JL− iµ)k =

(J2nB − iµ)k 0 0
A21 (J2nB − iµ)k A23

A31 0 (A− iµ)k

 ,

where
A31 = Σk−1

l=0 (A− iµ)lA1(J2nB − iµ)k−1−l.

Let P1,2,3 denote the projections fromX to its components. For any u = (x1, x2, v)T ∈
X, we have

P3(JL− iµ)ku = A31x1 + (A− iµ)kv

= A1(J2nB − iµ)k−1x1 + (A− iµ)
(

(A− iµ)k−1v

+ Σk−1
l=1 (A− iµ)l−1A1(J2nB − iµ)k−1−lx1

)
.

Suppose P3(JL − iµ)ku = 0. Since A1 and A − iµ are both one-to-one and
R(A1) ∩R(A− iµ) = {0}, we obtain

(J2nB− iµ)k−1x1 = 0, (A− iµ)k−1v+ Σk−1
l=1 (A− iµ)l−1A1(J2nB− iµ)k−1−lx1 = 0.
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Letm ∈ [0, k−1] be the minimal non-negative integer satisfying (J2nB−iµ)mx1 = 0.
If m ≥ 1, from the definition of m, the above second equality and the injectivity of
(A− iµ)k−1−m imply

0 = (A− iµ)mu+ Σk−1
l=k−m(A− iµ)l+m−kA1(J2nB − iµ)k−1−lx1

= (A− iµ)
(

(A− iµ)m−1v + Σk−1
l=k−m+1(A− iµ)l+m−k−1A1(J2nB − iµ)k−1−lx1

)
+A1(J2nB − iµ)m−1x1.

Again since A1 and A − iµ are both one-to-one and R(A1) ∩ R(A − iµ) = {0},
we derive (J2nB − iµ)m−1x1 = 0 which contradicts the definition of m. Therefore,
m = 0, that is, x1 = 0. Due to the injectivity of (A− iµ)k, it implies v = 0 as well.

Suppose u ∈ ker(JL− iµ)k, the above arguments imply u = (0, x, 0)T and the
lemma follows immediately. �

In the rest of this section we will prove that the degeneracy of 〈L·, ·〉 may occur
on Eiµ only if iµ ∈ σ(JL) is not an isolated spectral point.

Lemma 8.8. Assume (H1-3) and iµ ∈ σ(JL) ∩ iR is isolated in σ(JL), then
there exist closed subspaces Iiµ, E& ⊂ X such that

(i) Iiµ and E& are complexifications of real subspaces of X, namely u ∈ Iiµ
(or E&) if and only if u ∈ Iiµ (or E&). Moreover, they are invariant
under JL and

X = Iiµ ⊕ E&, σ(JL|Iiµ) = {±iµ}, σ(JL|E&
) = σ(JL)\{±iµ}.

(ii) kerL ⊂ E& if µ 6= 0 or kerL ⊂ Iiµ if µ = 0.
(iii) 〈Lu, v〉 = 0 for all u ∈ Iiµ and v ∈ E&. Moreover, 〈L·, ·〉 is non-degenerate

on quotient spaces Iiµ/(kerL ∩ Iiµ) and E&/(kerL ∩ E&).

Proof. Let Γ ⊂ C\σ(JL) be a small circle, oriented counterclockwisely, en-
closing iµ but no other elements in σ(JL). Define the spectral projection and the
eigenspaces

Piµ =
1

2πi

∮
Γ

(λ− JL)−1dλ, Eiµ = PiµX.

It is standard to verify that Piµ is a bounded projection on X satisfying

JLPiµ = PiµJL; σ
(
(JL)|Eiµ

)
= {iµ}; Eiµ ⊂ D(JL); etJLEiµ = Eiµ, ∀t ∈ R.

By Lemma 3.6, −iµ ∈ σ(JL) is also an isolated point of σ(JL). Let P−iµ and
E−iµ be defined similarly. It is standard that PiµP−iµ = P−iµPiµ = 0 and thus
Piµ + P−iµ is also a projection (or Piµ instead if µ = 0). Define

E& = ker(Piµ + P−iµ), Iiµ = Eiµ + E−iµ

and we have

(8.10) etJLE& = E&, ∀t ∈ R; σ
(
(JL)|E&

)
= σ(JL)\{±iµ}; X = Iiµ ⊕ E&.

Therefore, statements (i) and (ii) in the lemma follow from the standard spectral
theory. The L-orthogonality between Iiµ and E& follows from Lemma 6.2 where Ω
can be taken as the union of the two small disks centered at ±iµ.

To complete the proof of the lemma, it suffices to prove the non-degeneracy of
〈L·, ·〉 on Iiµ/(kerL ∩ Iiµ) and E&/(kerL ∩ E&). According to Lemma 12.3, LIiµ
and LE&

satisfy (H2). Therefore, either they are non-degenerate or have non-trivial
kernels. Suppose there exists u ∈ Iiµ such that 〈Lu, v〉 = 0 for all v ∈ Iiµ. From
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X = Iiµ⊕E& and the L-orthogonality between Iiµ and E&, we obtain 〈Lu, v〉 = 0
for all v ∈ X, which implies u ∈ kerL. Therefore, 〈L·, ·〉 is non-degenerate on
Iiµ/(kerL∩ Iiµ). The proof of the non-degeneracy of 〈L·, ·〉 on E&/(kerL∩E&) is
similar and thus we complete the proof of the lemma. �

Notice that Iiµ is given not in terms of Eiµ, but of Eiµ defined using spec-
tral integrals. In the following we establish the relationship between Iiµ and the
subspace Eiµ of generalized eigenvectors.

Lemma 8.9. It holds Iiµ = Eiµ + E−iµ.

Proof. Let Pµ : X → Iiµ be the projection associated to the L-orthogonal
decomposition X = Iiµ ⊕ E&. Let Jµ = PµJ(Pµ)∗. As Iiµ ⊂ D(JL), Lemma
12.3 implies that (Iiµ, LIiµ , J

µ) satisfies assumptions (H1-3). The invariance of Iiµ

under JL implies JL|Iiµ = JµLIiµ and σ(JµLIiµ) = {±iµ}. Since±iµ /∈ σ(JL|E&
),

we have E±iµ ⊂ Iiµ.
We apply Theorem 2.1 to JL on Iiµ, where there is no hyperbolic subspace,

and obtain the decomposition of Iiµ into closed subspaces Iiµ = Σ4
j=0Xj , where

X0 = kerL if µ = 0 or X0 = {0} if µ 6= 0. In this decomposition, LIiµ and JL take
the block forms

JL↔


0 A01 A02 A03 A04

0 A1 A12 A13 A14

0 0 A2 0 A24

0 0 0 A3 A34

0 0 0 0 A4

 , LIiµ ↔


0 0 0 0 0
0 0 0 0 B14

0 0 LX2
0 0

0 0 0 LX3 0
0 B∗14 0 0 0

 .

Note LX3
≥ δ for some δ > 0 and A2,3 are anti-self-adjoint with respect to the

equivalent inner product ∓〈LX2,3
·, ·〉 with σ(A1,2,3,4) = {iµ,−iµ}.

In the case of µ = 0, the anti-self-adjoint operator A2,3 must be A2,3 = 0.
Meanwhile all other finite dimensional diagonal blocks are also nilpotent. There-
fore, it is straightforward to compute that (JL|Iiµ)k = 0 for some integer k > 0.
Therefore, Iiµ consists of generalized eigenvectors only and Iiµ = Eiµ in the case
of µ = 0.

In the case of µ 6= 0, X0 = {0}. Moreover, as A3 is anti-self-adjoint with
respect to the inner product 〈LX3 ·, ·〉, we can further decompose X3 into closed
subspaces X3 = X3+⊕X3−, where X3± = ker(A3±iµ), with associated projections
Q± : X3 → X3±. Accordingly A3 = iµQ+ − iµQ−, which implies A2

3 + µ2 = 0.
As A1,2,4 are finite dimensional with the only eigenvalues ±iµ, we obtain that(
(JL|Iiµ)2 + µ2

)k
= 0 for some integer k > 0. Rewrite it as

(JL− iµ)k(JL+ iµ)k = (JL+ iµ)k(JL− iµ)k = 0 on Iiµ.

Let X± be the invariant eigenspace of ±iµ of JL|Iiµ defined via spectral integrals.
We have Iiµ = X+ ⊕ X−. As JL ± iµ is an isomorphism from X± to itself, we
obtain from the above identity that X± = ker(JL ∓ iµ)k. Therefore, X± are the
subspaces of generalized eigenvectors of ±iµ of JL, that is,

Iiµ = ker(JL− iµ)k ⊕ ker(JL+ iµ)k = Eiµ ⊕ E−iµ.
�

Finally, let E# = E& if µ = 0 or E# = E−iµ ⊕ E& if µ 6= 0. In the case of
µ 6= 0, Lemmas 3.1, 12.2, 12.3 and the non-degeneracy of 〈L·, ·〉 on Iiµ imply that
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〈L·, ·〉 is non-degenerate on Eiµ and E&/ kerL. This along with the above lemmas
completes the proof of Proposition 2.3.

Based on Proposition 2.3, we are ready to prove Proposition 2.4.

Proof of Proposition 2.4: Let

Λ = {0 6= iµ ∈ σ(JL) ∩ iR | k≤0(iµ) > 0},

which is a finite set according to (2.13) of Theorem 2.3.
Let iµ ∈ Λ. We have that 〈L·, ·〉 is non-degenerate on Eiµ either by our as-

sumption if iµ is not isolated in σ(JL) or by Proposition 2.3 if iµ is isolated.
From Proposition 2.2, we have the L-orthogonal and JL-invariant decomposi-
tion Eiµ = E1

iµ ⊕ EGiµ, where E1
iµ ⊂ ker(JL − iµ), dimEGiµ < ∞, and 〈L·, ·〉 is

non-degenerate on both E1
iµ and EGiµ. Let E1,−

iµ ⊂ E1
iµ be a subspace such that

dimE1,−
iµ = n−(L|E−iµ) and 〈L·, ·〉 is negative definite on E1,−

iµ . Let

Efiniteiµ = EGiµ ⊕ E
1,−
iµ , which satisfies dimEfiniteiµ <∞, n−(L|Efiniteiµ

) = k≤0(iµ).

Moreover, JL(Efiniteiµ ) = Efiniteiµ according to its construction.

If 0 /∈ σ(JL), let Efinite0 = {0} and we may skip to the next step to define N
and M . Otherwise, our assumption and Propositions 2.3, 2.2 imply an L-orthogonal
decomposition E0 = kerL⊕ E1

0 ⊕ EG0 , where

JL(E1
0) ⊂ kerL, dimEG0 <∞, JL(EG0 ) ⊂ EG0 ⊕ kerL,

and 〈L·, ·〉 is non-degenerate on both E1
0 and EG0 . Let E1,−

0 ⊂ E1
0 be such that

dimE1,−
0 = n−(L|E1

0
) and 〈L·, ·〉 is negative definite on E1,−

0 . Let Efinite0 = E1,−
0 ⊕

EG0 , which satisfies

dimEfinite0 <∞, n−(L|Efinite0
) = k≤0

0 .

Let

N = (⊕Reλ6=0Eλ)⊕ (⊕iµ∈ΛE
finite
iµ )⊕ Efinite0 , M̃ = N⊥L = (N ⊕ kerL)⊥L .

Clearly, dimN < ∞, n−(L|N ) = n−(L) (due to (2.13) of Theorem 2.3), 〈L·, ·〉
is non-degenerate on N , and N ⊕ kerL is invariant under JL. Therefore, M̃ is
also invariant under JL, X = N ⊕ M̃ (due to Lemma 12.2), kerL ⊂ M̃ , and
n−(L|M̃ ) = 0. Moreover, N and M are complexifications of real subspaces as Eλ
and Eλ̄ have exactly the same structure. Let M ⊂ M̃ be any closed subspace such

that M̃ = M ⊕ kerL and this completes the proof of proposition. �
To end this chapter, we prove the decomposition result Proposition 2.5 for L-

self-adjoint operators.

Proof of Proposition 2.5: In order to apply the previous results, which
have been given in the framework of real Hilbert spaces, to prove this proposition,
we first convert it into a problem on real Hilbert spaces. Recall (·, ·) and 〈·, ·〉
denote the complex inner product and the complex duality pair between X∗ and
X, respectively. Let Xr be the same set as X but equipped with the real inner
product (u, v)r = Re(u, v). On Xr, the i−multiplication i : X → X becomes a
real linear isometry ir : Xr → Xr with i2r = −I. Let Lr : Xr → X∗r be the linear
symmetry bounded operator defined as 〈Lru, v〉r = Re〈Lu, v〉 where 〈·, ·〉r denote
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the real duality pair between X∗r and Xr. Subsequently, the non-degeneracy of L
yields the non-degeneracy of Lr. Accordingly, A becomes a real linear operator
Ar : Xr ⊃ D(Ar) → Xr. The linearity of L and A implies that irAr = Arir
and Lrir = −i∗rLr. Finally, that A is L-self-adjoint is translated to the Lr-self-
adjointness of Ar, namely, LrAr = A∗rLr.

Define J = irArL
−1
r : X∗r → Xr. The Lr-self-adjointness of Ar implies J∗ =

−J and thus irAr = JLr with (J, Lr, Xr) satisfying (H1-3). It is easy to prove

σ(Ar) = σ(A) ⊂ R, σ(irAr) =
(
iσ(Ar)

)
∪
(
− iσ(Ar)

)
,

so the nonzero eigenvalues of irAr are isolated and ker (irAr) = kerA. It is
straightforward to deduce the non-degeneracy of 〈Lr·, ·〉r on ker(irAr) from our
non-degeneracy assumption of 〈L·, ·〉 on kerA, and thus (H4) is satisfied. Thus by

Proposition 2.4, there exists a decomposition Xr = Ñ ⊕ M̃ such that Ñ and M̃
are Lr-orthogonal and invariant under irAr, dim Ñ <∞ and Lr|M̃ > 0, which also

implies L is uniformly positive on M̃ . Let

N = Ñ + irÑ , M = N⊥Lr = {u ∈ Xr | 〈Lru, v〉r = 0, ∀v ∈ N} ⊂ M̃.

Clearly, dimN ≤ 2 dim Ñ < ∞ and 〈Lr·, ·〉 is uniformly positive on M , thus so
is 〈L·, ·〉 on M . To complete the proof, we only need to show N,M ⊂ X are
L-orthogonal and invariant under A. We first consider the L-orthogonality which
also involves the imaginary part of the quadratic form of L. Suppose there exist
u1, u2,∈ Ñ and v ∈M such that 〈L(u1 + iu2), v〉 = Reiθ 6= 0. It implies 〈Lu, v〉 =
〈Lru, v〉r = R ∈ R\{0}, where

u = (cos θ)u1 + (sin θ)u2 + ir
(
(cos θ)u2 + (sin θ)u1

)
∈ N

which is a contradiction to the definitions of N and M and thus they are L-
orthogonal. Secondly, irAr(Ñ) ⊂ Ñ , irAr = Arir, and i2r = −I implyAr(irÑ) ⊂ Ñ
and ArÑ ⊂ irÑ . Therefore, N is invariant under A. It along with the L-self-
adjointness of A also implies the invariance of M and the proof of Proposition 2.5
is complete. �





CHAPTER 9

Perturbations

In this chapter we study the robustness of the spectral properties of the Hamil-
tonian operator JL under small perturbations preserving Hamiltonian structures.
Consider

ut = J#L#u, J# = J + J1, L# = L+ L1, u ∈ X.

Unless otherwise specified, assumptions (A1-3) given in Section 2.5 are assumed
throughout this chapter. We first prove

Lemma 9.1. Assumptions (A1-3) imply that there exists ε > 0 depending on
J and L such that, if |L1| ≤ ε, then (H1-3) is satisfied by J# and L# and

dim kerL# ≤ dim kerL <∞, D(J#L#) = D(JL).

Proof. It is obvious that (H1) is satisfied by J#. Let X± be the subspaces
provided in (H2) satisfied by L. Clearly, we still have, for ε << 1,

±〈L#u, u〉 ≥ δ||u||2, ∀u ∈ X±
for some δ > 0 independent of ε. Let X1 = X+ ⊕ X−. Assumption (H2) for L
implies that〈L·, ·〉 restricted to X1 is non-degenerate, i.e.

LX1
= i∗X1

LiX1
: X1 → X∗1 ,

defined as in (12.1), is an isomorphism. Therefore,

L#,X1
= i∗X1

L#iX1
: X1 → X∗1 ,

as a small bounded perturbation of LX1
, is also an isomorphism. Suppose u =

u0 + u1 ∈ kerL#, where u0 ∈ kerL and u1 ∈ X1, then we have

0 = L#u = L#u1 + L1u0 =⇒ u1 = −L−1
#,X1

i∗X1
L1u0,

that is,

kerL# ⊂ Y, where Y = graph(S) and S = −L−1
#,X1

i∗X1
L1 : kerL→ X1.

Moreover, from the (12.2) type identity, it also holds that, for any v ∈ kerL and
u1 ∈ X1,

〈L#(v + Sv), u1〉 =〈L1v, u1〉 − 〈L#L
−1
#,X1

i∗X1
L1v, u1〉

=〈L1v, u1〉 − 〈i∗X1
L1v, u1〉 = 0,

that is, Y and X1 are L#-orthogonal.
Since dimY = dim kerL < ∞ due to (A2), the quadratic form 〈L#·, ·〉 re-

stricted to Y leads to a decomposition of Y

Y = Y+ ⊕ kerL# ⊕ Y−,

69
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where ±L# is positive on Y±. Let X#± = X± ⊕ Y±, then

X = X#+ ⊕ kerL# ⊕X#−.

Due to the L#-orthogonality between Y and X1, it is easy to derive that ±〈L#·, ·〉
are positive definite on X#±. Therefore, (H2) is satisfied.

Finally we prove (H3). Suppose γ ∈ X∗ and 〈γ, u〉 = 0 for all u ∈ X#+ ⊕
X#− ⊃ X+⊕X−. From (A1) which requires that (H1-3) being satisfied by J and
L, we have γ ∈ D(J) = D(J#) as J1 is assumed to be bounded. �

Much as in Remark 2.2 by composing with the Riesz representation, we may
treat L# as a bounded symmetric operator on X and then apply its spectral de-
composition, a decomposition satisfying (H2) can be obtained much more easily.
However, that decomposition may not satisfy (H3).

In Section 9.1, we will obtain the persistence of exponential trichotomy of the
perturbed system. In Section 9.2, we will focus on purely imaginary spectral points
of σ(JL) and the possibility of bifurcation of unstable eigenvalues of J#L#. To
start, following the standard procedure we show that assumption (A3) implies the
convergence of the resolvents. Recall || · ||G denote the graph norm on D(JL) and
| · |G the corresponding operator norm.

Lemma 9.2. Let K ⊂ C\σ(JL) be compact, then there exist C, ε > 0 depending
on K, J , and L, such that, for any λ ∈ K and

|J1|, |JL1|G ≤ ε, |L1| ≤ 1,

it holds that the densely defined closed operator λ − J#L# : D(JL) → X has a
bounded inverse and

|(λ− J#L#)−1 − (λ− JL)−1| ≤ C(|J1|+ |JL1|G).

Proof. It is straightforward to compute

λ− J#L# =
(
I − (JL1 + J1L#)(λ− JL)−1

)
(λ− JL).

According to assumption (A3), JL1(λ−JL)−1 is a closed operator with the domain
X. The closed graph theorem implies that it is actually bounded with

|JL1(λ− JL)−1| ≤|JL1|G
(
|(λ− JL)−1|+ |JL(λ− JL)−1|

)
≤|JL1|G

(
1 + (1 + |λ|)|(λ− JL)−1|

)
,

where JL = λ− (λ− JL) was used in the last step. The conclusion of the lemma
follows from this along with the boundedness of J1, L, and L1. �

9.1. Persistent exponential trichotomy and stability

In this section, our main task is to prove Theorem 2.4 as well as Proposition
2.9. With the help of Lemmas 9.2 and 6.2, we are able to prove most of Theorem
2.4 and Proposition 2.9 by standard arguments in the spectral theory. However,
proving (2.26) requires more elaborated arguments as one of the perturbation term
JL1 is not necessarily a small bounded operator.
Proof of Theorem 2.4 except (2.26). Adopt the notation used in (2.24)

(9.1) ε , |J1|+ |L1|+ |JL1|G.
Let

σu,s = {λ ∈ σ(JL) | ±Reλ > 0} ⊂ σ(JL)
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and Ωu ⊂ C be open and bounded with smooth boundary Γu = ∂Ωu ⊂ C\σ(JL)
such that σ(JL)∩Ωu = σu. According to Lemma 3.6, σs is symmetric to σu about
iR and thus we let Ωs be the domain symmetric to Ωu and Γs = ∂Ωs. For small ε,
Lemma 9.2 allows us to define the following objects via standard contour integrals

P̃u,s# =
1

2πi

∮
Γu,s

(z − J#L#)−1dz, Eu,s# = P̃u,s# X,

Au,s# = (J#L#)|Eu,s#
=

1

2πi

∮
Γu,s

z(z − J#L#)−1dz.

Let
P̃ c# = I − P̃u# − P̃ s#, Ec# = P̃ c#X, Ac# = (J#L#)|Ec# ,

and P̃u,s, Eu,s,c, Au,s,c denote the corresponding unperturbed objects.
From the standard spectral theory, subspaces Eu,s,c# are invariant under J#L#.

Therefore, Au,s,c# are operators on Eu,s,c# with σ(Au,s# ) ⊂ Ωu,s and σ(Ac#) ⊂
(
C\(Ωu∪

Ωs)
)
. Lemma 9.2 implies

|P̃u,s# − P̃u,s| ≤ Cε,
and thus Ec# is O(ε) close to Ec, too. Along with the non-degeneracy of 〈L·, ·〉 on

Eu ⊕ Es and |L1| ≤ ε, above implies the non-degeneracy of 〈L#·, ·〉 on Eu# ⊕ Es#.
Therefore, we obtain from X = Eu# ⊕ Es# ⊕ Ec# and Lemma 6.2

Ec# = {u ∈ X | 〈L#u, v〉 = 0, ∀u ∈ Eu# ⊕ Es#}.
As O(ε) perturbations, it is clear that subspaces Eu,s,c# can be written as graphs of

O(ε) bounded operators Su,s,c# in the coordinate frameX = Eu⊕Es⊕Ec. Moreover,

from the above integral forms, Au,s# are only O(ε) bounded perturbations to JL on

finite dimensional subspaces Eu,s# which are O(ε) perturbations to Eu,s, and thus

inequality (2.25) follows as well. Since the subspace Eu# ⊕ Es#, invariant under

J#L#, is finite dimensional, the vanishness of 〈L#·, ·〉 on Eu,s# follows from Lemma

3.3. Through this point we complete the proof of parts (a) and (b), except (2.26),
of Theorem 2.4.

Suppose, as in part (c) in Theorem 2.4, there exists δ > 0 such that 〈Lu, u〉 ≥
δ||u||2 for all u ∈ Ec. Since L and L1 are bounded and Ec# is O(ε) perturbation

of Ec, we have 〈L#u, u〉 ≥ δ
2 ||u||

2 for all u ∈ Ec#. Therefore, the conservation of

〈L#·, ·〉 by etJ#L# and the invariance of Ec# under etJ#L# imply the boundedness

of etJ#L# |Ec# uniformly in t ∈ R which proves part (b) of Theorem 2.4. �

To complete the proof of Theorem 2.4, we shall prove the weak exponential
growth estimate (2.26) in the perturbed center subspace Ec#, which involves much
more than simple applications of the standard operator calculus and the conser-
vation of energy. We first consider a special case where JL has no hyperbolic
directions.

Lemma 9.3. Assume Ec = X, then (2.26) holds for some C, ε0 > 0 depending
on J , L.

Proof. From the construction of Eu,s,c# and the additional assumption Ec =

X, it is clear Ec# = X and (2.26) is reduced to

|etJ#L# | ≤ CeCε|t|, ∀t ∈ R, where ε , |J1|+ |L1|+ |JL1|G.
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Since
J#L# = JL# + J1(L+ L1)

and J1, L, and L1 are bounded with |J1| ≤ ε , it suffices to prove

(9.2) |etJL# | ≤ CeCε|t|, ∀t ∈ R.

Let X = ⊕4
j=0Xj be the decomposition, associated with projections Pj , given

by Theorem 2.1 for J and L, where X0 = kerL and X5 = X6 = {0} due to the
assumption Ec = X. Much as in (12.1), let

L1,jk = i∗jL1ik : Xk → X∗j , j, k = 0, . . . , 4,

which satisfy L1,jk = L∗1,kj and

L1 = Σ4
j,k=0P

∗
j L1,jkPk, 〈L1,jku, v〉 = 〈L1u, v〉, ∀u ∈ Xk, v ∈ Xj .

Let Jjk = PjJP
∗
k be the blocks of J associated to this decomposition, which have

the forms given in Corollary 2.1 and satisfy

J = Σ4
j,k=0iXjJjki

∗
Xk
, |J − iX3

J33i
∗
X3
| ≤ C.

We write

JL# =JL+ JL1P3 + Σk∈{0,1,2,4}JL1Pk

=JL+ (J − iX3J33i
∗
X3

)L1P3

+ iX3
J33i

∗
X3

Σ4
j,k=0P

∗
j L1,jkPkP3 + Σk∈{0,1,2,4}JL1Pk

=JL+ iX3
J33L1,33P3 + (J − iX3

J33i
∗
X3

)L1P3 + Σk∈{0,1,2,4}JL1Pk,

where PXj iXk = δjkIXk is used. Since, for k 6= 3, Xk ⊂ D(JL) ⊂ D(JL1), we have
that JL1Pk is a bounded operator with the norm bounded in terms of |JL1|G, |Pk|,
and |JLPk|. Along with the boundedness of J − iX3J33i

∗
X3
, we obtain

(9.3) |JL# − (JL+ iX3J33L1,33P3)| < Cε.

From Theorem 2.1 we have

JL+ iX3J33L1,33P3 ←→


0 A01 A02 A03 A04

0 A1 A12 A13 A14

0 0 A2 0 A24

0 0 0 A3 + J33L1,33 A34

0 0 0 0 A4

 .

Note all blocks of JL+ iX3
J33L1,33P3 are identical to those of JL except its (4, 4)-

block
A3 + J33L1,33 = J33(LX3

+ L1,33).

Since 〈LX3
·, ·〉 is uniformly positive on X3, so is 〈(LX3

+ L1,33)·, ·〉. Therefore, the

group et(A3+J33L1,33), conserving 〈(LX3
+ L1,33)·, ·〉, satisfies

|et(A3+J33L1,33)| ≤ C, ∀t ∈ R.

By using the upper triangular form of JL, this inequality, assumption Ec = X that
JL has no hyperbolic eigenvalues, and the finite dimensionality dimX1 = dimX4 =
n−(L)− dimX2, it is easy to prove

|et(JL+iX3
J33L1,33P3)| ≤ C(1 + |t|1+2n−(L)), ∀t ∈ R.

Along with (9.3), above estimate implies (9.2) and we obtain (2.26) assuming Ec =
X. �
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By using the invariance of Ec# under J#L#, in the following we convert etJ#L# |Ec#
to a flow etJ̃#L̃# on Ec via a similarity transformation and then apply Lemma 9.3
to obtain (2.26).

Proof of (2.26) in Theorem 2.4. In the general case, let Eu,s,c# be the invariant

unstable/stable/center subspaces and Pu,s,c# be the projections associated to the
decomposition X = Eu# ⊕Es# ⊕Ec#. We also adopt the notations Eus# = Eu# ⊕Es#
and Pus# = Pu# + P s#. Correspondingly, let Eu,s,c,us and Pu,s,c,us denoted the
unperturbed invariant subspaces and projections. Recall Ec# can be written as the

graph of a bounded operator Sc# : Ec → Eus with |Sc#| = O(ε). Let S̃c# = iEc+Sc# :

Ec → Ec# ⊂ X so that Ec# = S̃c#(Xc). Clearly, P ciEc# = (S̃c#)−1.

Let

Jc = P cJ(P c)∗, Jc# = P c#J#(P c#)∗, Lc# = i∗Ec#L#iEc# , Lc = i∗EcLiEc .

From the invariance of Ec# under J#L#, the L#-orthogonality between Ec# and
Eus# , and Lemma 12.3 applied to the decomposition X = Ec# ⊕ Eus# , we have

Jc#L
c
# = J#L#|Ec# , et(J#L#)|Ec# = etJ

c
#L

c
# ,

and the combination (Ec#, J
c
#, L

c
#) satisfies (H1-3). Using the mapping S̃c#, we may

just consider its conjugate flow on Ec

P ciEc#e
tJc#L

c
# S̃c#, with the generator P ciEc#J

c
#L

c
#S̃

c
# on Ec.

Let

L̃# = (S̃c#)∗Lc#S̃
c
# = (S̃c#)∗i∗Ec#L#iEc# S̃

c
# : Ec → (Ec)∗,

and

J̃# = P ciEc#J
c
#(P ciEc#)∗ = P cP c#J#(P cP c#)∗ : (Ec)∗ ⊃ D(J̃#)→ Ec.

Clearly,

(9.4) J̃#L̃# = P ciEc#J
c
#L

c
#S̃

c
# = P ciEc#J#L#S̃

c
#.

Since |P ciEc# |, |S̃
c
#| ≤ 2, in order to prove (2.26), it suffices to prove on Ec

(9.5) |eJ̃#L̃# | ≤ CeCε|t|, ∀t ∈ R

for some C depending only on J and L. Our strategy is to verify that (Ec, J̃#, L̃#)
as a perturbation to (Ec, Jc, Lc) satisfies (A1-3) and then apply Lemma 9.3.

When ε = 0, Lemma 12.3 ensures that the unperturbed

(Ec, J̃# = Jc, L̃# = Lc = i∗EcLiEc)

satisfies (H1-3). Moreover, since 〈L·, ·〉 is non-degenerate on Eus, we have

dim kerLc = dim ker(i∗EcLiEc) = dim kerL <∞

due to the L-orthogonality between Ec and Eus and thus (A2) is satisfied by L̃#

for ε = 0. From the definitions, J̃# − Jc is clearly anti-symmetric. We will show
that it is also bounded. Using the fact I − P c# = Pus# , one may compute

J̃# − Jc =− P cPus# J#(P cP c#)∗ − P cJ#(P cPus# )∗ + P cJ1(P c)∗

=− P cPus# Pus# J#(P cP c#)∗ − P cJ#(Pus# )∗(P cPus# )∗ + P cJ1(P c)∗.
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Due to the L#-orthogonality between Eus# and Ec# and the non-degeneracy of

〈L#·, ·〉 on Eus# , it is straightforward to obtain that L# is an isomorphism from

Eus# to R
(
(Pus# )∗

)
= (Pus# )∗(Eus# )∗. Since Eus# ⊂ D(J#L#), we have R

(
(Pus# )∗

)
⊂

D(J#) and thus J#|
R
(

(Pus# )∗
) is a bounded operator. To estimate its norm, we use

the relationship

J#|
R
(

(Pus# )∗
) = (J#L#|Eus#

)(L#|Eus#
)−1 = (Au# ⊕As#)(L#|Eus#

)−1.

Recall Eus# is O(ε) perturbation to Eus and L# is O(ε) to L. Moreover, the spectral

integral representations of Au,s# yield that they are O(ε) perturbation to JL|Eus .
Therefore, we obtain that

|J#|
R
(

(Pus# )∗
)| ≤ C =⇒ |Pus# J#| = |J#(Pus# )∗| ≤ C

for some C > 0 depending on J and L. Since |P cPus# | ≤ Cε, we have

|J̃1,#| ≤ Cε, where J̃1,# , J̃# − Jc.

From the definition of L̃#, it is easy to obtain

L̃1,# = L̃∗1,#, |L̃1,#| ≤ Cε, where L̃1,# , L̃# − Lc.

Therefore, we finish verifying (A1) for (Ec, J̃#, L̃#).
We proceed to verify (A3). From Lemma 9.2, we have D(J#L#) = D(JL).

Since Ec# = S̃c#(Ec) is the graph of Sc# : Ec → Eus and Eus ⊂ D(JL) = D(J#L#),
we obtain

D(J#L#) ∩ Ec# = S̃c#
(
Ec ∩D(JL)

)
.

From the boundedness of J̃1,# and (9.4), we further obtain

D(JcL̃#) = D(J̃#L̃#) = Ec ∩D(JL) = D(JcLc)

which along with L̃# = Lc + L̃1,# obviously implies D(JcLc) ⊂ D(JcL̃1,#).

In the next we estimate the graph norm of JcL̃1,#, like the one defined in

(2.23), on the domain D(JcL̃#) = Ec ∩D(JL). From (9.4) one may compute that,
when restricted on Ec ∩D(JL),

(9.6) J̃#L̃# − JcLc = −PusiEc#J#L#S̃
c
# + J#L#S

c
# + J#L# − JL.

We shall use

(9.7) J#L# = JL+ JL1 + J1L#

to estimate the three terms in (9.6). In fact, for any v ∈ D(JL),

||J#L#v − JLv|| ≤ |JL1|G||v||G + |J1L#|||v|| ≤ Cε||v||G
for some C > 0 depending on J and L. A combination of this inequality with (9.6)
and the fact |PusiEc# | ≤ Cε implies, for any u ∈ Ec ∩D(JL),

||(J̃#L̃# − JcLc)u|| ≤ C
(
ε||S̃c#u||G + ||Sc#u||G + ε||u||G

)
≤ Cε||u||G,

where we used the fact that JL is bounded on Eus ⊂ D(JL). Since

JcL̃1,# = J̃#L̃# − JcLc − J̃1,#L̃#

with |J̃1,#| ≤ Cε, the above inequality implies

||JcL̃1,#u|| ≤ Cε||u||G, ∀u ∈ Ec ∩D(JL)
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for some C > 0 depending on J and L. The above estimates allow us to apply

Lemma 9.3 to obtain (9.5) for etJ̃#L̃# on Ec, which in turn implies (2.26) for
etJ#L# on Ec#. �

To complete this section we present

Proof of Proposition 2.9. Adopt the notations used in (2.24)-(9.1), and let

ε , |J1|+ |L1|+ |JL1|G.

Let Ω ⊂ C be an open domain with the compact closure and smooth boundary
Γ ⊂ C\iR such that Ω ∩ σ(JL) = σ2. For small ε, Lemma 9.2 allows us to define
the following objects via standard contour integrals

P# =
1

2πi

∮
Γ

(z − J#L#)−1dz, X#
2 = P#X ⊂ D(J#L#), X#

1 = (I − P#)X

A#
1,2 = (J#L#)|X1,2

=
1

2πi

∮
Γ

z(z − J#L#)−1dz.

Let P , X1,2, and A1,2 denote the corresponding unperturbed objects.

From the standard spectral theory, the decomposition X = X#
1 ⊕X

#
2 is invari-

ant under J#L# and thus A#
1,2 are operators on X#

1,2 with σ(A#
2 ) ⊂ Ω. (In fact

σ(A1,2) = σ1,2.) Since σ(J#L#) = σ(A#
1 ) ∪ σ(A#

2 ), we only need to prove that

σ(A#
1 ) ⊂ iR.
Since the decomposition X = X1 ⊕ X2 is L-orthogonal and X2 ⊂ D(JL),

Lemma 12.3 implies that (X1, JX1 = (I − P )J(I − P )∗, LX1) satisfies (H1-3).
Therefore, the index theorem Theorem 2.3 applies to LX1 and JL|X1 which along
with the second assumption of Proposition 2.9 implies that n−(LX1

) = 0. As LX1

satisfies (H2), we obtain that LX1
is positive definite. Lemma 9.2 implies

|P# − P | ≤ Cε.

and thus X#
1 is O(ε) close to X1. Namely X#

1 can be written as the graph of an
O(ε) order bounded operator S# : X1 → X2. It immediately implies that LX#

1
is

uniformly positive on X#
1 and the proposition follows from the invariance of X#

1

under J#L#. �

9.2. Perturbations of purely imaginary spectra

In this section, we consider σ(J#L#) near some iµ ∈ σ(JL) ∩ iR and prove
Theorems 2.5 and 2.6.

‘Structurally stable’ cases. We still adopt the notation used in (2.24) and let

(9.8) ε , |J1|+ |L1|+ |JL1|G.

Case 1: iµ ∈ σ(JL) ∩ iR is isolated with 〈L·, ·〉 sign definite on Eiµ.
Suppose δ > 0 and 〈Lu, u〉 ≥ δ||u||2, for all u ∈ Eiµ (the opposite case 〈L·, ·〉 ≤

−δ < 0 on Eiµ is similar). Since iµ is assumed to be isolated in σ(JL), there exists

α > 0 such that the closed disk B(iµ, α) ∩ σ(JL) = {iµ}. Let Γ = ∂B(iµ, α) and
Γ ∩ σ(J#L#) = ∅ for small ε due to Lemma 9.2. Define

P̃# =
1

2πi

∮
Γ

(z − J#L#)−1dz, Ẽ# = P̃#X.
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From the standard spectral theory, Ẽ# is invariant under J#L# and

σ(J#L#) ∩B(iµ, α) = σ(J#L#|Ẽ#
).

Lemma 9.2, the isolation of iµ, and Proposition 2.3 imply that Ẽ# is O(ε) close to
Eiµ. The positive definiteness assumption of 〈L·, ·〉 on Eiµ and the boundedness

of L and L1 imply that 〈L#·, ·〉 is also positive definite on Ẽ#. The stability –

both forward and backward in time – of etJ#L# on Ẽ#, due to the conservation of
energy, implies

σ(J#L#) ∩B(iµ, α) = σ(J#L#|Ẽ#
) ⊂ iR.

Case 2: iµ ∈ σ(JL) ∩ iR and 〈L·, ·〉 is positive definite on Eiµ.
Then

(9.9) Eiµ = {0} or 〈Lu, u〉 ≥ δ||u||2, ∀u ∈ Eiµ,
for some δ > 0.

Remark 9.1. In this case, besides the possibility of an isolated eigenvalue iµ ∈
σ(JL) with L positive definite on Eiµ, we are mainly concerned with the scenario
that iµ is embedded in the continuous spectrum, whether an eigenvalue or not, but
without any eigenvector in a non-positive direction of L. Our conclusion is that,
under small perturbations, no hyperbolic eigenvalues (i.e. away from imaginary
axis) may bifurcate from iµ.

We argue by contradiction for Case 2. Suppose Theorem 2.5 does not hold in
this case, then there exist a sequence

J#n = J + J̃n, L#n = L+ L̃n, n = 1, 2, . . . ,

satisfying (A1-3) for each n such that

∃λn ∈ σ(J#nL#n)\iR; εn , |J̃n|+ |L̃n|+ |JL̃n|G → 0; δn , |λn − iµ| → 0.

Since not in iR, λn must be eigenvalues. Let

un ∈ X, J#nL#nun = λnun, ||un|| = 1.

Using the graph norm of JL1, one may estimate

||JL̃nun|| ≤ |JL̃n|G(1 + ||JLun||) ≤ |JL̃n|G
(
1 + |λn|+ ||JLun − λnun||

)
and

||JLun − λnun|| = ||JLun − J#nL#nun|| ≤ ||J̃nL#nun||+ ||JL̃nun||.
Therefore, we obtain

(9.10) ||JLun − λnun|| ≤ Cεn, ||JLun − iµun|| ≤ (Cεn + δn)

for some C > 0 depending on |L| and µ.
Let X = ⊕6

j=0 be the decomposition given by Theorem 2.1 for (L, J), with
X0 = kerL, Pj be the associated projections, and un,j = Pjun. Let Aj and Ajk
denote the blocks of JL in this decomposition as given in Theorem 2.1. From the
commutativity between JL and P5,6, we obtain from (9.10)

||A5un,5 − iµun,5||+ ||A6un,6 − iµun,6|| ≤ C(εn + δn).

Since σ(A5,6) ∩ iR = ∅, we have

(9.11) ||un,5||+ ||un,6|| ≤ C(εn + δn).
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From Lemma 3.3, we have 〈L#nun, un〉 = 0. Along with (9.11) this implies that

(9.12) |2〈Lun,1, un,4〉+ 〈L2un,2, un,2〉+ 〈L3un,3, un,3〉| ≤ C(εn + δn).

Applying Pj , j = 0, . . . , 4 to (9.10) and using Theorem 2.1, we have

||A4un,4 − iµun,4|| ≤ C(εn + δn);(9.13)

||A3un,3 +A34un,4 − iµun,3|| ≤ C(εn + δn);

||A2un,2 +A24un,4 − iµun,2|| ≤ C(εn + δn);

||A1un,1 +A12un,2 +A13un,3 +A14un,4 − iµun,1|| ≤ C(εn + δn);

||A01un,1 +A02un,2 +A03un,3 +A04un,4 − iµun,0|| ≤ C(εn + δn).(9.14)

Since dimXj < ∞ when j 6= 0, 3, subject to a subsequence, we may assume that
as n→∞,

un,j → uj , j = 1, 2, 4; un,5, un,6 → 0; un,j ⇀ uj , j = 0, 3.

Passing to the limits in the above inequalities and using the boundedness of Aj and
Ajk except A3, we obtain

A4u4 − iµu4 = 0; A2u2 +A24u4 − iµu2 = 0;

A1u1 +A12u2 +A13u3 +A14u4 − iµu1 = 0;

A01u1 +A02u2 +A03u3 +A04u4 − iµu0 = 0.

Moreover, the above inequality involving A3un,3 also implies that

un,3 ⇀ u3, A3un,3 ⇀ −A34u4 + iµu3.

Since the graph of the closed operator of A3 as a closed subspace in X3×X3 is also
closed under the weak topology, we obtain

u3 ∈ D(A3) and A3u3 +A34u4 − iµu3 = 0.

These equalities imply that

JLu = iµu, where u = u0 + u1 + u2 + u3 + u4.

In addition, (9.12) implies

〈Lu, u〉 = 2〈Lu1, u4〉+ 〈L2u2, u2〉+ 〈L3u3, u3〉 ≤ 0.

Due to property (9.9) of iµ, we must have u = 0, which immediately yields
un,j → 0, j = 1, 2, 4, 5, 6 and thus (9.12) implies un,3 → 0 as well. Then the
normalization ||un|| = 1 implies that we must have dim kerL ≥ 1, ||un,0|| → 1
and un,0 ⇀ 0. From (9.14), we obtain µ = 0. As kerL is nontrivial, this again
contradicts to (9.9). Therefore, Theorem 2.5 holds in this case.

Summarizing the above two cases, Theorem 2.5 is proved.

‘Structurally unstable’ cases. In the following, we will consider cases in Theo-
rem 2.6 for the structural instability. In many applications the symplectic structure
J usually does not vary, therefore we will fix J and focus on constructing perturba-
tions to the energy operator L to induce instabilities arising from a purely imaginary
eigenvalue iµ of JL. Recall we have to complexify X, J , and L accordingly. How-
ever, keep in mind that we would like to construct real perturbations to create
unstable eigenvalues near iµ. This would require the perturbations to also satisfy
(12.12), see Remark 12.5. Recall that while JL is a linear operator, L and J are
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complexified as Hermitian forms or anti-linear mappings, see (12.8) and (12.9).

Case 3: iµ ∈ σ(JL) and ∃ a closed subspace {0} 6= Y ⊂ Eiµ such that

JL(Y ) ⊂ Y, and 〈L·, ·〉 is non-degenerate and sign indefinite on Y.

Remark 9.2. Clearly, this includes, but not limited to, the situation where
〈L·, ·〉 is non-degenerate and indefinite on Eiµ, a special case of which is when iµ
is isolated in σ(JL). It is analyzed in several subcases below.

We will construct a perturbation L# such that σ(JL#) contains a hyperbolic
eigenvalue near iµ. The proof will basically be carried out in some finite dimensional
subspaces. Such finite dimensional problems had been well studied in the literature,
mostly for the Case 3b below when there are two eigenvectors of opposite signs of
〈L·, ·〉 (see e.g. [59, 24]). We could not find a reference for the proof of structural
instability when the indefiniteness of L|Eiµ is caused by a Jordan chain of JL (Case
3c below). So we give a detailed proof for the general case, which will also be used
in later cases of embedded eigenvalues. Our proof for the Case 3c uses the special
basis constructed in Proposition 2.2 for the Jordan blocks of JL on Eiµ.

Recall ū ∈ E−iµ for any u ∈ Eiµ. Let

Yµ = {u+ v̄ | u, v ∈ Y } ⊂ Eiµ + E−iµ.

From Lemma 3.3 and the assumption on Y , 〈L·, ·〉 is still non-degenerate on Yµ
which is also clearly invariant under JL. Recall that

Y ⊥Lµ = {u ∈ X | 〈Lu, v〉 = 0, ∀v ∈ Yµ}.

From Lemmas 12.2 and 3.2, Y ⊥Lµ is also invariant under etJL and X = Yµ ⊕ Y ⊥Lµ .
The definition of Yµ implies that Yµ is real, in the sense ū ∈ Yµ for any u ∈ Yµ,
and thus the complexification of a real subspace of X. According to Lemma 12.3,
JL|Yµ is a also a Hamiltonian operator satisfying hypotheses (H1-3) with the non-
degenerate energy LYµ , defined in (12.1). Therefore, we may apply Proposition 2.2
to Yµ and JL|Yµ , where Y ⊂ Yµ is the subspace of all generalized eigenvectors of
iµ of JL|Yµ . Since L is non-degenerate on Y , it is clear that Case 3 contains the
following three subcases only.

Case 3a: µ 6= 0 and 〈L·, ·〉 changes sign on ker(JL− iµ) ∩ Y .
In this subcase, let u± ∈ ker(JL− iµ)∩ Y be such that ±〈Lu±, u±〉 > 0. By a

Gram-Schmidt process, without loss of generality, we may assume

〈Lu±, u±〉 = ±1, 〈Lu+, u−〉 = 0.

Note that u± can not be real for µ 6= 0. As we will construct real perturbations to
create instability, we have to consider the complex conjugate of u± as well. Let

X1 = span{u+, u−, u+, u−}, X2 = X⊥L1 = {v ∈ X | 〈Lu±, v〉 = 〈Lu±, v〉 = 0}.

It is clear that subspaces X1,2 are comlexifications of real subspaces in the sense

(9.15) ū ∈ X1,2 if u ∈ X1,2.

Note that u± are eigenvectors of −iµ ( 6= iµ) and that Eiµ and E−iµ are L-
orthogonal. Therefore, from the complexification process, it is easy to verify that,
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with respect to this basis of the invariant subspace X1 of JL, operators LX1
and

JL|X1 take the forms

LX1
=

(
Λ 0
0 Λ

)
, JL|X1

, A1 = iµ

(
I2×2 0

0 −I2×2

)
,

where

Λ =

(
1 0
0 −1

)
, I2×2 =

(
1 0
0 1

)
.

From the invariance of X1 and Lemmas 12.2 and 3.2, X2 = X⊥L1 is also invariant
under JL and X = X1 ⊕X2. In this decomposition, L, JL, and J take the forms

(9.16) L =

(
LX1

0
0 LX2

)
, JL =

(
AX1

0
0 AX2

)
, J =

(
JX1

0
0 JX2

)
,

where, with respect to the basis of X∗1 dual to {u±, u±},

JX1
= iµ

(
Λ 0
0 −Λ

)
, JX2

: X∗2 ⊃ D(JX2
)→ X2, J∗X2

= −JX2
.

Here, J∗ = −J is used.
Consider a perturbation L1 in the form of

L1 =

(
L1,X1

0
0 0

)
, where L1,X1 =

(
εR 0
0 εR

)
, R =

(
0 1
1 0

)
.

It is straightforward to verify that L1 is real, namely, 〈L1ū, v̄〉 = 〈L1u, v〉. Let
L# = L+L1. Clearly, the decomposition X = X1⊕X2 is still invariant under JL#

and orthogonal with respect to L#. Therefore, by a direct computation on the 4×4
matrix JL#|X1

which can be further reduced to the 2× 2 matrix iµΛ(Λ + εR), we
obtain

iµ± εµ ∈ σ(JL#).

Therefore, σ(JL#) contains hyperbolic eigenvalues near iµ for any ε 6= 0.

Case 3b: µ = 0 and 〈L·, ·〉 changes sign on ker(JL− iµ) ∩ Y .
In this case one may proceed as in the above through (9.16), however, with

JX1
= 0. Therefore, no hyperbolic eigenvalue can bifurcate through such type of

perturbations of L.

Cases 3c: µ 6= 0 and Y contains a non-trivial Jordan chain uj = (JL− iµ)j−1u1,
j = 1, . . . , k > 1, of JL such that uk ∈ ker(JL − iµ)\{0} and 〈L·, ·〉 is non-
degenerate on span{u1, . . . , uk}.

Again in this case let

X1 = span{uj , uj | j = 1, . . . , k}, X2 = X⊥L1 ,

which is a L-orthogonal invariant decomposition under JL satisfying (9.15) and
thus the forms (9.16) hold. From Proposition 2.2, without loss of generality, we
may assume that, with respect to the basis {u1, . . . , uk, u1, . . . , uk} (as well as its

dual basis in X∗1 ), LX1
, JL|X1

, AX1
, and JX1

take the forms

LX1 =

(
B+ 0
0 B+

)
, AX1 =

(
A+ 0
0 A+

)
, JX1 =

(
J+ 0
0 J+

)
,
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where

B+ =


0 . . . 0 bk
0 . . . bk−1 0
. . .
b1 . . . 0 0

 , A+ =


iµ 0 . . . 0 0
1 iµ . . . 0 0
. . .
0 0 . . . 1 iµ

 ,

and bj+1 = −bj , bk+1−j = bj . Therefore, bj ∈ {±i} if 2|k or bj ∈ {±1} otherwise.
Then one may compute

J+ =


0 0 . . . 0 iµb1

−1

0 0 . . . iµb2
−1

b1
−1

. . .

iµbk
−1

bk−1
−1

. . . 0 0

 .

Here, note that bj
−1

instead of b−1
j appears in above J+, namely

J+(u∗j ) = iµbk+1−j
−1
uk+1−j + bk+1−j

−1
uk+2−j

where uk+1 = 0 is understood. This is due to the anti-linear complexification of
L and J , see (12.9). In fact, let {u∗j , uj∗ | j = 1, . . . , k} be the dual basis in X∗1
which are complex linear functionals. We have

〈u∗l , Ju∗j 〉 =〈u∗l , J(b−1
k+1−jLuk+1−j)〉 = 〈u∗l , bk+1−j

−1
JLuk+1−j)〉

=bk+1−j
−1〈u∗l , JLuk+1−j〉 = bk+1−j

−1〈u∗l , iµuk+1−j + uk+2−j〉

=bk+1−j
−1

(iµδl,k+1−j + δl,k+2−j) .

Consider perturbations in the form of

L1 =

(
L1,X1

0
0 0

)
, where L1,X1

= ε

(
B 0
0 B

)
, B =


0 . . . 0 0
. . .
0 . . . 0 0
0 . . . 0 1

 .

Clearly, L1 is real in the sense 〈L1ū, v̄〉 = 〈L1u, v〉. Let L# = L + L1 and the
decomposition X = X1 ⊕ X2 is still invariant under JL# and orthogonal with
respect to L#. Therefore, σ

(
J+(B+ + εB)

)
⊂ σ(JL#). By direct computation, we

obtain the matrix

J+(B+ + εB) =


iµ 0 . . . 0 iεµb1

−1

1 iµ . . . 0 εb1
−1

. . .
0 0 . . . 1 iµ


and its characteristic polynomial

det
(
λ− J+(B+ + εB)

)
= (−i)kp

(
i(λ− iµ)

)
,

where

p(λ) = λk − εbλ+ εbµ, b = (−i)k−1b1
−1 ∈ {±1}.

To find hyperbolic eigenvalues of J+(B++εB), it is equivalent to show that p(λ) = 0
has a root λ /∈ R. Choose the sign of ε such that εbµ > 0. Denote c1, · · · , ck to be
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all the k−th roots of − |bµ|, which are not real except for at most one. So we can

assume Im c1 6= 0. Let δ = |ε|
1
k . Then p (λ) = 0 is equivalent to

(9.17)

(
λ

δ

)k
− δ|b| |µ|

µ

(
λ

δ

)
+ |bµ| = 0.

When δ � 1, by the Implicit Function Theorem, (9.17) has k roots of the form

λj
δ

= cj +O (δ) , j = 1, · · · , k,

among which λ1 = δc1 +O
(
δ2
)

satisfies Imλ1 6= 0. This implies that J+(B+ + εB)

has a hyperbolic eigenvalue of the form iµ− iδc1 +O
(
δ2
)
.

Cases 3d: µ = 0 and Y contains a non-trivial Jordan chain of length ≥ 3. Let
uj = (JL)j−1u1, j = 1, . . . , k, (k ≥ 3) be a Jordan chain of JL such that 〈L·, ·〉 is
non-degenerate on span{u1, . . . , uk}.

In this case one may proceed as in the above with

p(λ) = λk − εbλ = λ(λk−1 − εb).
Choose ε such that εb < 0. Since k ≥ 3, p(λ) has a complex root which implies that
J+(B+ + εB) has a hyperbolic eigenvalue. For µ = 0 and k = 2, by straightforward
computations, it can be shown that J must be degenerate and J+(B+ + εB) has
only eigenvalue 0 and a purely imaginary eigenvalues for any 2×2 Hermitian matrix
B and ε� 1.

Case 4: iµ ∈ σ(JL) ∩ iR\{0} and 〈L·, ·〉 is degenerate on Eiµ 6= {0}.
In this case, Proposition 2.3 implies that iµ must be non-isolated in σ(JL) and

we start with the following lemma to isolate iµ through a perturbation.

Lemma 9.4. Assume (H1-3). Suppose iµ ∈ σ(JL) ∩ iR is non-isolated in
σ(JL). For any ε > 0, there exists a symmetric bounded linear operator L1 : X →
X∗ satisfying (12.12) such that |L1| < ε and iµ ∈ σ(JL#) is an isolated eigenvalue,
where L# = L + L1, and 〈L#u, u〉 > 0 for some generalized eigenvector u of the
eigenvalue iµ of JL#.

Proof. Since σ(JL) is symmetric about both real and imaginary axes, without
loss of generality we can assume that µ ≥ 0.

Let X = Σ6
j=0Xj be the decomposition given in Theorem 2.1 with associated

projections Pj . We will use the notations there in the rest of the proof. Recall
Theorem 2.1 is proved without the complexification, i.e. in the framework of real
Hilbert space X and real operators J and L, the resulted decomposition and op-
erators are real. After the complexification, Xj are real in the sense of (9.15) and
the operators satisfy (12.12) and the blocks in L and J are anti-linear.

As iµ ∈ σ(JL) is assumed to be non-isolated and dimXj < ∞, j 6= 0, 3, it
must hold iµ ∈ σ(A3). Since A3 is anti-self-adjoint with respect to the positive
definite Hermitian form 〈LX3 ·, ·〉, it induces a resolution of the identity. Namely
there exists a family of projections {Πλ}λ∈R on X3 such that

(1) limλ→λ0+ Πλu = Πλ0u, for all λ0 ∈ R and u ∈ X3;
(2) Πλ1Πλ2 = Πmin{λ1,λ2}, for all λ1,2 ∈ R;
(3) 〈LX3

Πλu1, u2〉 = 〈LX3
u1,Πλu2〉 for any u1,2 ∈ X3 and λ ∈ R;

(4) u =
∫ +∞
−∞ dΠλu, A3u =

∫ +∞
−∞ iλ dΠλu, for any u ∈ X3;
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(5) dΠλ = dΠ−λ for any λ ∈ R.

Here the last property is due to the fact that J and L are real satisfying (12.12).

For µ > 0, define a perturbation L̃1 : X3 → X∗3 by

L̃1u = LX3

( ∫
|λ−µ|<ν

λ− µ
λ

dΠλu+

∫
|λ+µ|<ν

λ+ µ

λ
dΠλu

)
, ∀u ∈ X3,

where ν ∈ (0, µ) is a small constant to be determined later. As Πλu is continuous
from the right, the integrals take the same values on the open intervals or half open
half closed interval like [µ− ν, µ+ ν).

For µ = 0, define

L̃1u = LX3

∫ ν

−ν
dΠλu, ∀u ∈ X3,

where again ν > 0 is determined later.
For µ > 0, like LX3 , it is clear that L̃1 is anti-linear satisfying (12.9). We will

verify that L̃1 is also real and symmetric. For any u ∈ X, one may compute using
dΠλ = dΠ−λ

L̃1u =LX3

( ∫
|λ−µ|<ν

λ− µ
λ

dΠλu+

∫
|λ+µ|<ν

λ+ µ

λ
dΠλu

)
=LX3

( ∫
|λ−µ|<ν

λ− µ
λ

dΠλū+

∫
|λ+µ|<ν

λ+ µ

λ
dΠλū

)
=LX3

( ∫
|λ−µ|<ν

λ− µ
λ

dΠ−λū+

∫
|λ+µ|<ν

λ+ µ

λ
dΠ−λū

)
.

Through a change of variable λ → −λ, we obtain L̃1u = L̃1ū, namely, L̃1 is real
(the complxification of a real linear operator). Moreover, for any u1,2 ∈ X, we have

〈L̃1u1, u2〉 = 〈LX3

( ∫
|λ−µ|<ν

λ− µ
λ

dΠλu1 +

∫
|λ+µ|<ν

λ+ µ

λ
dΠλu1

)
, u2〉

=

∫
|λ−µ|<ν

λ− µ
λ

d〈LX3
Πλu1, u2〉+

∫
|λ+µ|<ν

λ+ µ

λ
d〈LX3

Πλu1, u2〉.

Since LX3
is Hermitian and 〈Πλ·, ·〉 = 〈·,Πλ·〉 onX3, we obtain that L̃1 is Hermitian.

Therefore,
〈
L̃1·, ·

〉
is the complexification of a real bounded symmetric quadratic

form on X3. Clearly, in the equivalent norm 〈LX3
u, u〉 1

2 on X3,

|L̃1| ≤
ν

µ− ν
→ 0, as ν → 0.

The same properties also hold for L̃1 for µ = 0 and we skip the details.
Let

L1 = P ∗3 L̃1P3, L# = L− L1.
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Accordingly in this decomposition

L# ←→



0 0 0 0 0 0 0
0 0 0 0 B14 0 0
0 0 LX2

0 0 0 0

0 0 0 LX3
+ L̃1 0 0 0

0 B∗14 0 0 0 0 0
0 0 0 0 0 0 B56

0 0 0 0 0 B∗56 0


.

From Corollary 2.1, one can compute

JL# ←→



0 A01 A02 A03(I − L−1
X3
L̃1) A04 0 0

0 A1 A12 A13(I − L−1
X3
L̃1) A14 0 0

0 0 A2 0 A24 0 0

0 0 0 A3(I − L−1
X3
L̃1) A34 0 0

0 0 0 0 A4 0 0
0 0 0 0 0 A5 0
0 0 0 0 0 0 A6


.

Due to the upper triangular structure of JL# and the finite dimensionality of X1,2,
in order to prove that iµ belongs to and is isolated in σ(JL#), it suffices to show

that iµ belongs to and is isolated in σ
(
A3(I − L−1

X3
L̃1)
)
. In fact, for any u ∈ X3 ,

(9.18) A3(I − L−1
X3
L̃1)u = i

∫
S

µ dΠλu+ i

∫
R\S

λ dΠλu,

where S = (−µ − ν,−µ + ν) ∪ (µ − ν, µ + ν). Since Πλ is not constant on S as

iµ ∈ σ(A3), we obtain that iµ is an isolated eigenvalue of A3(I −L−1
X3
L̃1) and thus

of σ(JL#) as well. Indeed, for any u ∈ R (Πµ+ν −Πµ−ν), by (9.18) we have

A3(I − L−1
X3
L̃1)u = iµu.

So iµ is an eigenvalues of A3(I −L−1
X3
L̃1). To show iµ is isolated, taking any α ∈ C

such that 0 < |α− iµ| < ν, then we have(
α−A3(I − L−1

X3
L̃1)
)−1

=

∫
S

(α− iµ)
−1

dΠλ +

∫
R\S

(α− iλ)
−1

dΠλ,

which is clearly a bounded operator.
Finally, we prove that there exists a generalized eigenvector u of iµ of JL#

such that 〈L#u, u〉 > 0. Since dimX1 < ∞, there exists an integer K > 0 such
that

X1 = Yµ ⊕ Ỹ , where Yµ = ker(A1 − iµ)K ∩X1, Ỹ = (A1 − iµ)KX1.

In the following we proceed in the case of µ > 0 first. Let

Zµ = {u− (−iµ)−KP0(JL− iµ)Ku | u ∈ Yµ}, Z̃ = kerL⊕ Ỹ .
Note that the upper triangular structure of JL implies that

(A1 − iµ)K = P1(JL− iµ)K |X1
.

Using this observation and the invariance of X̃ = kerL⊕X1 under JL, we obtain
through straightforward computations

(9.19) X̃ = Zµ ⊕ Z̃, Zµ = ker(JL− iµ)K ∩ X̃, Z̃ = (JL− iµ)KX̃,
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and on the invariant subspaces Zµ and Z̃

(9.20) σ(JL|Zµ) = {iµ} if iµ ∈ σ(A1), iµ /∈ σ(JL|Z̃).

Let P : X̃ → Z̃ be the projection associated to the above decomposition and
u3 ∈ X3 be such that

A3(I − L−1
X3
L̃1)u3 = iµu3.

The structure of JL# implies (JL# − iµ)u3 ∈ X̃. Let

ũ =
(
(JL− iµ)|Z̃

)−1
P̃ (JL# − iµ)u3 ∈ Z̃ ⊂ X̃, u = u3 − ũ.

By using (L# − L)|X̃ = 0, it is easy to verify that

(JL# − iµ)u ∈ Zµ,

which implies

(JL# − iµ)K+1u = 0.

From the structure of L#, straightforward computation leads to

〈L#u, u〉 = 〈(L3 + L̃1)u3, u3〉 > 0,

for 0 < ν << 1.
The case of µ = 0 is largely similar. Let

Z0 = Y0 ⊕ kerL, Z̃ = Ỹ

and (9.19) and (9.20) still hold. The rest of the argument follows in exactly the
same procedure. �

We return to construct a perturbation L1 to L to create unstable eigenvalues.
In Case 4, ED in Proposition 2.2 is non-trivial and finite dimensional, therefore

(9.21) ∃ 0 6= u0 ∈ ker(JL− iµ) such that 〈Lu0, u0〉 = 0,

where u0 ∈ ED. Since µ 6= 0 implies u0 ∈ E−iµ with 〈Lu0, u0〉 = 0, let

(9.22) Y0 = span{u0, u0} ⊂ ker(JL− iµ)⊕ ker(JL+ iµ).

The following decomposition lemma is our first step in the construction of a hyper-
bolically generating perturbation.

Lemma 9.5. Suppose 0 6= iµ ∈ σ(JL) ∩ iR satisfying (9.21). Let Y0 be defined
in (9.22). Then there exists w ∈ D(JL) with w 6= w and a codim-4 closed subspace
Y1 ⊂ X satisfying (9.15) such that X = Y0 ⊕ Y1 ⊕ Y2, where Y2 = span{w,w}.
Moreover, in this decomposition and the bases {u0, u0}, {w, w̄} on Y0,2 respectively,
L and JL take the forms

L←→

 0 0 I2×2

0 LY1 0
I2×2 0 0

 , JL←→

iµΛ A01 A02

0 A1 A12

0 0 iµΛ

 , Λ =

(
1 0
0 −1

)
.

Here, all blocks are bounded operators except A1 = JY1LY1 and (Y1, JY1 , LY1) satis-
fies (H1-3).
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Proof. Let

Ỹ = {u ∈ X | 〈Lu, u0〉 = 0 = 〈Lu, u0〉} ⊃ {u0, u0}.

Clearly, Ỹ , satisfying (9.15), is the complexification of some real codim-2 subspace.

Lemma 3.2 implies that Ỹ is invariant under JL. Let

Ỹ1 = {u ∈ Ỹ | (u, u0) = (u, u0) = 0}.
Since Y0 ∩ kerL = {0} and D(JL) is dense in X, there exists a 2-dim subspace

Ỹ2 ⊂ D(JL) such that 〈Lu, v〉, u ∈ Y0 and v ∈ Ỹ2, defines a non-degenerate bilinear

form on Y0 ⊗ Ỹ2. Clearly, we have X = Y0 ⊕ Ỹ1 ⊕ Ỹ2 and in this decomposition L
takes the form

L←→

 0 0 B02

0 LY1 B12

B∗02 B∗12 B22

 ,

where B02 : Ỹ2 → Y ∗0 is non-degenerate and B∗22 = B22. Through exactly the same

procedure as in the proof of Proposition 6.1, we may obtain subspaces Y1 and X̃2

as graphs of bounded linear operators from Ỹ1,2 to Y0 such that X = Y0 ⊕ Y1 ⊕X2

and in this decomposition L takes the form

L←→

 0 0 B
0 LY1 0
B∗ 0 0

 ,

where B : X2 → Y ∗0 is non-degenerate. There exists w ∈ X2 ⊂ D(JL) such that
〈Lu0, w〉 = 1 and 〈Lu0, w̄〉 = 〈Lu0, w〉 = 0, which also implies 〈Lu0, w̄〉 = 0, where

(12.12) is used. Let Y2 = span{w, w̄}. From the definition of w, Ỹ , and Y1, we have
X = Y0⊕Y1⊕Y2, associated with projections P0,1,2, and in this decomposition, the
desired block form of L is achieved. Applying Lemma 12.3 to X = (Y0 ⊕ Y2)⊕ Y1,
we obtain that (Y1, JY1 , LY1) satisfies (H1-3), where JY1 = P1JP

∗
1 . The upper

triangular block form of JL is due to the invariance of Y0 and Ỹ = Y0 ⊕ Y2.
To complete the proof of the lemma, we are left to show P2JLw = iµw, which

along with the facts that Ỹ satisfies (9.15) and JL satisfies (12.12) also implies
P2JLw̄ = −iµw̄. From (JL)∗ = −LJ (Corollary 12.1), we have

〈LJLw, u0〉 = −〈Lw, JLu0〉 = iµ〈Lw, u0〉 = iµ

and similarly 〈LJLw, u0〉 = −iµ〈Lw, u0〉 = 0. According to the definitions of Ỹ
and w, we obtain P2JLw = iµw and the lemma is proved. �

With the above lemmas, we are ready to construct a perturbed energy operator
L# to create unstable eigenvalues of JL# near iµ in the Case 4. We start with the
decomposition given in Lemma 9.5. Since iµ is an eigenvalue of JL non-isolated in
σ(JL), we have iµ ∈ σ(JY1LY1) and is non-isolated in σ(JY1LY1). From Lemma 9.4,

there exists a sufficiently small symmetric bounded linear operator L̃2 : Y1 → Y ∗1
such that iµ ∈ σ

(
JY1(LY1 + L̃2)

)
and is isolated with an eigenvector u1 ∈ Y1

satisfying 〈(LY1 + L̃2)u1, u1〉 > 0. Let L2 = P ∗1 L̃2P1 and L̃# = L + L2, then the

block forms of L# and JL̃# imply that iµ ∈ σ(JL̃#) is isolated and

(9.23) u0, u1 ∈ ker(JL̃# − iµ), 〈L̃#u0, u0〉 = 0, and 〈L̃#u1, u1〉 > 0.

Since iµ is isolated in σ(JL̃#), Proposition 2.3 implies that 〈L̃#·, ·〉 is non-degenerate

on Eiµ(JL̃#), the subspace of generalized eigenvectors of iµ for JL̃#. Moreover,
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by (9.23), 〈L̃#·, ·〉 is sign indefinite on Eiµ(JL̃#). This situation has been covered
in Case 3. Therefore, there exists a sufficient small symmetric bounded linear
operator L3 : X → X∗ such that there exists λ ∈ σ(JL#)\iR sufficiently close to
iµ, where L# = L+ L2 + L3.

Case 5: iµ ∈ σ(JL) ∩ iR\{0} is non-isolated and 〈L·, ·〉 is negative definite
on Eiµ 6= {0}.

Much as in Case 4 (but more easily), we can construct sufficiently small sym-
metric bounded perturbations to the energy operator L to create unstable eigen-
values. In fact, Proposition 2.2 implies that in Case 5, it holds ker(JL− iµ) = Eiµ.
Let

Y0 = Eiµ ⊕ E−iµ, Y = Y ⊥L0 = {v ∈ X | 〈Lv, u〉 = 〈Lv, u〉 = 0, ∀u ∈ Eiµ}.
Since 〈L·, ·〉 is negative on Y0, Lemma 12.2 implies that X = Y0 ⊕ Y associated
with projections PY0,Y . In this decomposition L and JL take the forms

L←→
(
LY0

0
0 LY

)
, JL←→

(
A0 0
0 A

)
,

where A0 is a bounded operator satisfying A2 + µ2 = 0. Lemma 12.3 implies
that A = JY LY and (Y, JY , LY ) satisfies (H1-3). Clearly, it still holds that
iµ ∈ σ(JY LY ) and is non-isolated there. Applying Lemma 9.4 to LY , we ob-

tain a perturbation L̃ : Y → Y ∗ such that iµ is an isolated point in σ
(
JY (LY + L̃)

)
.

Let L̃# = L + P ∗Y L̃PY and we obtain that iµ is an isolated point in σ(JL̃#) with

〈L̃#·, ·〉 sign indefinite on its eigenspace. This is a case covered in Case 3 and thus
there exists a sufficient small symmetric bounded linear perturbation L# to L so
that JL# has an unstable eigenvalue close to iµ.

Proof of Theorem 2.6. It suffices to show that Cases 3, 4, 5 cover all the cases
in Theorem 2.6. In fact, if 〈L·, ·〉 is degenerate on Eiµ 6= {0} and µ 6= 0, this is
precisely Case 4. Let us consider the case when 〈L·, ·〉 is non-degenerate on Eiµ
and satisfies the assumptions in Theorem 2.6. Then 〈L·, ·〉 is either sign indefinite
on Eiµ (Case 3) or is negative definite on Eiµ for an eigenvalue iµ 6= 0 non-isolated
in σ(JL) (Case 5). �



CHAPTER 10

Proof of Theorem 2.7 where (H2.b) is weakened

In this chapter, we consider the case when (H2.b) is weakened, namely, L is
only assumed to be positive on X+, but not necessarily uniformly positive. More
precisely, we will prove Theorem 2.7 under hypotheses (B1-5) given in Section 2.6.
In Section 11.6, as an example we will consider the stability of traveling waves of
a nonlinear Schrödinger equation with non-vanishing condition at infinity in two
dimensions.

Initial decomposition of the phase space. We adopt the notations as in
Chapter 3. Let P±,0 : X → X±,0 be the projections associated to the decomposition
X = X− ⊕ kerL⊕X+, where X0 = kerL, and

X̃∗±,0 = P ∗±,0X
∗
±,0 ⊂ X∗.

We also let

X≤0 = X− ⊕ kerL, P≤0 = P0 + P− = I − P+, X̃∗≤0 = X̃∗− ⊕ X̃∗0 .
Clearly, we have

(10.1) X̃∗+ = ker i∗X≤0
, X̃∗≤0 = ker i∗X+

⊂ Q0(X), X∗ = X̃∗≤0 ⊕ X̃∗+,

where assumption (B5) is used. Since 〈Lu, u〉 < 0 on X−\{0} and dimX− =
n−(L) <∞, there exists δ > 0 such that

〈Lu, u〉 ≤ −δ‖u‖2, ∀ u ∈ X−.
From (B4), we also have

LX+ ⊂ X̃∗+, LX≤0 = X̃∗− ⊂ X̃∗≤0.

Denote

L+ = i∗X+
LiX+ : X+ → X∗+, L≤0 = i∗X≤0

LiX≤0
: X≤0 → X∗≤0,

which along with the L-orthogonality in (B4) implies

L = P ∗+L+P+ + P ∗≤0L≤0P≤0.

While the decomposition is not necessarilyQ0-orthogonal, we have the following
lemma. Let

Q≤0,+
0 = i∗≤0Q0iX+ : X+ → X∗≤0, Q+,≤0

0 = i∗X+
Q0i≤0 : X≤0 → X∗+,

Q≤0
0 = i∗X≤0

Q0iX≤0
: X≤0 → X∗≤0, Q+

0 = i∗X+
Q0iX+ : X+ → X∗+.

Clearly, Q≤0,+
0 = (Q+,≤0

0 )∗ and in the decomposition X = X≤0 ⊕ X+ and X∗ =

P ∗≤0X
∗
≤0⊕P ∗+X∗+, operatorQ0 takes the form

(
Q≤0

0 Q≤0,+
0

Q+,≤0
0 Q+

0

)
. Since 〈Q0u, u〉 > 0

for all 0 6= u ∈ X, Q+
0 and Q≤0

0 , as well as L+, are bounded, symmetric, and

87
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positive. Therefore, Q≤0
0 : X≤0 → X∗≤0 and Q+

0 , L+ : X+ → X∗+ are injective with

dense ranges. Consequently, (Q≤0
0 )−1 : X∗≤0 → X≤0 and (Q+

0 )−1, L−1
+ : X∗+ → X+

are densely defined, closed, and positive operators with(
(Q≤0

0 )−1
)∗

= (Q≤0
0 )−1,

(
(Q+

0 )−1
)∗

= (Q+
0 )−1,

and (L−1
+ )∗ = L−1

+ .

Lemma 10.1. It holds that P ∗+Q
+
0 (X+) ⊂ X̃∗+ is dense in X̃∗+ and

Q0(X) = X̃∗≤0 ⊕ P ∗+Q+
0 (X+), P ∗+Q

+
0 (X+) = Q0(X) ∩ X̃∗+,

with (Q≤0
0 )−1 and (Q+

0 )−1Q+,≤0
0 being bounded operators. Moreover,

A , Q−1
0 P ∗+Q

+
0 : X+ → X2, where X2 = Q−1

0 (X̃∗+) ⊂ X,
is an isomorphism.

This lemma makes the natural connection between Q0(X) and Q+
0 (X+).

Proof. Since the quadratic form 〈Q0u, u〉 is positive on X, we have that Q0 :

X → X∗ is injective with dense Q0(X) ⊂ X∗. As X̃∗≤0 = ker i∗X+
⊂ Q0(X) due

to (B5) and X∗ = X̃∗≤0 ⊕ X̃∗+, we obtain that X̃∗+ ∩ Q0(X) is dense in X̃∗+ and

Q0(X) = X̃∗≤0 ⊕
(
Q0(X) ∩ X̃∗+

)
. In the rest of the proof, we study Q0(X) ∩ X̃∗+

and its associated properties.
Let X1 = Q−1

0 (X̃∗≤0) ⊂ X, which is a closed subspace. Since X̃∗≤0 ⊂ Q0(X)

and Q0 is injective, Q0 : X1 → X̃∗≤0 is bounded, injective, and surjective and thus
an isomorphism. Let

φ = (Q0|X1
)−1P ∗≤0 : X∗≤0 → X1, φ≤0 = P≤0φ, φ+ = P+φ,

which are bounded operators. For any f, g ∈ X∗≤0, since

〈g, φ≤0f〉 = 〈P ∗≤0g, φf〉 = 〈Q0φg, φf〉,
we obtain that φ≤0 : X∗≤0 → X≤0 is symmetric and 〈f, φ≤0f〉 > 0 for any 0 6= f ∈
X∗≤0. Therefore φ−1

≤0 is a densely defined closed operator satisfying (φ−1
≤0)∗ = φ−1

≤0 >
0.

For any f ∈ X∗≤0, let

φf = u≤0 + u+, u+ = φ+f, u≤0 = φ≤0f,

then we have

Q≤0
0 u≤0 +Q≤0,+

0 u+ = f, Q+,≤0
0 u≤0 +Q+

0 u+ = 0.

It implies that Q+,≤0
0 u≤0 ∈ Q+

0 (X+) and u+ = −(Q+
0 )−1Q+,≤0

0 u≤0. Therefore,(
Q≤0

0 −Q
≤0,+
0 (Q+

0 )−1Q+,≤0
0

)
u≤0 = f,

which implies that the closed positive symmetric operator φ−1
≤0 satisfies

0 < φ−1
≤0 = Q≤0

0 −Q
≤0,+
0 (Q+

0 )−1Q+,≤0
0 ≤ Q≤0

0 .

Here we also used Q≤0,+
0 = (Q+,≤0

0 )∗ and the positivity of the symmetric closed
operator (Q+

0 )−1. Therefore, φ≤0 is an isomorphism and

(Q+
0 )−1Q+,≤0

0 = −φ+φ
−1
≤0

is bounded. The above inequality also implies the boundedness of (Q≤0
0 )−1 ≤ φ≤0.
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On the one hand, for any u ∈ X+, using I = iX≤0
P≤0 + iX+

P+ we can write

P ∗+Q
+
0 u = Q0u− P ∗≤0i

∗
X≤0

Q0u = Q0(I − φi∗X≤0
Q0)u.

Therefore, P ∗+Q
+
0 (X+) ⊂ Q0(X) ∩ X̃∗+ and

A , Q−1
0 P ∗+Q

+
0 = I − φi∗X≤0

Q0 : X+ → X2

is bounded, where X2 = Q−1
0 (X̃∗+) is a closed subspace of X and Q0(X) ∩ X̃∗+ =

Q0(X2).
On the other hand, suppose u = u≤0 + u+ ∈ X2, let f = i∗X+

Q0u ∈ X∗+ and

f+ = P ∗+f = Q0u ∈ X̃∗+. We have

Q≤0
0 u≤0 +Q≤0,+

0 u+ = 0, Q+,≤0
0 u≤0 +Q+

0 u+ = f,

and thus u≤0 = −(Q≤0
0 )−1Q≤0,+

0 u+. Substituting it into the second equation in
the above, we obtain

f =
(
Q+

0 −Q
+,≤0
0 (Q≤0

0 )−1Q≤0,+
0

)
u+ = Q+

0 ũ+,

where, from the above boundedness of (Q+
0 )−1Q+,≤0

0 ,

ũ+ =
(
I − (Q+

0 )−1Q+,≤0
0 (Q≤0

0 )−1Q≤0,+
0

)
u+ ∈ X+.

It implies f ∈ Q+
0 (X+) and thus f+ ∈ P ∗+Q+

0 (X+). Therefore

Q0(X) ∩ X̃∗+ ⊂ P ∗+Q+
0 (X+).

Moreover, the above equality on ũ+ also implies

A
(
I − (Q+

0 )−1Q+,≤0
0 (Q≤0

0 )−1Q≤0,+
0

)
P+u = Q−1

0 P ∗+Q
+
0 ũ+ = Q−1

0 f+ = u.

Therefore we obtain

A−1 =
(
I − (Q+

0 )−1Q+,≤0
0 (Q≤0

0 )−1Q≤0,+
0

)
P+

is bounded and the proof of the lemma is complete. �

Construction of Y . As our main concern is that L+ is not uniformly positive
definite on X+, we will actually work on the completion Y+ of X+ under the positive
quadratic form 〈L+·, ·〉.

We start with a resolution of identity to rewrite L+ on X+. From (B3), there
exists a > 0 such that

(10.2)
1

C
‖u‖2 ≤ ‖u‖2L+,a ≤ C‖u‖

2, ∀u ∈ X+,

for some C > 0, where, for u, v ∈ X+, ‖u‖2L+,a
= (u, u)L+,a and

(u, v)L+,a , 〈(L+ + aQ+
0 )u, v〉 = 〈(L+ aQ0)u, v〉.

For u, v ∈ X+, let

L = (L+ + aQ+
0 )−1L+ : X+ → X+,

which implies (Lu, v)L+,a = 〈Lu, v〉 and

(10.3) D = (Q+
0 )−1(L+ + aQ+

0 ) : X+ ⊃ D(D) = (L+ + aQ+
0 )−1Q+

0 (X+)→ X+.

Clearly, the Riesz representation L of L+ with respect to the equivalent metric
(·, ·)L+,a is a bounded symmetric linear operator. Since

(10.4) D−1 = (L+ + aQ+
0 )−1Q+

0 = a−1(I − L)
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is a bounded linear operator symmetric (and positive) with respect to (·, ·)L+,a, D
is self-adjoint with respect to (·, ·)L+,a. In applications, if Q1 is a uniformly positive
elliptic operator and Q0 corresponds to the L2 duality, the operator D is basically
a differential operator on X+ of the same order as Q1. The symmetric operator L
admits a resolution of identity consisting of bounded projections Πλ : X+ → X+,
λ ∈ [0, 1], where

(1) limλ→λ0+ Πλu = Πλ0
u, for all λ0 ∈ [0, 1) and u ∈ X+;

(2) Πλ1
Πλ2

= Πmin{λ1,λ2}, for all λ1,2 ∈ [0, 1];

(3) 〈(L+ + aQ+
0 )Πλu1, u2〉 = 〈(L+ + aQ+

0 )u1,Πλu2〉 for any u ∈ X+ and
λ ∈ [0, 1];

(4) u =
∫ 1

0
dΠλu, Lu =

∫ 1

0
λ dΠλu, for any u ∈ X+.

Here, Π1 = I and Π0 = 0 since L+ is bounded and 0 < L+ < L+ + aQ+
0 as

a quadratic form. Using this resolution of identity, we have the representations of
L+ and ‖ · ‖L+,a

〈L+u, v〉 =

∫ 1

0

λ d(Πλu, v)L+,a, ‖u‖2L+,a =

∫ 1

0

d ‖Πλu‖2L+,a, u, v ∈ X+.

Let (Y+, ‖ · ‖L+
) be the Hilbert space of the completion of X+ with respect to

the inner product

(u, v)L+ = (Lu, v)L+,a = 〈L+u, v〉 = 〈Lu, v〉 =

∫ 1

0

λ d(Πλu, v)L+,a, u, v ∈ X+.

Therefore, X+ is densely embedded into Y+ through the embedding iX+
. Using the

above spectral integral representation of L, one may extend Πλ to be bounded linear
projections on Y orthogonal with respect to (·, ·)L+

as well, satisfying |Πλ|Y ≤ 1.
Moreover, for λ ∈ (0, 1], (I −Πλ)Y+ ⊂ X+ and

∀u ∈ X+, ‖Πλu‖L+ ≤ λ‖Πλu‖L+,a,

∀u ∈ Y+, λ‖(I −Πλ)u‖L+,a ≤ ‖(I −Πλ)u‖L+
≤ ‖(I −Πλ)u‖L+,a,

(10.5)

where I −Πλ =
∫

(λ,1]
dΠλ is used.

As Y+ is defined as the completion of X+ with respect to the metric (Lu, u)L+,a,
elements in Y+ are defined via Cauchy sequences in X+ with respect to this metric.
This is rather inconvenient technically. Instead, we give an integral representation
of elements in Y+ and some linear quantities on Y+ using Πλ and the following
lemma.

Lemma 10.2. limλ→0+ ‖Πλu‖L+
= 0 for any u ∈ Y+.

Proof. For any ε > 0, there exists v ∈ X+ such that ‖u − v‖L+
< ε

2 . Since
limλ→0+ Πλv = Π0v = 0 in X+, there exists λ0 > 0 such that ‖Πλv‖L+,a <

ε
2 for

any λ ∈ (0, λ0). Therefore, for any λ ∈ (0, λ0),

‖Πλu‖L+
≤ ‖Πλ(u− v)‖L+

+ ‖Πλv‖L+
≤ ‖u− v‖L+

+ λ‖Πλv‖L+,a ≤ ε.

The lemma is proved. �
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Corollary 10.1. For any u, v ∈ Y+, we have

u =

∫ 1

0

dΠλu = −
∫ 1

0

d(I −Πλ)u = − lim
λ→0+

∫ 1

λ

d(I −Πλ)u,

Lu = −
∫ 1

0

λd(I −Πλ)u, ‖u‖2L+
= −

∫ 1

0

λd‖(I −Πλ)u‖2L+,a,

〈L+u, v〉 = −
∫ 1

0

λd
(
(I −Πλ)u, v

)
L+,a

= lim
λ→0+

〈L+(I −Πλ)u, (I −Πλ)v〉,

Y ∗+ = {f = (L+ + aQ+
0 )u | u ∈ X+,

‖f‖2Y ∗+ = −
∫ 1

0

λ−1d‖(I −Πλ)u‖2L+,a <∞} ⊂ X
∗
+.

Here, the first integral converges in the ‖ · ‖L+
norm and the minus signs are

due to the non-increasing monotonicity of ‖(I −Πλ)u‖2L+,a
. With (I −Πλ)u ∈ X+

for λ ∈ (0, 1], these integral representations are more convenient than the Cauchy
sequence representations of elements in Y+. In particular, for f = (L+ + aQ+

0 )u ∈
Y ∗+ and v ∈ Y+,

〈f, v〉 =−
∫ 1

0

d
(
(I −Πλ)u, v

)
L+,a

= lim
λ→0+

〈(L+ + aQ+
0 )(I −Πλ)u, (I −Πλ)v〉

≤‖f‖Y ∗+‖v‖L+
.

Let

(10.6) Y = X≤0 ⊕ Y+, (u, v)Y = (P≤0u, P≤0v) +
(
(I − P≤0)u, (I − P≤0)v

)
L+
,

where, with slight abuse of notations, P≤0 : Y → X≤0 represents the projection
operator with kernel Y+. Clearly, X is densely embedded into Y and let iX denote
the embedding.

The dual space Y ∗ is densely embedded into X∗ through i∗X and thus can
be viewed as a dense subspace of X∗. It is straightforward to see that i∗XY

∗ =

X̃∗≤0 ⊕ Ỹ ∗+,

〈f, v〉 = 〈g, u〉 = 0, ∀u ∈ X≤0, v ∈ Y+, f ∈ X̃∗≤0, g ∈ Ỹ ∗+,
and

Ỹ ∗+ = X̃∗+ ∩ i∗X(Y ∗) = P ∗+{f = (L+ + aQ+
0 )u | u ∈ X+,

‖f‖2Y ∗+ = −
∫ 1

0

λ−1d‖(I −Πλ)u‖2L+,a <∞} ⊂ X
∗.

(10.7)

Operator L is naturally extended as a bounded symmetric linear operator LY :
Y → Y ∗ by

(10.8) 〈LY u, v〉 = 〈L≤0P≤0u, P≤0v〉+ 〈L+(I − P≤0)u, (I − P≤0)v〉,
where L+ on Y+ is computed by the formula given in Corollary 10.1.

From assumption (B4) on the L-orthogonality of the decomposition

X = X− ⊕ kerL⊕X+ = X≤0 ⊕X+

and Corollary 10.1, the operator LY defined in the above satisfies (H2) on Y with
δ = 1 in (H2.b).
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Operator JY . We define JY : Y ∗ ⊃ D(JY )→ Y essentially as the restriction of J
on Y ∗, namely,

(10.9) JY , iXJQ−1
0 i∗X : Y ∗ ⊃ D(JY )→ Y, D(JY ) = (i∗X)−1Q0(X) ⊂ Y ∗,

where we recall that iX : X → Y is the embedding. Assumption (H3) is satisfied
due to (B5) and (10.1). Therefore, to complete the proof of Theorem 2.7, it suffice
to prove J∗Y = −JY .

Lemma 10.3. It holds that i∗XD(JY ) is dense in X∗ and

i∗XD(JY ) = Q0(X) ∩ i∗XY ∗ = X̃∗≤0 ⊕ P ∗+(L+ + aQ+
0 )X1+,

where

X1+ = {u ∈ X+ |
∫ 1

0

−1

λ(1− λ)2
d‖(I −Πλ)u‖2 <∞} ⊂ X+.

Proof. From i∗XY
∗ = X̃∗≤0 ⊕ Ỹ ∗+ and (B5), we can decompose

i∗XD(JY ) = Q0(X) ∩ i∗XY ∗ = X̃∗≤0 ⊕
(
Ỹ ∗+ ∩Q0(X)

)
.

As Ỹ ∗+ ⊂ X̃∗+, we obtain from Lemma 10.1

(10.10) i∗XD(JY ) = X̃∗≤0 ⊕
(
Ỹ ∗+ ∩ P ∗+Q+

0 (X+)
)
.

Recall (10.3) and we have (L+ + aQ+
0 )u ∈ Q+

0 (X+), u ∈ X+, if and only if
u ∈ D(D), which is equivalent to u ∈ (I − L)(X+) according to (10.4). Therefore,
we obtain that

(L+ + aQ+
0 )u ∈ Q+

0 (X+), u ∈ X+,

if and only if

−
∫ 1

0

(1− λ)−2d‖(I −Πλ)u‖2L+,a <∞,

which can be seen from

(10.11) Du = (Q+
0 )−1(L+ + aQ+

0 )u = −1

a

∫ 1

0

(1− λ)−1d(I −Πλ)u.

The lemma follows immediately from this property and the characterization (10.7)

of Ỹ ∗+. �

To prove J∗Y = −JY , suppose f ∈ D(J∗Y ) and u = J∗Y f , namely, f ∈ Y ∗ and
u ∈ Y satisfies

(10.12) 〈f, JY g〉 = 〈g, u〉, ∀g ∈ D(JY ).

Firstly, for any ε ∈ (0, 1
2 ), take

g = −(i∗X)−1P ∗+(L+ + aQ+
0 )

∫ 1
2

ε

d(I −Πλ)P+u ∈ D(JY ) ∩ (i∗X)−1X̃∗+,

where Lemma 10.3 is used. Equalities (10.12) and (10.11) imply

−
∫ 1

2

ε

d‖(I −Πλ)P+u‖2L+,a = 〈g, u〉 = 〈f, JY g〉 = 〈J∗i∗Xf,Q−1
0 i∗Xg〉

=− 〈J∗i∗Xf,AD
∫ 1

2

ε

d(I −Πλ)P+u〉 = −1

a
〈J∗i∗Xf,A

∫ 1
2

ε

(1− λ)−1d(I −Πλ)P+u〉,
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where A is defined in Lemma 10.1 and proved to be bounded. Since λ ∈ (0, 1
2 ],

there exists C > 0 such that

−
∫ 1

2

ε

d‖(I −Πλ)P+u‖2L+,a ≤ C‖f‖
2
Y ∗ , ∀ε ∈ (0,

1

2
).

Therefore, we obtain u ∈ X, or more precisely,

u = iX ũ, ũ ∈ X.
For any g ∈ D(JY ), from (B1-2) we can compute

〈i∗Xf, JQ−1
0 i∗Xg〉 = 〈f, JY g〉 = 〈g, u〉 = 〈g, iX ũ〉

=〈Q0Q
−1
0 i∗Xg, ũ〉 = 〈Q0JQ−1

0 i∗Xg, Jũ〉 = 〈Q0Jũ, JQ−1
0 i∗Xg〉.

Since J is assumed to be isomorphic in (B2), Q−1
0 is surjective, and i∗XD(JY ) is

dense in X∗ (Lemma 10.3), we obtain

i∗Xf = Q0Jũ ∈ Q0(X).

Thus it follows from (B2) that

JY f = iXJ2ũ = −u,
which implies J∗Y ⊂ −JY . Again from (B2), it is easy to see that JY is symmetric,
namely, JY ⊂ −J∗Y . Therefore, we complete the proof of Theorem 2.7.





CHAPTER 11

Hamiltonian PDE models

In this chapter, based on the above general theory, we study the stability issues
of examples of Hamiltonian PDEs including several dispersive wave models, the 2D
Euler equation for inviscid flows and a 2D nonlinear Schrödinger equations with
nonzero conditions at infinity.

First, in Sections 11.1 to 11.3, we study the stability/instability of traveling
solitary and periodic wave solutions of several classes of equations modeling weakly
nonlinear dispersive long waves. They include BBM, KDV, and good Boussinesq
type equations. These equations respectively have the forms:

1. BBM type

(11.1) ∂tu+ ∂xu+ ∂xf (u) + ∂tMu = 0;

2. KDV type

(11.2) ∂tu+ ∂xf (u)− ∂xMu = 0;

3. good Boussinesq (gBou) type

(11.3) ∂2
t u− ∂2

xu+ ∂2
xf (u)− ∂2

xMu = 0.

We follow the notations in [52]. Here, the pseudo-differential operatorM is defined
as

M̂g(ξ) = α(ξ)ĝ(ξ),

where ĝ is the Fourier transformation of g. We assume: i) f is C1 with f (0) =
f ′ (0) = 0, and f (u) /u → ∞. ii) a |ξ|m ≤ α (ξ) ≤ b |ξ|m for large ξ, where m > 0
and a, b > 0. If f (u) = u2 and M = −∂2

x, the above equations recover the original
BBM, KDV, and good Boussinesq equations, which have been used to model the
propagation of water waves of long wavelengths and small amplitude.

11.1. Stability of Solitary waves of Long wave models

Consider the equations (11.1)-(11.3) with (x, t) ∈ R × R. Up to a shift of a
constant of the wave speed/symbol α (ξ), we can assume that σess (M) ⊂ [0,∞).
Each of the equations (11.1)-(11.3) admits solitary-wave solutions of the form
u (x, t) = uc (x− ct) for c > 1, c > 0, c2 < 1 respectively, where uc (x) → 0 as
|x| → ∞. They satisfy the equations

(11.4) Muc +

(
1− 1

c

)
uc −

1

c
f (uc) = 0, (BBM)

Muc + cuc − f (uc) = 0, (KDV)

and

Muc +
(
1− c2

)
uc − f (uc) = 0, (gBou)

95
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respectively. We refer to the introduction of [52] and the book [2] for the literature
on the existence of such solitary waves. Before stating the results, we introduce
some notations. For BBM type equations (11.1), define the operator

(11.5) L0 =M+

(
1− 1

c

)
− 1

c
f ′ (uc) : Hm → L2,

and the momentum

(11.6) P (c) =
1

2

∫
uc (M+1)uc.

For KDV type equations (11.2), define

(11.7) L0 :=M+ c− f ′ (uc) , P (c) =
1

2

∫
u2
c .

For good Boussinesq type equations (11.3), define

(11.8) L0 :=M+ 1− c2 − f ′ (uc) , P (c) = −c
∫
u2
c .

Denote by n− (L0) the number (counting multiplicity) of negative eigenvalues of
the operators L0.

The linearizations of (11.1)-(11.3) in the traveling frame (x− ct, t) are

(11.9) (∂t − c∂x) (u+Mu) + ∂x (u+ f ′ (uc)u) = 0, (BBM)

(11.10) (∂t − c∂x)u+ ∂x (f ′ (uc)u−Mu) = 0, (KDV)

and

(11.11) (∂t − c∂x)
2
u− ∂2

x (u− f ′ (uc)u+Mu) = 0, (gBou)

respectively. We consider the Hamiltonian structures of these equations.
For BBM type equations, (11.9) can be written as ∂tu = JLu, where J =

c∂x (1 +M)
−1

and L = L0 is defined in (11.5). By differentiating (11.4) in x and
c, we have L0uc,x = 0 and

L0∂cuc = −1

c
(1 +M)uc

which implies that JL0∂cuc = −uc,x and 〈L0∂cuc, ∂cuc〉 = − 1
cdP/dc.

For KDV type equations, (11.10) is written as ∂tu = JL0u, where J = ∂x and
L = L0 is defined in (11.7). Similarly, L0uc,x = 0, L0∂cuc = −uc, and

(11.12) JL0∂cuc = −uc,x, 〈L0∂cuc, ∂cuc〉 = −dP/dc.
For good Boussinesq type equations, we write (11.11) as a first order system.

Let (∂t − c∂x)u = vx, then

(∂t − c∂x) v = ∂x (M+ 1− f ′ (uc))u = ∂x
(
L0 + c2

)
u.

Thus

∂t

(
u
v

)
= JL

(
u
v

)
,

with

(11.13) J =

(
0 ∂x
∂x 0

)
, L =

(
L0 + c2 c

c 1

)
.

We have
kerL = {(u,−cu) | u ∈ kerL0} .
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Since

(11.14)

〈
L

(
u
v

)
,

(
u
v

)〉
= 〈L0u, u〉+

∫
(v + cu)2,

so n− (L) = n− (L0). Similarly as in BBM and KDV types, we have

L

(
uc,x
−cuc,x

)
= 0, L

(
−∂cuc

c∂cuc + uc

)
=

(
−cuc
uc

)
,

JL

(
−∂cuc

c∂cuc + uc

)
=

(
uc,x
−cuc,x

)
,

and 〈
L

(
−∂cuc

c∂cuc + uc

)
,

(
−∂cuc

c∂cuc + uc

)〉
= −dP/dc,

where P is defined in (11.8). For all three cases, we have σess (L0) ⊂ [δ0,∞) for
some δ0 > 0. So the quadratic form 〈L0·, ·〉 is positive definite on H

m
2 in a finite

codimensional space. This along with Remark 2.3 shows that the quadratic form
〈L0·, ·〉 in the Hamiltonian formulation of BBM and KDV type equations satisfies
the assumption (H1-3) in the general framework with X = H

m
2 . By (11.14), the

quadratic form 〈L·, ·〉 in the Hamiltonian formulation (11.13) of good Boussinesq
type equations also satisfies (H1-3) in the space (u, ∂tu) ∈ X = H

m
2 × L2. Thus

by Theorems 2.2, 2.3, and Corollary 2.2, we get the following results.

Theorem 11.1. Consider the linearized equations (11.9)-(11.11) at solitary
waves uc (x− ct) of equations (11.1)-(11.3). Then: (i) The following index formula
holds

(11.15) kr + 2kc + 2k≤0
i + k≤0

0 = n− (L0) .

(ii) The linear exponential trichotomy holds in the space H
m
2 for the linearized

equations (11.9) and (11.10), and in H
m
2 × L2 for (11.11).

(iii) When dP/dc ≥ 0, we have k≤0
0 ≥ 1. Moreover, if kerL0 = span {uc,x}, then

k≤0
0 =

{
1 if dP/dc > 0
0 if dP/dc < 0

.

Corollary 11.1. (i) When dP/dc ≥ 0 and n− (L0) ≤ 1, the spectral stability
holds true.
(ii) If kerL0 = span {uc,x}, then there is linear instability when n− (L0) is even
and dP/dc > 0 or n− (L0) is odd and dP/dc < 0.

In particular, when M = −∂2
x, by the fact that uc,x changes sign exactly once

and the Sturm-Liouville theory, we have kerL0 = span {uc,x} and n− (L0) = 1.
Thus, we have

Corollary 11.2. WhenM = −∂2
x and dP/dc < 0, for the linearized equations

(11.1)-(11.3), we have kr = 1 and kc = k−i = 0. In particular, on the center space
Ec as given in Theorem 2.2, we have

(11.16) 〈L·, ·〉 |Ec∩{uc,x}⊥ ≥ δ0 > 0.

The stability and instability of solitary waves of dispersive models had been
studied a lot in the literature. Assume kerL0 = {uc,x} , n− (L0) = 1, then when
dP/dc > 0, the orbital stability of traveling solitary waves was proved (e.g. [5] [29]
[10]) by using the method of Lyapunov functionals. When dP/dc < 0, the nonlinear
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instability was proved in [9] [70] for generalized BBM and KDV equations, and
in [58] for good Boussinesq equation. The instability proof in these papers was
by contradiction argument which bypassed the linearized equation. The existence
of unstable eigenvalues when dP/dc > 0 was proved in [63] for KDV and BBM
equations. In [52], an instability criterion as in Corollary 11.1 (ii) was proved for
KDV and BBM type equations. In [63] and [52], an instability criterion was also
given for the regularized Boussinesq equation which takes an indefinite Hamiltonian
form (i.e. n− (L) =∞) and is therefore not included in the framework of this paper.
Recently, in [46] and [65], an instability index theorem similar to (11.15) was given
for KDV and BBM type equations under the assumption that dim kerL0 = 1 and
dP/dc 6= 0. The proof of [46] [65] was by using ad-hoc arguments to transform the
eigenvalue problem ∂xL0u = λu to another Hamiltonian form with a symplectic
operator which has a bounded inverse. The linear instability of solitary waves of
good Boussinesq equation (M = −∂2

x) was studied in [1] by Evans function and in
[68] by using quadratic operator pencils. The index formula (11.15) for the good
Boussinesq type equations appears to be new.

Besides giving a more unified and general index formula for linear instability,
Theorem 11.1 also gives the exponential trichotomy for etJL0 , which is an important
step for constructing invariant (stable, unstable and center) manifolds near the
translation orbits of uc. Moreover, when kerL0 = span {uc,x} and n− (L0) =
1, there exists a pair of stable and unstable eigenvalues and L0 is positive on
the codimension two center space modulo the translation kernel. This positivity
property has an important implication for the center manifolds once constructed.
For example, in [37], the invariant (stable, unstable and center) manifolds were
constructed near the orbits of unstable solitary waves of generalized KDV equation
in the energy space. More precisely, there exist 1-d stable and unstable manifolds
and co-dimension two center manifold near the translation orbits of unstable solitary
waves. These invariant manifolds give a complete description of local dynamics
near unstable traveling wave orbits. The positivity estimate (11.16) on the center
subspace implies that on the codimension two center manifold, the solitary wave
uc is orbitally stable, which in turn also leads to the local uniqueness of the center
manifold. Any initial data not lying on the center manifold will leave the orbit
neighborhood of unstable traveling waves exponentially fast.

11.2. Stability of periodic traveling waves

Consider the equations (11.1)-(11.3) in the periodic case. For convenience, we
assume the period is 2π , that is, (x, t) ∈ S1 ×R. A periodic traveling wave is of
the form u (x, t) = uc,a (x− ct), where uc,a satisfies the equations

(11.17) Muc,a +

(
1− 1

c

)
uc,a −

1

c
f (uc,a) = a, (BBM)

(11.18) Muc,a + cuc,a − f (uc,a) = a, (KDV)

and

(11.19) Muc,a +
(
1− c2

)
uc,a − f (uc,a) = a, (gBou)

for some constant a. In this section, we consider the perturbations of the same
period 2π (i.e. co-periodic perturbations) and leave the case of different periods to
the next section. The linearized equations in the traveling frame (x− ct, t) near
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traveling waves uc,a take the same form (11.9)-(11.11). Their Hamiltonian struc-
tures are formally the same as in the case of solitary waves. However, the operator
J has rather different spectral properties in the periodic case. More precisely, for
solitary waves the symplectic operators J, which is c∂x (1 +M)

−1
for BBM, ∂x for

KDV and

(
0 ∂x
∂x 0

)
for good Boussinesq, has no kernel in L2 (R). But for the

periodic case, J has nontrivial kernel in X∗. Indeed, kerJ = span {1} for BBM
and KDV, and

ker J = span {~e1, ~e2} = span

{(
1
0

)
,

(
0
1

)}
for good Boussinesq. This degeneracy of J leads to the extra free parameter a in
traveling waves.

We now discuss the consequential changes in the index formula induced by
the nontrivial kernel of J . For BBM type equations, define the operator L0 :
Hm

(
S1
)
→ L2

(
S1
)

and the momentum P as in (11.5) and (11.6). Differentiating
(11.17), we obtain

R(L0) 3 L0∂auc,a = 1.

Let

(11.20) Uc,a = ∂auc,a, d1 =

∫
S1

Uc,a dx, N =

∫
S1

uc,adx (total mass) .

We have L0∂xuc,a = 0 and from differentiating (11.17)

L0∂cuc,a = −1

c
(1 +M)uc,a +

a

c
,

and thus JL0∂cuc,a = −∂xuc,a. Denote
(11.21)

D =

(
〈L0Uc,a, Uc,a〉 〈L0Uc,a, ∂cuc,a〉
〈L0Uc,a, ∂cuc,a〉 〈L0∂cuc,a, ∂cuc,a〉

)
=

(
d1 N ′ (c)

N ′ (c) − 1
cdP/dc+ a

cN
′ (c)

)
,

that is, the matrix for 〈L·, ·〉 on span {Uc,a, ∂cuc,a} ⊂ g ker (JL0). Denote n≤0 (D)
to be the number of non-positive eigenvalues of D.

For KDV type equations, similarly, L0∂xuc,a = 0,

L0∂cuc,a = −uc,a, JL0∂cuc,a = −∂xuc,a, L0∂auc,a = 1,

and we define Uc,a, d1, N,D, n
≤0 (D) etc. as in (11.20) and (11.21).

For good Boussinesq type equations, still define Uc,a, d1, N as in (11.20). Let

(11.22) ~U1 =

(
Uc,a
−cUc,a

)
, ~U2 =

(
−cUc,a

1 + c2Uc,a

)
, ~U3 =

(
−∂cuc,a

c∂cuc,a + uc,a

)
,

then

L~U1 = ~e1, L~U2 = ~e2, L~U3 =

(
−cuc,a
uc,a

)
.
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Define the matrix D of 〈L·, ·〉 on the space spanned by
{
~U1, ~U2, ~U3

}
, that is,

D =


〈
L~U1, ~U1

〉 〈
L~U1, ~U2

〉 〈
L~U1, ~U3

〉〈
L~U1, ~U2

〉 〈
L~U2, ~U2

〉 〈
L~U3, ~U2

〉〈
L~U1, ~U3

〉 〈
L~U3, ~U2

〉 〈
L~U3, ~U3

〉
(11.23)

=

 d1 −cd1 −N ′ (c)
−cd1

∫
S1

(
1 + c2Uc,a

)
dx cN ′ (c) +N (c)

−N ′ (c) cN ′ (c) +N (c) −P ′ (c)

 .

Again n≤0 (D) denotes the number of non-positive eigenvalues of D.
Since in the periodic case, the operator L0 has only discrete spectrum which

tends to +∞, it is easy to verify that assumptions (H1-3) are satisfied in X = H
m
2

for BBM and KdV type equations and X = H
m
2 × L2 for good Boussinesq type

equations. Thus similar to Theorem 11.1, we have

Theorem 11.2. Consider the linearized equations (11.9)-(11.11) near periodic
waves uc (x− ct) of equations (11.1)-(11.3). Then: (i) the following index formula
holds

kr + 2kc + 2k−i + k−0 = n− (L0) .

(ii) the linear exponential trichotomy is true in the space H
m
2

(
S1
)

for the linearized

equations (11.9) and (11.10), and in H
m
2

(
S1
)
× L2

(
S1
)

for (11.11). (iii) k−0 ≥
n≤0 (D), the number of non-positive eigenvalues of the matrix D defined in (11.21),
(11.22) and (11.23). Moreover, when kerL0 = {∂xuc,a} and D is nonsingular,
k−0 = n− (D) (the number of negative eigenvalues of D) and we have

(11.24) kr + 2kc + 2k−i = n− (L0)− n− (D) .

As corollaries, we have from Proposition 2.7 and Remark 2.14 the following
linear stability/instability conditions.

Corollary 11.3. (i) If n≤0 (D) ≥ n− (L0), then the spectral stability holds.
(ii) If kerL0 = span {∂xuc,a}, D is nonsingular and n− (L0)− n− (D) is odd,

then there is linear instability.

When n− (L0) = n− (D), nonlinear orbital stability holds for (11.1)-(11.3) as
well. More precisely, we have

Proposition 11.1. When kerL0 = span {∂xuc,a}, D is nonsingular and n− (L0) =
n− (D), then there is orbital stability in X of the traveling waves uc,a (x− ct) of
equations (11.1)-(11.3) for perturbations of the same period.

Proof. Here we sketch the proof based on the standard Lyapunov functional
method (e.g. [29], [30]). Consider the KDV type equation (11.2). It has three
invariants: (1) energy E (u) =

∫ [
1
2uMu− F (u)

]
dx, with F (u) =

∫ u
0
f(u′)du′;

(2) momentum P (u) = 1
2

∫
u2dx and (3) total mass N (u) =

∫
udx. Define the

invariant
I (u) = E (u) + cP (u)− aN (u) ,

then I ′ (uc,a) = 0 if and only if uc,a is a traveling wave solution satisfying (11.18).
So

(11.25) I (u)− I (uc,a) = 〈L0δu, δu〉+O
(
‖δu‖3

)
, where δu = u− uc,a.
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Denote

X1 =
{
u ∈ H m

2 | 〈u,L0Uc,a〉 = 〈u,L0∂cuc,a〉 = 0
}

to be the orthogonal complement of X2 = span {Uc,a, ∂cuc,a} in 〈L0·, ·〉 . Since

L0Uc,a = N ′(uc,a), L0∂cuc,a = P ′(uc,a),

X1 is the tangent space of the intersection of the level surfaces of the conserved
momentum P and mass N . With D assumed to be nonsingular, X2 roughly rep-
resents the gradient directions of P and N and thus X = X1 ⊕X2. Moreover, we
have 〈L0·, ·〉 |X1 ≥ 0 since

n− (L0|X1
) = n− (L0)− n− (L0|X2

) = n− (L0)− n− (D) = 0.

We further decompose

X1 = Y ⊕ span{∂xuc,a}, where Y = {u ∈ X1 | (u, ∂xuc,a)X = 0}.

Since kerL0 = span{∂xuc,a}, there exists c0 > 0 such that 〈L0δu, δu〉 ≥ c0 ‖δu‖2
for any δu ∈ Y .

Suppose u(t) is solution with u(0) close to uc,a and h(t) ∈ S1 satisfies

‖u− uc,a (· − h)‖ = min
y∈S1

‖u− uc,a (· − y)‖ ,

then w(t) = u(t)− uc,a
(
· −h(t)

)
∈ Y ⊕X2. By using the conservation of P and N

to control the X2 components of w(t), and the uniform positivity of L0 on Y and
(11.25) to control the Y component, we obtain the orbital stability. More details
of such arguments can be found for example in [29] [53].

For BBM type equations, the Lyapunov functional is

I (u) = cP (u)− E (u)− caN (u) ,

where the energy functional E (u) =
∫ (

1
2u

2 + F (u)
)
dx and P (u) is defined in

(11.6). The rest of the proof is the same as in the KDV case. For good Boussinesq
type equations (11.3), we write it as a first order Hamiltonian system

∂t

(
u
v

)
= J ∇E (u, v) ,

where J =

(
0 ∂x
∂x 0

)
and the energy functional

E (u, v) =
1

2
(Mu, u) +

∫ (
1

2
v2 +

1

2
u2 − F (u)

)
dx.

For the traveling wave solution (uc,a (x− ct) , vc,a (x− ct)), uc,a satisfies (11.17)

and vc,a = −cuc,a. Let ~u = (u, v)
T

and construct the Lyapunov functional

I (~u) = E (~u) + cP (~u)− aN1 (~u) ,

where

P (~u) =

∫
uv dx, N1 (~u) =

∫
udx, N2 (~u) =

∫
vdx.

Then I ′ (~uc,a) = 0. The rest of the proof is the same. �
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Compared with solitary waves, the periodic traveling waves have richer struc-
tures. They consist of a three parameter (period T , speed c, and integration con-
stant a) family of solutions and different type of perturbations (co-periodic, multiple
periodic, localized etc.) can be considered. In recent years, there have been lots of
works on stability/instability of periodic traveling waves of dispersive PDEs. For
co-periodic perturbations (i.e. of the same period), the nonlinear orbital stability
were proved for various dispersive models (e.g. [2] [3] [41] [34] [11] [8]) by us-
ing Liapunov functionals. These stability results were proved for the cases when
dim ker (L0) = 1 and n− (L0) = n− (D) as in Proposition 11.1. An instability index
formula similar to (11.24) was proved for KDV type equations ([32] [43] [13]). In
these papers, some conditions (e.g. Assumption 2.1 in [32] and Assumption 3 in
[43]) were imposed to ensure that the generalized eigenvectors of JL0 form a basis
of X. These assumptions can be checked for the caseM = −∂2

x. In Theorem 11.2,
we do not need such assumptions on the completion of generalized eigenspaces of
JL0 and therefore we can get the index formula for very general nonlocal opera-
tors M. In [11], an index formula was proved for periodic traveling waves of good
Boussinesq equation (M = −∂2

x) by using the theory of quadratic operator pencils.
In [8], a parity instability criterion (as in Corollary 11.3 (ii)) was proved for periodic
waves of several Hamiltonian PDEs including generalized KDV equations by using
Evans functions.

Besides providing a unified way to get instability index formula and the stability
criterion, we could also use the exponential trichotomy of eJL0 in Theorem 11.2 to
construct invariant manifolds near the orbit of unstable periodic traveling waves.
Moreover, as in the case of solitary waves, when dim ker (L0) = 1, D is nonsingular
and k−i = 0, we have orbital stability and local uniqueness of the center manifolds
once constructed.

11.3. Modulational Instability of periodic traveling waves

Consider periodic traveling waves uc,a (x− ct) studied in Section 11.2. Assume
the conditions in Proposition 11.1, so that uc,a is orbitally stable under perturba-
tions of the same period. In this section, we consider modulational instability of
periodic traveling waves, under perturbations of different period or even localized
perturbations. The modulational instability, also called Benjamin-Feir or side-band
instability in the literature, is a very important instability mechanism in lots of dis-
persive and fluid models. Again, we assume the minimal period of the traveling
wave uc,a is 2π. We focus on KDV type equations (11.2), and the consideration
for BBM and good-Boussinesq type equations is similar. We assume the Fourier
symbol α (ξ) of the operator M is even, so that M is a real operator. Based on
the standard Floquet-Bloch theory, we seek bounded eigenfunction φ(x) of the lin-
earized operator JL0 in the form of φ(x) = eikxvk(x), where k ∈ R is a parameter
and vk ∈ L2(S1). Recall that J = ∂x and L0 := M + c − f ′ (uc,a). It leads us to
the one-parameter family of eigenvalue problems

JL0e
ikxvk(x) = λ(k)eikxvk(x),

or equivalently JkLkvk = λ (k) vk, where

(11.26) Jk = ∂x + ik, Lk =Mk+c− f ′(uc,a).
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Here,Mk is the Fourier multiplier operator with the symbol α(ξ+k). We say that
uc,a is linearly modulationally unstable if there exists k /∈ Z such that the operator
JkLk has an unstable eigenvalue λ(k) with Reλ(k) > 0 in the space L2(S1).

Since Jk and Lk are complex operators, we first reformulate the problem in
terms of real operators to use the general theory in this paper. Consider

(11.27) φ(x) = cos (kx)u1 (x) + sin (kx)u2 (x) ,

where u1, u2 ∈ L2(S1) are real functions. By definition,

M
(
eikxu (x)

)
= eikxMku.

We decompose
Mk =Me

k + iMo
k, M−k =Me

k − iMo
k

where Me
k,Mo

k are operators with Fourier multipliers

αek (ξ) =
1

2
(α(ξ + k) + α(ξ − k))

and

αok (ξ) = − i
2

(α(ξ + k)− α(ξ − k)) .

Then Me
k, Mo

k are self-adjoint and skew-adjoint respectively. Since αe,ok (ξ) =

αe,ok (−ξ),Me
k andMo

k map real functions to real. In particular, forM = −∂2
x, we

have Me
k = −∂2

x + k2 and Mo
k = −2k∂x. By using

(11.28) φ(x) =
eikx

2
(u1 − iu2) +

e−ikx

2
(u1 + iu2)

and via simple computations, we obtain

Mφ = cos (kx) (Me
ku1 +Mo

ku2) + sin (kx) (−Mo
ku1 +Me

ku2) ,

and
Jφ = cos (kx) (∂xu1 + ku2) + sin (kx) (∂xu2 − ku1) .

Define the operators

(11.29) Jk =

(
∂x k
−k ∂x

)
, Lk =

(
Me

k+c− f ′(uc,a) Mo
k

−Mo
k Me

k+c− f ′(uc,a)

)
.

Then Jk, Lk are skew-adjoint and self-adjoint real operators and

JL0φ =
(

cos(kx), sin(kx)
)
JkLk

(
u1

u2

)
.

As always in the spectral analysis, u1 and u2, as well as operator JkLk and
quadratic forms 〈Lk·, ·〉 and 〈·, Jk·〉, need to be complexified. By using operators
Jk and Lk we can diagonalize JkLk and Lk blockwisely. In fact, let

w1 =
1

2
(u1 − iu2), w2 =

1

2
(u1 + iu2), S

(
u1

u2

)
=

(
w1

w2

)
.

One may compute using (11.28) and the definition of Jk and Lk

(11.30) Lk = S−1

(
Lk 0
0 L−k

)
S, JkLk = S−1

(
JkLk 0

0 J−kL−k

)
S.

Moreover, L−k and J−kL−k are the complex conjugates of Lk and JkLk respec-
tively, namely,

(11.31) L−kw = Lkw̄, J−kL−kw = JkLkw̄.
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From the above relations, we obtain

n−(Lk) = n−(Lk) + n−(L−k) = 2n−(Lk),

where n−(Lk) is understood as the negative index of the complex Hermitian form
〈Lk·, ·〉. Moreover, (11.31) implies that λ ∈ σ(JkLk) if and only if λ̄ ∈ σ(J−kL−k),
with ker(λ̄−J−kL−k)n consisting exactly of the complex conjugates of the functions
in ker(λ − JkLk)n for any n > 0. Next, it is easy to see that JkLk, as well as
JkLk, has compact resolvents and thus σ (JkLk), as well as σ(JkLk), consists of
only discrete eigenvalues of finite algebraic multiplicity. Therefore, by Proposition
2.3, for any purely imaginary eigenvalue iµ ∈ σ (JkLk), Lk is non-degenerate on
the finite dimensional eigenspace Eiµ, and thus n≤0(Lk|Eiµ) = n−(Lk|Eiµ). Let

(kr, kc, k
−
i , k

−
0 ) be the indices defined in (2.10), (2.11), and (2.12) for JkLk, and

(k̃r, k̃
−
0 ) be the corresponding indices for the positive and zero eigenvalues of JkLk.

Let k̃c be the sum of algebraic multiplicities of eigenvalues of JkLk in the first and
the fourth quadrants, k̃−i be the total number of negative dimensions of 〈Lk·, ·〉
restricted to the subspaces of generalized eigenvectors of nonzero purely imaginary
eigenvalues of JkLk. On the one hand, (11.30) and (11.31) imply

kr = 2k̃r, kc = k̃c, k−i = k̃−i , k−0 = 2k̃−0 .

On the other hand, Theorem 2.3 implies

(11.32) kr + 2kc + 2k−i + k−0 = 2n− (Lk) .

Therefore, we obtain

Proposition 11.2. For any k ∈ (0, 1),

(11.33) k̃r + k̃c + k̃−i + k̃−0 = n− (Lk) .

The modulational instability occurs if k̃r 6= 0 or k̃c 6= 0.

Remark 11.1. Note that Jk is invertible for any k /∈ Z. With a more concrete
form of M, it is possible to determine k̃−0 .
• Firstly, if kerL0 is known (recall ∂xuc,a ∈ kerL0), then one may study kerLk, as

well as k̃−0 , for 0 < |k| << 1 through asymptotic analysis.
• If M = −∂xx, then kerLk = {0} for any k ∈ (0, 1) (and thus for any k /∈ Z). In
fact, in this case,

L0 = −∂xx + c− f ′(uc,a), v ∈ kerLk ⇐⇒ eikxv ∈ kerL0

and kerL0 = span{∂xuc,a}. Suppose Lk has nontrivial kernel for some k ∈ (0, 1)

and 0 6= v ∈ kerLk. Denote v0 , ∂xuc,a, then the Wronskian of v0 and eikxv
satisfies

W (x) = eikx(vxv0 − vv0x + ikvv0) = const.

Since v and v0 are 2π-periodic and k ∈ (0, 1), it must hold that

(11.34) vxv0 − vv0x + ikvv0 = 0.

We claim v(x) 6= 0 for any x ∈ S1. In fact, if v(x0) = 0, then vx(x0) 6= 0 and
(11.34) imply v0(x0) = 0. The uniqueness of the solution to the ODE L0u = 0 leads
to the proportionality between v0 and eikxv, a contradiction to k ∈ (0, 1) and the
2π-periodicity of v(x). Now that v(x) 6= 0, (11.34) implies v0

v = Ce−ikx, which is
again a contradiction.
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Remark 11.2. The above index formula (11.33) was proved in [32] for the
case when kerLk = {0}, with additional assumptions to ensure that the generalized
eigenfunctions of JkLk form a complete basis of L2

(
S1
)

as assumed in the case of
co-periodic perturbations. Proposition 11.2 is proved without such assumptions.

Remark 11.3. We can also consider the case when the operatorM is a smooth-
ing operator, that is, ‖M(·)‖Hr ∼ ‖ · ‖L2 for some r > 0. One example is the
Whitham equation which is a KDV type equation (11.2) with the symbol of M
being

√
tanh ξ
ξ and thus r = 1

2 . In this case, if we assume that

(11.35) − c− ‖f ′(uc)‖L∞(T2π) > ε > 0,

then L0 and Lk are compact perturbations of the positive operator −c+ f ′ (uc,a) so
that n− (−L0) , n− (−Lk) <∞. Then the index formula

k̄r + k̄c + k−i + k−0 = n− (−Lk)

is still true for the operator JkLk , k ∈ (0, 1). The assumption (11.35) can be
verified ([36]) for small amplitude periodic traveling waves of Whitham equation
with f (u) = u2.

Under the conditions of orbital stability in Proposition 11.1, the spectra of the
operator JL0 in L2

(
S1
)

lie on the imaginary axis and are all discrete. Moreover, the
non-degeneracy of the matrix D (defined by (11.21)) implies that the generalized
kernel of JL0 is spanned by {∂xuc,a, ∂cuc,a, Uc,a}. For k ∈ (0, 1) small, it is natural
to study the spectra of JkLk by the perturbation theory. Even though the results
in Section 2.5 and Chapter 9 do not apply directly as Jk − J : X∗ → X is not
bounded, the ideas there and the property that JkLk has only isolated eigenvalues
still yield the desired results. We start with the following lemma on the resolvent
of JkLk.

Lemma 11.1. Assume that the symbol α(ξ) ofM satisfies a|ξ|m ≤ α(ξ) ≤ b|ξ|m,
a, b > 0, m > 0, for large ξ and

(11.36) lim
ρ→0

sup
ξ∈Z

|α(ξ + ρ)− α(ξ)|
1 + |ξ|m

→ 0,

then the resolvent (λ− JkLk)−1 is continuous in k ∈ [0, 1].

Proof. Fix k ∈ [0, 1]. From (11.26), one can compute

Jk′Lk′ − JkLk = (∂x + ik)(Mk′ −Mk) + i(k′ − k)
(
Mk′ + c− f ′(uc,a)

)
.

On the one hand, there exists a0 6= 0 such that a0 + (∂x + ik)Mk has a compact
inverse on X. We obtain from (11.36)

(11.37) |
(
a0 + (∂x + ik)Mk

)−1
(Jk′Lk′ − JkLk)| → 0 as k′ → k.

On the other hand, (11.26) and m > 0 imply that

I +
(
a0 + (∂x + ik)Mk

)−1
(λ− JkLk)

=
(
I + (∂x + ik)Mk

)−1
(λ+ a0 − (∂x + ik)(c− f ′(uc,a)

)
is compact. Therefore, A =

(
a0+(∂x+ik)Mk

)−1
(λ−JkLk) is a Fredholm operator

of index 0. Suppose λ /∈ σ(JkLk), then A is injective and thus A−1 is bounded on
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X. Along with (11.37), we obtain

|(λ−JkLk)−1(Jk′Lk′ −JkLk)| = |A−1
(
a0 + (∂x + ik)Mk

)−1
(Jk′Lk′ −JkLk)| → 0

as k′ → k. From

λ− Jk′Lk′ = (λ− JkLk)
(
I − (λ− JkLk)−1(Jk′Lk′ − JkLk)

)
,

we obtain the continuity of the resolvent (λ− JkLk)−1 in k ∈ [0, 1]. �

Remark 11.4. The assumption (11.36) is clearly satisfied if α(ξ) ∈ C1 (R) and

lim sup
|ξ|→∞

α′(ξ)

|ξ|m
<∞.

Next we show that when k is small enough, the unstable modes of JkLk can
only bifurcate from the zero eigenvalue of JL0.

Proposition 11.3. Suppose kerL0 = span {∂xuc,a}, D is nonsingular, n− (L0) =
n− (D) and (11.36) holds. Then for any δ > 0, there exists ε0 > 0 such that if
|k| < ε0, then σ (JkLk) ∩ {|z| ≥ δ} ⊂ iR.

Proof. Since 0 is an isolated spectral point of JL0, there exists δ0 > 0 such
that λ /∈ σ(JL0) as long as 0 < |λ| ≤ δ0. Without loss of generality, assume
0 < δ < δ0. Lemma 11.1 implies λ /∈ σ(JkLk) for 0 < |k| << 1. Let

P (k) =
1

2πi

∮
|λ|=δ

(λ− JkLk)−1dλ, Zk = P (k)X, Yk =
(
I − P (k)

)
X.

The standard spectral theory implies that P (k) is continuous in k, Yk and Zk are
invariant under JkLk, and

|λ| < δ, ∀λ ∈ σ(JkLk|Zk) and |λ| > δ, ∀λ ∈ σ(JkLk|Yk).

For k = 0, our assumptions imply that Z0 = span {∂xuc,a, ∂cuc,a, Uc,a}. There-
fore, Zk close to Z0 is a 3-dim invariant subspace of JkLk with small eigenvalues
containing kerLk. Moreover, the assumption

n−(L0) = n−(D) = n−(L0|Z0)

and the L0-orthogonality between Z0 and Y0 imply that L0 is uniformly positive
definite on Y0. As Lk : X = H

m
2 → X∗ = H−

m
2 is continuous in k, there exists

α > 0 such that 〈Lku, u〉 > α‖u‖2 for all u ∈ Yk. Clearly, JkLk|Yk is skew-
adjoint with respect to the equivalent inner product given by 〈Lk·, ·〉 on Yk, therefore
σ(JkLk|Yk) ⊂ iR and the proposition follows. �

Since dim ker (JL0) = 3, the perturbation of zero eigenvalue of JL0 for JkLk
(0 < k � 1) can be reduced to the eigenvalue perturbation of a 3 by 3 matrix.
This had been studied extensively in the literature and instability conditions were
obtained for various dispersive models. See the survey [12] and the references
therein.

Recently, it was proved in [36] that linear modulational instability of the trav-
eling wave uc (x− ct) also implies the nonlinear instability for both multi-periodic
and localized perturbations. The semigroup estimates of etJL0 play an important
role on this proof of nonlinear instability. We sketch these estimates below, as an
example of the application of Theorem 2.2 on the exponential trichotomy of linear
Hamiltonian PDE. First, if uc is linearly modulationally unstable, then there exists
a rational k0 = p

q ∈ (0, 1) such that Jk0Lk0 has an unstable eigenvalue. By the
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definition of Jk0
Lk0

, this implies that the operator JL0 has an unstable eigenvalue
on the 2πq periodic space L2

(
S1

2πq

)
with an eigenfunction of the form eik0xu (x)(

u ∈ L2
(
S1
))

. The exponential trichotomy of the semigroup etJL0 on the space

Hs
(
S1

2πq

) (
s ≥ m

2

)
follows directly by Theorem 2.2. This is used in [36] to prove

nonlinear orbital instability of uc for 2πq periodic perturbations or even to con-
struct stable and unstable manifolds. To prove nonlinear instability for localized
perturbations, we study the semigroup etJL0 on the space Hs (R)

(
s ≥ m

2

)
. The

operator L0 might have negative continuous spectrum in Hs (R). For example,
when M = −∂2

x, the spectrum of L0 = −∂2
x +V (x) with periodic V (x) is well

studied in the literature and is known to have bands of continuous spectrum. So
Theorem 2.2 does not apply. However, we have the following upper bound estimate
of etJL0 on Hs (R), which suffices to prove nonlinear localized instability.

Lemma 11.2. Assume (11.36). Let λ0 ≥ 0 be such that

Reλ ≤ λ0, ∀ξ ∈ [0, 1], λ ∈ σ(JξLξ).
For every s ≥ m

2 , there exist C(s) > 0 such that

‖etJξLξv(x)‖Hs(S1) ≤ C(s)(1 + t2n
−(Lξ)+1)eλ0t‖v(x)‖Hs(S1),(11.38)

‖etJL0u(x)‖Hs(R) 6 C(s)(1 + t2n
−(Lξ)+1)eλ0t‖u(x)‖Hs(R),(11.39)

for any ξ ∈ [0, 1], v ∈ Hs(S1), and u ∈ Hs(R).

Proof. It suffices to prove the lemma for s = m
2 . The estimates for general

s ≥ m
2 can be obtained by applying JξLξ and JL0 repeatedly to the estimates for

s = m
2 (and interpolation for the case when 2s

m is not an integer). We start with the
first estimate in the 2π-periodic case. Due to the compactness of [0, 1], it suffices
to prove that for any ξ0 ∈ [0, 1], there exist C, ε > 0 and an integer K ≥ 0 such
that (11.38) holds for ξ ∈ (ξ0 − ε, ξ0 + ε). We first note that each λ ∈ σ(Jξ0Lξ0) is
an isolated eigenvalue with finite algebraic multiplicity and Lξ0 is non-degenerate
on Eλ/(Eλ ∩ kerLξ0). Let

Λ = {λ ∈ σ(Jξ0Lξ0) | ∃ δ > 0 s.t. 〈Lξ0v, v〉 ≥ δ‖v‖2}.
Due to Proposition 11.2, σ(Jξ0Lξ0)\Λ is finite and

n = Σλ∈σ(Jξ0Lξ0 )\Λ dimEλ <∞.
Moreover, there exists ε > 0 such that

Ω ∩ Λ = ∅, where Ω = ∪λ∈σ(Jξ0Lξ0 )\Λ{z | ‖z − λ‖ < ε} ⊂ C.

From Lemma 11.1, there exists ε > 0 such that ∂Ω ∩ σ(JξLξ) = ∅ for any ξ ∈
[ξ0 − ε, ξ0 + ε]. For such ξ, let

P (ξ) =
1

2πi

∮
∂Ω

(λ− JkLk)−1dλ, Zξ = P (ξ)X, Yξ =
(
I − P (ξ)

)
X,

which are continuous in ξ and invariant under etJξLξ . Therefore, dimZξ = n and
the continuity of Lξ in ξ implies that there exists δ > 0 such that

δ−2‖v‖2 ≥ 〈Lξv, v〉 ≥ δ2‖v‖2, ∀v ∈ Yξ, |ξ − ξ0| ≤ ε.
Moreover, according to Proposition 2.2, for any λ ∈ Ω∩ σ(JξLξ), the dimension of
its eigenspace

Eλ(JξLξ) = ker(λ− JξLξ)2
(

1+n−(Lξ)
)
,
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namely, the maximal dimension of Jordan blocks of JξLξ on Yξ is no more than
2(1 + n−(Lξ)

)
. So for any ξ ∈ [ξ0 − ε, ξ0 + ε], there exists a generic constant C > 0

independent of ξ, such that

‖etJξLξv‖ ≤ ‖etJξLξP (ξ)v‖+ ‖etJξLξ
(
I − P (ξ)

)
v‖

≤C
(

(1 + t2n
−(Lξ)+1)eλ0t‖P (ξ)v‖+ 〈LξetJξLξ

(
I − P (ξ)

)
v, etJξLξ

(
I − P (ξ)

)
v〉 1

2

)
≤C
(

(1 + t2n
−(Lξ)+1)eλ0t‖P (ξ)v‖+ 〈Lξ

(
I − P (ξ)

)
v,
(
I − P (ξ)

)
v〉 1

2

)
≤C(1 + t2n

−(Lξ)+1)eλ0t‖v‖.

Along with the compactness of [0, 1], it implies (11.38).
To prove (11.39), we first write, for any u ∈ Hs(R),

u(x) =

∫ 1

0

eiξxuξ(x)dξ, where uξ(x) = Σn∈Ze
inxû(n+ ξ) ∈ Hs(S1),

and û is the Fourier transform of u. Clearly, there exists C > 0 such that

(11.40)
1

C
‖u‖2Hs(R) ≤

∫ 1

0

‖uξ (x) ‖2Hs(S1) dξ ≤ C‖u‖
2
Hs(R).

Note

etJL0u(x) =

∫ 1

0

eiξxetJξLξuξ (x) dξ

and thus

(11.41) ‖etJL0u(x)‖2Hs(R) ≈
∫ 1

0

‖etJξLξuξ (x) ‖2Hs(S1) dξ.

Along with (11.38), it immediately implies (11.39). �

Remark 11.5. The semigroup estimates of the types (11.38) and (11.39) can
also be obtained for s = −1, that is, in the negative Sobolev space H−1

(
S1

2πq

)
and

H−1(R) for etJL0 (see [36]). Such semigroup estimates were used in [36] to prove
nonlinear modulational instability by a bootstrap argument.

11.4. The spectral problem Lu = λu′

In this section, we consider the eigenvalue problem of the form

(11.42) Lu = λu′,

where the symmetric operator L is of the form of L0 in Section 11.1. As an exam-
ple, consider the stability of solitary waves of generalized Bullough–Dodd equation
([69])

(11.43) utx = au− f (u) ,

where a > 0 and f is a smooth function of u satisfying

(11.44) f (u) = O
(
u2
)
, f ′ (u) = O (u) for small u.

The traveling wave uc (x+ ct) satisfies the ODE

−cu′′c + auc − f (uc) = 0.

Then the linearized equation in the traveling frame (x+ ct, t) takes the form

(11.45) utx = −cuxx + au− f ′ (uc)u.
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Thus the eigenvalue problem takes the form (11.42) with

(11.46) L = −c d
2

dx2
+ a− f ′ (uc) .

We consider the general problem (11.42) with L of the form L =M+V (x). We
assume that: i) M is a Fourier multiplier operator with the symbol α (ξ) satisfying

(11.47) α (ξ) ≥ 0 and α (ξ) ≈ |ξ|2s (s > 0) , when |ξ| is large,

and ii) the real potential V (x) satisfies

(11.48) V (x)→ δ0 > 0 when |x| → ∞.

Let X = Hs (R) (s > 0). Then the assumption (H2) is satisfied for L on X.
Namely, L : X → X∗ is bounded and symmetric, and there exists a decomposition
of X

X = X− ⊕ kerL⊕X+, n−(L) , dimX− <∞,
satisfying L|X− < 0 and L|X+

≥ δ > 0.
Define J = ∂−1

x . Now we check that J : X∗ → X is densely defined and
J∗ = −J . On X = Hs (R) with s > 0, the operator ∂x : X → X∗ is densely
defined and satisfies (∂x)∗ = −∂x. Since ker ∂x = {0},

R (∂x) = (ker (∂∗x))
⊥

= (ker (−∂x))
⊥

= X∗,

so D
(
∂−1
x

)
= R (∂x) is dense in X∗ and J = ∂−1

x : X∗ → X satisfies J∗ = −J .
So the eigenvalue problem Lu = λu′ can be equivalently written in the Hamil-

tonian form JLu = λu, where (J, L,X) satisfies the assumptions (H1)-(H3). Let
kerL = span {ψ1, · · · , ψl} and

span {ψ′1, · · · , ψ′l} ∩R (L) = span {g1, · · · , gm} , m ≤ l.

Define the m by m matrix

D =
(〈
L−1gi, gj

〉)
, 1 ≤ i, j ≤ m.

By Theorem 2.3 and Proposition 2.7, we get the following theorem.

Theorem 11.3. Assume (11.47) and (11.48). Then

kr + 2kc + 2k≤0
i + k≤0

0 = n− (L) ,

where kr, kc, k
≤0
i , k≤0

0 are the indexes for the eigenvalues of ∂−1
x L, as defined in

Section 2.4. In addition, we have k≤0
0 ≥ n≤0 (D), where n≤0 (D) is the number of

nonpositive eigenvalues of D. If D is nonsingular, then k≤0
0 = n− (D), i.e., the

number of negative eigenvalues of D.

For many applications, particularly the generalized Bullough–Dodd equation
where M = −c∂2

x (c > 0), L has at most one dimensional kernel and negative
eigenspace. In this case, we get a more explicit instability criterion.

Corollary 11.4. i) Assume n− (L) = 1 and kerL = {ψ0}. Then there is a
positive eigenvalue of ∂−1

x L when
〈
L−1ψ′0, ψ

′
0

〉
> 0.

ii) Assume n− (L) ≤ 1 and there exists 0 6= ψ0 ∈ kerL such that
〈
L−1ψ′0, ψ

′
0

〉
≤

0, then ∂−1
x L has no unstable eigenvalues.
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Remark 11.6. The above Corollary was obtained in [69] under some addi-
tional assumptions. In [69], Corollary 11.4 i) was proved under the following two
assumptions:

C1) (f0, g0) 6= 0, where f0 is the eigenfunction of L with the negative eigenvalue
and g′0 ∈ kerL.

C2) For any λ ∈ R,∥∥∥P+ (L− λ∂x)
−1
P+v

∥∥∥
H1
≤ C (λ) ‖v‖L2 ,

where P+ is the projection to the positive space of L and C (λ) is bounded on compact
sets.
The proof in [69] is by constructing Evans-like functions. Corollary 11.4 ii) was
proved in [69] under the following additional assumptions:

D1) kerL = {ψ0} and
〈
L−1ψ′0, ψ

′
0

〉
< 0;

D2) For any λ /∈ iR, the operator L − λ∂x has zero index and the equation
(L− λ∂x) f = g satisfies certain Fredholm alternative properties (see (12)(13)(14)
in [69]);

D3) The symbol α (ξ) of the leading order part M of L satisfies

α (ξ) ≈ |ξ|2s
(
s >

1

2

)
, when |ξ| is large.

The proof in [69] is by Lyapunov–Schmidt reduction arguments and the index the-
orem in [44].

For the Bullough–Dodd equation (11.43), kerL = {uc,x} where L is defined by

(11.46). Since the momentum of the problem is 1
2

∫
(u′c)

2
dx, by similar computation

as in (11.12), it was shown in [69] that〈
L−1u′′c , u

′′
c

〉
= −1

2
∂c

∫
(u′c)

2
dx = −1

2
∂c

[
c−

1
2

∫
(u′1)

2
dx

]
> 0,

where uc = u1 (x/
√
c) and −u′′1 + au1 − f (u1) = 0. So we get the following

Theorem 11.4. Assume f (u) is a smooth function satisfying (11.44) and the
traveling wave solution uc (x− ct) to (11.43) exists with c > 0 and uc(x) → 0 as
|x| → ∞, then uc is linearly unstable.

In [69], the above Theorem was proved for smooth and convex function f .
Their additional convexity assumption on f was used to verify the condition C1)
in Remark 11.6.

Besides the above linear instability result, Theorem 2.2 can be applied to give
the exponential trichotomy for the linearized equation (11.45). This will be useful
for the construction of invariant manifolds of (11.43) near the unstable traveling
wave orbit.

11.5. Stability of steady flows of 2D Euler equation

We consider the 2D Euler equations

(11.49) ∂tu+ (u · ∇u) +∇p = 0,

(11.50) ∇ · u = 0,
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in a bounded domain Ω ⊂ R2 with smooth boundary ∂Ω composed of a finite
number of connected components Γi . The boundary condition is

u · n = 0 on ∂Ω,

For simplicity, first we consider Ω to be simply connected and ∂Ω = Γ. The vorticity
form of (11.49)-(11.50) is given by

(11.51) ∂tω − ψy∂xω + ψx∂yω = 0,

where ψ is the stream function, then ω ≡ −∆ψ ≡ −
(
∂2
x + ∂2

y

)
ψ is the vorticity

and u = ∇⊥ψ = (ψy,−ψx) is the velocity. The boundary condition associated with
(11.51) is given by ψ = 0 on ∂Ω. A stationary solution of (11.51) is given by a
stream function ψ0 satisfying

(11.52) − ψ0y∂xω0 + ψ0x∂yω0 = 0,

here ω0 ≡ −∆ψ0 and u0 = ∇⊥ψ0 are the associated vorticity and velocity. Suppose
ψ0 satisfy the following elliptic equation

−∆ψ0 = g (ψ0)

with boundary condition ψ0 = 0 on ∂Ω, where g is some differentiable function.
Then ω0 ≡ −∆ψ0 = g (ψ0) is a steady solution of equation (11.51). The linearized
equation near ω0 is

(11.53) ∂tω − ψ0y∂xω + ψ0x∂yω = ψy∂xω0 − ψx∂yω0,

with ω = −∆ψ and the boundary condition ψ |∂Ω = 0. The above equation can be
written as

(11.54) ∂tω − u0 · ∇ω + g′ (ψ0)u0 · ∇ψ = 0.

Below we consider the case when g′ > 0 which appeared in many interesting
cases such as mean field equations (e.g. [14] [15]). Then (11.54) has the following
Hamiltonian structure

(11.55) ∂tω = JLω, where J = g′ (ψ0)u0 · ∇, L =
1

g′ (ψ0)
− (−∆)

−1
.

We take the energy space of the linearized Euler (11.55) as the weighted space

X = {ω |‖ω‖X <∞} , where ‖ω‖X =

(∫ ∫
Ω

|ω|2

g′ (ψ0)
dxdy

) 1
2

.

If g′ has a positive lower bound, X is equivalent to L2(Ω). In general, ω ∈ X implies
ω ∈ L2 and ∇ψ ∈ L2. Therefore, 〈L·, ·〉 defines a bounded symmetric quadratic
form on X and L : X → X∗ is a bounded symmetric operator. Moreover, it is easy
to see that

S : L2 → X, Sω = g′(ψ0)
1
2ω

defines an isometry. As f(ψ0)· and u0 · ∇ are commutative for any f , we have

J̃ , S−1J(S∗)−1 = u0 · ∇ : (L2)∗ → L2

is anti-self-dual due to ∇ · u0 = 0, from which we obtain J∗ = −J and thus (H1)
is satisfied by J and X. Moreover, since 1

g′(ψ0) · : X → X∗ is an isomorphism and
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(−∆)−1 is compact, we have dim kerL < ∞ and thus (H3) is satisfied. Note that
the closed subspace ker J ⊂ X∗ is infinite dimensional since

ker J ⊃
{
h (ψ0) , h ∈ C1

}
.

Let P̃ : (L2)∗ → ker J̃ be the orthogonal projection and define

P = (S∗)−1P̃S∗ : X∗ → ker J.

Clearly, P is a bounded linear operator on X∗ and it defines a projection on X∗,
but orthogonal in the L2 sense. In fact, due to the commutativity between f(ψ0)·
and u0 · ∇ for any f , operators P and P̃ take the same form shown in ([49])

Pφ |γi(c) =

∮
γi(c)

φ(x,y)
|∇ψ0| dl∮

γi(c)
1

|∇ψ0|dl
,

where c is in the range of ψ0 and γi (c) is a branch of {ψ0 = c}. As in ([49]), define
operator A : H1

0 ∩H2 (Ω)→ L2 (Ω) by

Aφ = −∆φ− g′ (ψ0)φ+ g′ (ψ0)Pφ.

We also denote the operator

A0 = −∆− g′ (ψ0) : H1
0 ∩H2 (Ω)→ L2 (Ω) .

Clearly, A,A0 are self-adjoint with compact resolvents and thus with only discrete
spectra. The next lemma studies the spectral information of L on the weighted
space X.

Recall that for any subspace Y ∈ X, 〈L·, ·〉 also defines a bounded symmetric
quadratic form on the quotient space Y/(Y ∩ kerL).

Lemma 11.3. i) The assumption (H2) is satisfied by 〈L·, ·〉 on X, with n− (L) =
n− (A0) and dim kerL = dim kerA0.

ii) The quadratic form 〈L·, ·〉 is non-degenerate on R(J)/
(
R(J)∩ kerL

)
if and

only if kerA ⊂ kerA0. Moreover,

(11.56) n−
(
L|
R(J)/

(
R(J)∩kerL

)) = n−
(
L|
R(J)

)
= n− (A) .

Proof. i) For any ω ∈ X, we have

〈Lω, ω〉 =

∫ ∫
Ω

{
ω2

g′ (ψ0)
− |∇ψ|2

}
dxdy

(11.57)

=

∫ ∫
Ω

{
ω2

g′ (ψ0)
− 2ψω + |∇ψ|2

}
dxdy

=

∫ ∫
Ω


(

ω√
g′ (ψ0)

− ψ
√
g′ (ψ0)

)2

− g′ (ψ0)ψ2 + |∇ψ|2
 dxdy

≥
∫ ∫

Ω

[
|∇ψ|2 − g′ (ψ0)ψ2

]
dxdy = (A0ψ,ψ) ,

where ψ = (−∆)
−1
ω. Recall that n≤0 (L) and n≤0 (A0) denote the maximal di-

mensions of subspaces where the quadratic forms 〈L·, ·〉 and (A0·, ·) are nonpositive.
Let

{ψ1, · · · , ψl} , l = n≤0 (A0) ,
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be linearly independent eigenfunctions associated to nonpositive eigenvalues of A0.
Define the space Y1 ⊂ X by

Y1 =

{
ω ∈ X |

∫
Ω

ψj (−∆)
−1
ω = 0, 1 ≤ j ≤ l

}
.

Then for any ω ∈ Y1, we have

(A0ψ,ψ) ≥ δ ‖ψ‖2H1 , for some δ > 0.

So by (11.57), for any ω ∈ Y1,

〈Lω, ω〉 = ε

∫ ∫
Ω

{
ω2

g′ (ψ0)
− |∇ψ|2

}
dxdy + (1− ε) 〈Lω, ω〉

≥ ε
∫ ∫

Ω

{
ω2

g′ (ψ0)
− |∇ψ|2

}
dxdy + (1− ε) δ ‖ψ‖2H1

≥ ε
∫ ∫

Ω

{
ω2

g′ (ψ0)
+ |∇ψ|2

}
dxdy,

by choosing ε > 0 such that (1− ε) δ > 2ε. Since the positive subspace Y1 has
co-dimension n≤0 (A0), this shows that the assumption (H2) for L on X is satisfied
and n≤0 (L) ≤ n≤0 (A0).

To prove n≤0 (L) ≥ n≤0 (A0), let ω̃j = g′ (ψ0)ψj ∈ X and ψ̃j = (−∆)
−1
ω̃j ,

j = 1, . . . , l and then

(A0ψj , ψj) =

∫ ∫
Ω

[
|∇ψj |2 − g′ (ψ0)ψ2

j

]
dxdy =

∫ ∫
Ω

[
|∇ψj |2 −

ω̃2
j

g′ (ψ0)

]
dxdy

=

∫ ∫
Ω

[
|∇ψj |2 − 2ω̃jψj +

ω̃2
j

g′ (ψ0)

]
dxdy

=

∫ ∫
Ω

[
|∇ψj |2 − 2∇ψj · ∇ψ̃j +

ω̃2
j

g′ (ψ0)

]
dxdy

≥
∫ ∫

Ω

[
ω̃2
j

g′ (ψ0)
−
∣∣∣∇ψ̃j∣∣∣2] dxdy = 〈Lω̃j , ω̃j〉 ,

and thus n≤0 (L) ≥ n≤0 (A0). Combined with above, this implies that n≤0 (L) =

n≤0 (A0). Since ω ∈ kerL if and only if ψ = (−∆)
−1
ω ∈ kerA0, we obtain

dim kerL = dim kerA0 and thus

n− (L) = n≤0 (L)− dim kerL = n≤0 (A0)− dim kerA0 = n− (A0) .

ii) Note that, like J , the projection P also commutes with f(ψ0)· for any f .

Therefore, ω ∈ R(J) if and only if P ω
g′(ψ0) = 0. It implies that

(11.58) (I − P )Lω =
ω

g′ (ψ0)
− (I − P )ψ =

1

g′(ψ0)
Aψ, ∀ω ∈ R(J),

where ψ = (−∆)
−1
ω, and thus

(11.59) (−∆) kerA = R(J) ∩ ker
(
(I − P )L

)
= R(J) ∩ ker JL.

Since

ker
(
〈L·, ·〉|

R(J)

)
= R(J) ∩ ker JL,
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it immediately implies

(11.60) dim ker
(
〈L·, ·〉|

R(J)

)
= dim kerA.

Suppose 〈L·, ·〉 is degenerate on R(J)/
(
R(J) ∩ kerL

)
, namely

∃ω1 ∈ R(J)\ kerL such that 〈Lω1, ω〉 = 0, ∀ ω ∈ R (J).

Such ω1 satisfies 0 6= Lω1 ∈ ker J , or equivalently (I − P )Lω1 = 0. Therefore,
(11.59) implies Aψ1 = 0. Since A0ψ1 6= 0 due to Lω1 6= 0, we obtain kerA $ kerA0.
The converse can be proved similarly and the first statement follows.

To prove (11.56), first we notice that for any ω ∈ R (J),

〈Lω, ω〉 =

∫ ∫
Ω


(

ω√
g′ (ψ0)

− ψ
√
g′ (ψ0)

)2

− g′ (ψ0)ψ2 + |∇ψ|2
 dxdy

=

∫ ∫
Ω

[

(
ω√
g′ (ψ0)

−
√
g′ (ψ0) (I − P )ψ

)2

+ g′ (ψ0) (Pψ)
2

− g′ (ψ0)ψ2 + |∇ψ|2] dxdy

≥
∫ ∫

Ω

|∇ψ|2 − g′ (ψ0)ψ2 + g′ (ψ0) (Pψ)
2
dxdy = (Aψ,ψ) .

(11.61)

Next, for any ψ ∈ H1
0 , let

ω̃ = g′ (ψ0) (I − P )ψ ∈ R (J), ψ̃ = (−∆)−1ω̃,

then

(Aψ,ψ) =

∫ ∫
Ω

|∇ψ|2 − g′ (ψ0) ((I − P )ψ)
2
dxdy(11.62)

=

∫ ∫
Ω

[
|∇ψ|2 − ω̃2

g′ (ψ0)

]
dxdy

=

∫ ∫
Ω

[
|∇ψ|2 − 2ω̃ψ +

ω̃2

g′ (ψ0)

]
dxdy

≥
∫ ∫

Ω

[
ω̃2

g′ (ψ0)
−
∣∣∣∇ψ̃∣∣∣2] dxdy = 〈Lω̃, ω̃〉 .

From (11.61), (11.62) and (11.60), we get (11.56) as in the proof of i). �

By Lemma 11.3 and (iii) of Proposition 2.8, we have

Theorem 11.5. Assume g′ (ψ0) > 0 and kerA = {0}, then the index formula

(11.63) kr + 2kc + 2k≤0
i = n− (A) .

holds. In particular, when n− (A) is odd, there is linear instability; when A > 0,
there is linear stability.

Proof. To apply (iii) of Proposition 2.8 to obtain (11.63), it suffices to verify
that a.) 〈L·, ·〉 is non-degenerate on ker(JL)/ kerL, which is satisfied due to Lemma
2.1, Lemma 11.3, and {0} = kerA ⊂ kerA0; and b.)

S̃ , R(J) ∩ (JL)−1(kerL) = {0}.
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To see the latter, we first note that kerA = {0} and (11.59) imply

R(J) ∩ ker
(
(I − P )L

)
= {0}.

Consequently, if ω ∈ R(J) ∩ (JL)−1(kerL), then JLω ∈ R(J) ∩ kerL must vanish,

namely, Lω ∈ ker J , and thus (I − P )Lω = 0. Again, since ω ∈ R(J), we obtain

ω = 0. Therefore, S̃ = {0} and (11.63) follows.
The instability of etJL under the assumption of n−(A) being odd is straight-

forward from (11.63). Finally suppose A > 0, (11.56) and (11.60) imply that 〈L·, ·〉
is uniformly positive definite on R(J)/

(
R(J) ∩ kerL

)
= R(J). Therefore, etJL is

stable on the closed invariant subspace R(J) and thus its stability follows from the

decomposition X = ker(JL) +R(J), which is proved in Proposition 2.8. �

By Theorem 2.6, the index formula (11.63) and the fact iR ⊂ σ(JL) for the
linearized Euler equation imply the following.

Corollary 11.5. Under the assumption of Theorem 11.5, when n− (A) >
0, then there is linear instability or structural instability for JL (in the sense of
Theorem 2.6).

In the sense of Theorem 2.6, the structural instability of the linearized Euler
equation ωt = JLω means that there exist arbitrarily small bounded perturbations
L# to L such that JL# has unstable eigenvalues. However, it is not clear that
such perturbations can be realized in the context of the Euler equation, such as by
considering neighboring steady states along with possible small domain variation.

Remark 11.7. In [49], it was shown that for general g ∈ C1, when kerA = {0}
and n− (A) is odd, there is linear instability. Here, the index formula (11.63) gives
more detailed information about the spectrum of the linearized Euler operator.

We give one example satisfying the stability condition A > 0. Let λ0 > 0 be
the lowest eigenvalue of −∆ in Ω with Dirichlet boundary condition and ψ0 be the
corresponding eigenfunction. Then g′ (ψ0) = λ0 and it is easy to show that A > 0.

Remark 11.8. When the domain Ω is not simply connected, let ∂Ω = ∪ni=0Γi
consist of outer boundary Γ0 and n interior boundaries Γ1, · · · ,Γn. Then the oper-
ators A0, A, −∆ should be defined by using the boundary conditions:

(11.64) φ|Γi is constant,

∮
Γi

∂φ

∂n
= 0 and

∫ ∫
Ω

φ dxdy = 0.

The same formula (11.63) is still true. The linearized stream functions satisfying
(11.64) represent perturbations preserving the circulations along each Γi, which are
conserved in the nonlinear evolution.

Below, we consider the case when kerA is nontrivial. This usually happens
when the problem has some symmetry. As an example, we consider the case when
Ω is a channel, that is,

Ω = {y1 ≤ y ≤ y2, x is T − periodic} .

The steady stream function ψ0 satisfies

(11.65) −∆ψ0 = g (ψ0) in Ω,
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with boundary conditions ψ0 being constants on {y = yi}, i = 1, 2, where g ∈ C1.
Define the operators L, A0, A as before with the boundary conditions

(11.66) φ is constant on {y = yi} ,
∫
{y=yi}

∂φ

∂y
dx = 0, i = 1, 2,

and
∫ ∫

Ω
φ dxdy = 0. Taking x−derivative of equation (11.65), we get

−∆ψ0,x = g′ (ψ0)ψ0,x in Ω,

and ψ0,x satisfies the boundary condition (11.66). Thus we have A0ψ0,x = 0 and

Lω0,x = L (g′ (ψ0)ψ0,x) = 0.

Since ψ0,x = u0 · ∇ (−y), so Pψ0,x = 0 and thus Aψ0,x = A0ψ0,x = 0.

Theorem 11.6. Assume g′ (ψ0) > 0 and kerA = span {ψ0,x} , then

∃ω1 ∈ R(J) such that JLω1 = ω0,x.

Moreover, if

d = 〈Lω1, ω1〉 = −
∫ ∫

Ω

yω1dxdy = T (ψ1|y=y1
− ψ1|y=y2

) 6= 0,

where ψ1 satisfies −∆ψ1 = ω1 with the boundary condition (11.66), or more explic-
itly

ψ1 = −A−1 (g′ (ψ0) (I − P ) y) ,

then we have the index formula

(11.67) kr + 2kc + 2k≤0
i = n− (A)− n− (d) ,

where n−(d) = 1 if d < 0 and n−(d) = 0 if d > 0.

Proof. Our assumption implies kerA ⊂ kerA0 and thus 〈L·, ·〉 is non-degenerate

on R(J)/
(
R(J)∩kerL

)
by Proposition 2.8. To apply index formula (2.20), we need

to obtain the non-degeneracy of 〈L·, ·〉 on S̃/(S̃∩kerL) and compute n≤0(L|S̃/(S̃∩kerL)),

where

S̃ = R(J) ∩ (JL)−1(kerL) = R(J) ∩ (JL)−1
(

kerL ∩R(J)
)
.

Since Pψ0,x = 0 implies ω0,x =
ψ0,x

g′(ψ0) ∈ R(J). From (11.59) and our assumption

on kerA, we have

span{ω0,x} ⊂ R(J) ∩ kerL ⊂ R(J) ∩ ker
(
(I − P )L

)
= ∆ kerA = span{ω0,x},

which yields

R(J) ∩ kerL = span{ω0,x}.
By the definition of S̃, ω ∈ S̃ if and only if there exist ω ∈ R(J) and a ∈ R such
that

aω0,x = JLω = J(I − P )Lω.

Since ω0,x = −Jy = −J(I − P )y, we obtain equivalently (I − P )(Lω + ay) = 0.
From (11.58), it follows that

ω ∈ S̃ ⇐⇒ ω ∈ R(J) and Aψ = −ag′(ψ0)(I − P )y, where −∆ψ = ω.

Note kerA = span{ψ0,x} and

〈g′ (ψ0) (I − P ) y, ψ0,x〉 =

∫ ∫
Ω

yg′ (ψ0)ψ0,x dxdy = 0.
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There exists a stream function ψ1 satisfying

Aψ1 = −g′ (ψ0) (I − P ) y,

which implies ω1 = −∆ψ1 ∈ R(J) and JLω1 = ω0,x. Namely ω1 ∈ S̃ and S̃ =
span{ω0,x, ω1}. One may compute

d = 〈Lω1, ω1〉 = 〈(I − P )Lω1, ω1〉 = 〈− (I − P ) y, ω1〉
= −〈y, ω1〉 = T (ψ1|y=y1

− ψ1|y=y2
)

where the last equal sign follows from integration by parts. If d 6= 0, then the
desired index formula follows from (iii) of Proposition 2.8. �

Similar to Corollary 11.5 (and the comments immediately thereafter), we have

Corollary 11.6. Under the assumption of Theorem 11.6, when n− (A) −
n− (d) > 0, then there is linear instability or structural instability for JL.

As another application of the Hamiltonian structure of the linearized Eu-
ler equation, we consider the inviscid damping of a stable steady flow. Assume
g′ (ψ0) > 0 and A > 0, then by Theorem 11.5, the steady flow is linearly stable in
the L2 norm of vorticity. There is no time decay in ‖ω‖L2 . However, the linear
decay in the velocity norm ‖u‖ L2 is possible due to the mixing of the vorticity.
For example, see [56] for the linear damping near Couette flow (y, 0) in a channel.
Here, we give a weak form of the linear decay for general stable steady flows.

Theorem 11.7. Assume g′ (ψ0) > 0 and A > 0. For ω (0) ∈ R (J), let ω (t) ∈
R (J) be the solution of the linearized Euler equation (11.54). Then

(i) When T →∞, 1
T

∫ T
0
ω (t) dt→ 0 strongly in L2.

(ii) If there is no embedded imaginary eigenvalue of JL on R (J), then for any
compact operator C in L2, we have

(11.68)
1

T

∫ T

0

‖Cω (t)‖2L2 dt→ 0, when T →∞.

In particular, for the velocity u = curl−1 ω,

(11.69)
1

T

∫ T

0

‖u (t)‖2L2 dt→ 0, when T →∞.

Proof. By Lemma 11.3, L|
R(J)

> 0. Since R (J) is an invariant subspace of

JL, we can consider the operator JL inR (J). Define the inner product [·, ·] = 〈L·, ·〉
on R (J), then the norm in [·, ·] is equivalent to the L2 norm. As noted before, the
operator JL|

R(J)
is anti-self-adjoint with respect to the inner product [·, ·].

(i) By the mean ergodic convergence of unitary operators ([73])

lim
T→∞

1

T

∫ T

0

ω (t) dt = lim
T→∞

1

T

∫ T

0

etJL|R(J)ω (0) dt = P0ω (0)

in L2, where P0 is the projection operator from R (J) to ker JL|
R(J)

orthogonal

with respect to [·, ·]. Since kerA = {0}, by Lemma 11.3 and (11.58) in particular,
ker JL|

R(J)
= {0} and thus P0ω (0) = 0.
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(ii) If JL has no embedded imaginary eigenvalue, then (11.68) follows di-
rectly by the RAGE theorem ([22]), again by using the anti-self-adjoint prop-
erty of JL|

R(J)
. The conclusion (11.69) follows by choosing the compact operator

C = curl−1. �

Remark 11.9. Assuming A > 0, from the proof of Theorem 11.5, the subspace
S̃ defined in Proposition 2.8 is trivial. By Proposition 2.8, there is a direct sum
decomposition L2 = ker (JL) ⊕ R (J) invariant under JL. In fact ker (JL) cor-
responds to the steady solution of the linearized Euler equation. So above Lemma
shows that for any initial data in L2, in the time averaged limit, the solution of
the linearized Euler equation converges to a steady solution. This is a weak form of
inviscid damping.

A stable example satisfying the assumption A > 0 in Theorem 11.7 is given
in Remark 11.7. Below, we consider two examples of stable shear flows. First, we
consider the Poisseulle flow U (y) = y2 in a 2π-periodic channel {−1 < y < 1}. The
linearized Euler equation becomes

∂tω + y2∂xω + 2∂xψ = 0.

Consider the subspace of non-shear vorticities with a weighted L2 norm

X1 =

ω =
∑

k∈Z, k 6=0

eikxωk (y) , ‖ω‖2X1
=

∑
k∈Z, k 6=0

‖yωk‖2L2 <∞

 .

Define J = −∂x and L = y2 + 2 (−∆)
−1

. Then L is uniformly positive on X1.
Second, consider the Kolmogorov flow U (y) = sin y in a torus T 2 = S 2π

α
× S2π

with α > 1. Here α > 1 is the sharp stability condition since the shear flow is
unstable when α < 1. The linearized equation is

∂tω + sin y∂x (ω − ψ) = 0.

Let J = sin y∂x and L = 1− (−∆)
−1

. Then L is uniformly positive on

X2 =

ω =
∑

k∈Z, k 6=0

eikxωk (y) , ω ∈ L2


when α > 1. It can be shown ([54]) that for above two examples, the linearized
Euler operator has no embedded eigenvalues. Therefore, Theorem 11.7 (ii) is true
for the above two shear flows in X1 and X2 respectively. In particular, if we choose
C to be PN , the projection operator to the first N Fourier modes (in x), then

(11.70)
1

T

∫ T

0

‖PNω (t)‖2L2 dt→ 0,when T →∞.

This shows that in the time averaged sense, the low frequency parts of ω tends to
zero. This observation was used to prove ([54]) the metastability of Kolmogorov
flows. In the fluid literature (see e.g. [71]), for 2D turbulence a dual cascade was
known that energy moves to low frequency end and the enstrophy (

∫
ω2dx) moves

to the high frequency end. The result (11.70) can be seen as a justification of such
physical intuition in a weak sense.
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Remark 11.10. Two classes of shear flows generalizing the above two examples
are studied in [54]. The linear inviscid damping in the sense of (11.69) is proved
for stable shear flows and on the center space for the unstable shear flows, when
ω (0) ∈ L2 is non-shear. Recently, for monotone and certain symmetric shear flows,
more explicit linear decay estimates of the velocity were obtained in [77, 74, 75]
for more regular initial data (e.g. ω (0) ∈ H1 or H2).

In [55], the stability of shear flows under Coriolis forces is studied. By using
the instability index Theorem 2.3, the sharp stability condition for a class of shear
flows can be obtained. Then the linear damping as in the above sense is proved for
non-shear ω (0) ∈ L2.

11.6. Stability of traveling waves of 2D NLS

In this section, we consider the nonlinear Schrödinger equation (NLS)

(11.71) i
∂u

∂t
+ ∆u+ F (|u|2)u = 0, u = u1 + iu2 : R×R2 → C.

In particular, we assume that the nonlinearity F (s) satisfies

(11.72) F ∈ C2, F (1) = 0, F ′(1) < 0.

Important well-known equations of this type are Gross-Pitaevskii (GP) equation
with F (s) = 1−s and the cubic-quintic NLS with F (s) = −α1 +α3s−α5s

2, where
α1, α3 and α5 are positive constants. Assume s = 1 is a local minimal point of F , it
is natural to consider solutions u(t, x) satisfying the following boundary condition
in some appropriate sense

(11.73) |u| → 1 as |x| → ∞.

After normalization, we can assume that u→ 1 when |x| → ∞ in some weak sense
such as u − 1 being approximable by Schwartz class functions in certain Sobolev
norms. The equation (11.71) has the conserved energy and momentum functionals

E (u) =
1

2

∫
R2

(
|∇u|2 + V (|u|2)

)
dx,

~P (u) = (P1 (u) , P2 (u)) =
1

2

∫
R2

〈∇u, i (u− 1)〉 dx =

∫
R2

(u1 − 1)∇u2dx,

where V (s) =
∫ 1

s
F (τ)dτ . We also denote the first component of ~P (u) by

P (u) =
1

2

∫
R2

〈∂x1u, i (u− 1)〉 dx =

∫
R2

(u1 − 1) ∂x1u2dx.

A traveling wave (without loss of generality, in x1-direction) of (11.71) with

wave speed c ∈
(
0,
√

2
)

is a solution in the form of u = Uc(x1 − ct, x2), where Uc
satisfies the elliptic equation

(11.74) − ic∂x1
Uc + ∆Uc + F (|Uc|2)Uc = 0,

with the boundary condition Uc → 1 when |x| → ∞ in the sense Uc − 1 ∈ Ḣ1.

Here,
√

2 is the sound speed and when c ≥
√

2, in general the traveling waves do
not exist (see e.g. [61]). Formally, Uc is a critical point of E − cP . Our goal is
to understand the linear stability/instability of such a traveling wave, namely, the
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evolution of the linearized equation of (11.71) at Uc = uc + ivc put in the moving
frame x1 → x1 − ct, x2 → x2:

(11.75) ut = JLcu, u = (u1, u2)T → 0 as |x| → ∞,

where J =

(
0 1
−1 0

)
and

Lc :=

 −∆− F
(
|Uc|2

)
− 2F ′

(
|Uc|2

)
u2
c −c∂x1 − 2F ′

(
|Uc|2

)
ucvc

c∂x1 − 2F ′
(
|Uc|2

)
ucvc −∆− F

(
|Uc|2

)
− 2F ′

(
|Uc|2

)
v2
c

 .

Through L2 duality, Lc generates the quadratic form

〈Lcu, v〉 =

∫
R2

{∇u · ∇v + c(v1x1u2 − u1v2x1)− F (|Uc|2)u · v

− 2F ′(|Uc|2)(Uc · u)(Uc · v) } dx,(11.76)

where u · v = Re(uv̄).
For the purpose of studying the linearized equation (11.75), we make the fol-

lowing assumptions:

(NLS-1) Uc − 1 ∈ H1 × Ḣ1 satisfies (11.73) and |Uc|C1(R2) <∞.

(NLS-2) Let Γ be the collection of subspaces S ⊂ H1(R2) × H1(R2) such that
〈Lcu, u〉 < 0 for all 0 6= u ∈ S, then

max{dimS | S ∈ Γ} = n−(Lc) <∞.
The above (NLS-1) is a natural regularity assumption. For any given trav-

eling wave of (11.71), it is probably not so straightforward to verify (NLS-2).
This, however, would be a direct consequence if Uc is obtained through a con-
strained variational approach related to energy and momentum, which is often the
case. For example, in [19] [20], the 2D traveling waves of (11.74) were constructed
by minimizing the functional E (u) − cP (u) subject to a constraint P (u) = p or

Ekin (u) =
∫
|∇u|2 dx = k, for general nonlinearity F . The variational problem of

minimizing E (u)−cP (u) subject to fixed P (u) was also studied in [7] to construct
2D traveling waves of GP equation. Since these 2D traveling waves Uc were mini-
mizers of E (u)−cP (u) subject to one constraint, it can be shown that n− (Lc) ≤ 1
(see e.g. the proof of Lemma 2.7 of [53]). Here, we note that Uc is a critical point
of E (u)− cP (u) and Lc = E′′ (Uc)− cP ′′ (Uc).

To study the quadratic form 〈Lc·, ·〉, obviously one may take X = H1(R2) ×
H1(R2). On the one hand, the above assumptions ensure that Lc : X → X∗ =
H−1×H−1 is bounded, satisfies L∗c = Lc, and has n−(Lc) negative dimensions. On
the other hand, it is easy to see that J : X∗ → X is unbounded, but has a dense
domain H1 × H1 ⊂ X∗ = H−1 × H−1, and satisfies J∗ = −J . However, as the
boundary condition (11.73) does not provide enough control of |u|2 near |x| = ∞
in 〈Lcu, u〉, it is not clear that (H2.b) can be satisfied by any decomposition.

For (11.71) considered on RN , N ≥ 3, as in [53], it would be possible to work

on X = H1×Ḣ1, where u1 ∈ H1 and u2 ∈ Ḣ1, and verify assumptions (H1-3) for J
and Lc based on the following two observations. Firstly, in such higher dimensions,
the Gagliardo-Nirenberg inequality implies that Ḣ1 functions decay at x =∞ in the
Lp sense. Therefore, we may reasonably strengthen the boundary condition (11.73)
to Uc → 1 as |x| → ∞. Consequently the ‘principle part’ in 〈Lcu, u〉 provides the

control on the H1 × Ḣ1 norm of u. Secondly, there are indications that Uc decays
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like uc − 1 = O(|x|−N ) and vc = O(|x|1−N ) as in the case proved for the (GP)
equation in [6]. Along with the Hardy inequality, this allows us to control those

terms in (11.76) with vanishing variable coefficients by the H1× Ḣ1 norm of u. See
[53] for more details.

The situation is much worse on R2 unfortunately since both of the above key
observations break down on R2. To overcome these difficulties, our idea is to study
the stability of the linearized equation (11.75) on some space roughly between

H1 × H1 and Ḣ1 × Ḣ1 defined according to the properties of Lc by applying
Theorem 2.7.

Let X = H1 ×H1 for (11.75) and define Q0, Q1 : X → X∗ as

〈Q0u, v〉 = Re

∫
R2

uv̄dx, 〈Q1u, v〉 = Re

∫
R2

(ux1
v̄x1

+ ux2
v̄x2

) dx,

namely, the L2 and Ḣ1 duality, respectively, which satisfy (B1) in Section 2.6. Let

J : X → X be J =

(
0 1
−1 0

)
. Clearly, J satisfies (B2) and the unbounded operator

J = JQ−1
0 : X∗ → X has the same matrix representation through the L2 duality.

As Lc − Q1 consists of terms of at most one order of derivative, it satisfies (B3).
From (NLS-2), there exists a subspace S ⊂ X such that dimS = n−(Lc) and Lc
is negative definite on S. By a slight perturbation, e.g. applying the mollifier to a
basis of S, we obtain a subspace X− ⊂ H3 ×H3 such that dimX− = n−(Lc) and
Lc is negative definite on X−. Let

X≥0 = X
⊥Lc
− = {u ∈ X | 〈Lcv, u〉 = 0} ⊃ kerLc,

and

X+ = {u ∈ X≥0 |
∫
R2

u · vdx = 0, ∀v ∈ kerL}.

Since dimX− < ∞ and Lc is negative definite on X−, from Lemma 12.2 where
(H2.b) is not necessary (see Remark 12.1), we have X = X− ⊕X≥0. It is obvious
X≥0 = X+⊕kerLc and the decomposition X = X−⊕kerLc⊕X+ is Lc-orthogonal.
From (NLS-2) and the definition of X±, 〈Lcu, u〉 is (not necessarily uniformly)
positive on X+ and thus (B4) is satisfied. Finally, one may compute from the
construction that

ker i∗X+
= Q0(kerLc)⊕ Lc(X−).

Since we take X− ⊂ H3×H3 and |Uc|C1 <∞, (B5) is also satisfied. From Theorem

2.7, there exists a function space Y roughly between X = H1 ×H1 and Ḣ1 × Ḣ1,
an extension Lc,Y : Y → Y ∗ of Lc, and the restriction

JY : Y ∗ ⊃ D(JY )→ Y

of J , such that (Y, Lc,Y , JY ) satisfies assumption (H1-3). Therefore, all our main
results apply to the linearized NLS (11.75) on Y .

In the rest of this section, we assume, for some c0 > 0,

(NLS) There exists a C1 curve of traveling waves for c near c0 satisfying (NLS-1)
such that n− (Lc0) ≤ 1 and (NLS-2) is satisfied for c = c0.

As mentioned in the above, n−(Lc0) ≤ 1 is satisfied if Uc0 is constructed as
minimizers of E − c0P subject to one constraint such as fixed P (u) or Ekin (u).
We shall apply Theorem 2.3 to study the linearized equation (11.75) on Y. In order
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to estimate k≤0
0 in the counting formula (2.13), differentiating (11.74) in xi and we

get kerLc0 ⊃ {∂xiUc0 , i = 1, 2}. Moreover, differentiating (11.74) in c, we have

Lc0∂cUc|c0 = P ′(Uc0) = J−1∂x1Uc0 ,

and thus JLc0∂cUc|c0 ∈ kerLc0 . Since

〈Lc0∂cUc|c0 , ∂cUc|c0〉 =
dP (Uc)

dc
|c0 ,

by Proposition 2.7, we have k≤0
0 ≥ 1 when dP (Uc)

dc |c0 ≤ 0 and in this case Uc is
spectrally stable by (2.13).

The traveling waves constructed in the literature ([7] [19] [20]) are even in x2,
that is, of the form Uc (x1, |x2|). Thus, we can consider odd and even perturbations
(in x2) respectively. We consider the even perturbations, that is, in the space
Ye = {u ∈ Y | u is even in x2}. For traveling waves as constrained minimizers of
E− cP , in general it can be shown that there is at least one even negative direction
of 〈Lc·, ·〉 , which then implies n− (Lc|Ye) = 1. Such a symmetry preserving negative
direction of Lc was constructed in [53] for the 3D case. For the 2D case, an even
negative direction could be constructed by refining the Derrick type arguments
used in [39]. More specifically, one can consider a scaled traveling wave Ua,b =
Uc0 (ax1, bx2) and choose a family of parameters a (s) , b (s) near 1 with a (0) =
b (0) = 1 such that

(E − c0P )
(
Ua,b

)
< (E − c0P ) (Uc0) ,

from which an even negative direction d
dsU

a(s),b(s)|s=0 may be obtained. If in addi-
tion to the condition n− (Lc|Ye) = 1, we assume that ∂x1

Uc is the only even kernel
of Lc, then by Theorem 2.3 and Proposition 2.7, there is linear instability in case
dP (Uc)
dc |c0 > 0. We summarize above discussions in the following theorem.

Theorem 11.8. (i) Assuming (NLS), the 2D traveling wave Uc0 is spectrally

stable if dP (Uc)
dc |c0 ≤ 0.

(ii) If we further assume that Uc0 is even in x2 and there exists v ∈ Ye in

the negative direction of Lc0 and kerLc0 ∩ Ye = span{∂x1
Uc0}, then dP (Uc)

dc |c0 > 0
implies linear instability of Uc0 .

For the GP equation, by numerical computations ([39]) dP/dc< 0 is true for
the whole solitary wave branch. Thus 2D traveling waves of GP are expected
to be linearly stable. In [19], the orbital stability of these GP traveling waves
was obtained by showing concentration compactness of the constrained minimizing
sequence, under the assumption of local uniqueness of minimizers. The transversal
instability of 2D traveling waves of GP to 3D perturbation was proved in [53]. For
general nonlinear term F such as cubic-quintic type, it is possible that there is an
unstable branch of 2D traveling waves with dP/dc> 0. See the numerical examples
given in [20].

Lastly, as a corollary of Theorems 2.3 and 11.8, we prove that the traveling
waves Uc0 have positive momentum P (Uc0).

Corollary 11.7. Under the assumptions in both (i) and (ii) of Theorem 11.8,

except for the signs of dP (Uc)
dc |c0 , we have P (Uc0) > 0.
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Proof. First, we find v2 such that Lc0v2 = J−1∂x2
Uc0 . Consider traveling

waves U~c (~x− ~ct) with velocity vector ~c = (c1, c2) and |~c| = c ∈
(
0,
√

2
)
, which

satisfies

(11.77) − J~c · ∇U~c + ∆U~c + F (|U~c|2)U~c = 0.

Let

Q =
1

|~c|

(
c1 c2
−c2 c1

)
be the rotating matrix which transforms ~c to (c, 0), then it is easy to check that
U~c (~x) = Uc (Q~x) is a solution of (11.77) and

~P (U~c) = QT ~P (Uc) = P (Uc)
~c

c
,

where we use ~P (Uc) = P (Uc) (1, 0)
T

which is due to the evenness of Uc in x2.
Differentiating (11.77) in c2 and then evaluating at (c0, 0), we get

Lc0∂c2U~c|(c0,0) = J−1∂x2
Uc0 .

Thus we can choose v2 = ∂c2U~c|(c0,0) and

〈Lc0v2, v2〉 = ∂c2P2 (U~c) |(c0,0) = ∂c2

(
P (Uc)

c2
c

)
|(c0,0) =

P (Uc0)

c0
.

Denote v1 = ∂cUc|c0 and recall that

Lc0v1 = J−1∂x1
Uc0 , 〈Lc0v1, v1〉 =

dP (Uc)

dc
|c0 .

Also, by using the evenness of Uc0 in x2, we get

〈Lc0v2, v1〉 =
〈
J−1∂x2

Uc0 , ∂cUc|c0
〉

= 0,

and thus

〈Lc0 ·, ·〉 |span{v1,v2} =

(
dP (Uc)
dc |c0 0

0
P(Uc0)
c0

)
.

Since

n≤0
(
Lc0 |span{v1,v2}

)
≤ k≤0

0 (Lc0) ≤ n− (Lc0) ≤ 1,

when dP (Uc)
dc |c0 ≤ 0, we must have P (Uc0) > 0. When dP (Uc)

dc |c0 > 0 and with the
assumptions of Theorem 11.8 (ii), Uc0 is linearly unstable, which again implies that

P (Uc0) > 0. Since otherwise P (Uc0) ≤ 0, then k≤0
0 (Lc0) ≥ 1 and by Theorem 2.3,

Uc0 is linearly stable, a contradiction. �

Remark 11.11. For 2D traveling wave solution Uc satisfying (11.74), one can
prove the identity

(11.78) cP (Uc) = 2

∫
R2

V (|Uc|)2
dx,

by using energy conservation and virial identity (see [20] for general F and [39] for
GP). So for F such that V is nonnegative (such as GP), we have P (Uc) > 0 from
(11.78). However, when V also takes negative values (such as cubic-quintic), then
one can not conclude the sign of P (Uc) from (11.78). By using the index counting,
above Corollary 11.7 shows that P (Uc) > 0 is true for any nonlinear term F under
the assumptions there.
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Consider axial symmetric 3D traveling waves Uc =
(
x1,
∣∣x⊥∣∣) which are con-

strained energy-momentum minimizers, as constructed in [60]. We can also prove
that P (Uc) > 0 by the same arguments as in Corollary 11.7. Actually, the argu-
ment for 3D is much simpler than 2D and does not need the additional assumptions
on kerLc. Let

v1 = ∂cUc, vj = ∂cjU~c|(c,0,0), j = 2, 3,

where ~c = (c1, c2, c3) with |~c| = c ∈
(
0,
√

2
)

and U~c is the traveling wave with the
velocity vector ~c. Then we can compute in a similar way that

〈Lc·, ·〉 |span{v1,v2,v3} =


dP (Uc)
dc 0 0

0 P (Uc)
c 0

0 0 P (Uc)
c

 .

Since
n≤0

(
Lc|span{v1,v2,v3}

)
≤ n− (Lc) ≤ 1

by the index counting formula (2.13), so regardless of the sign of dP (Uc)
dc , we must

have P (Uc) > 0. The 3D analogue (see [60]) of the identity (11.78) is

cP (Uc) =

∫
R3

∣∣∣∣∂Uc∂x1

∣∣∣∣2 dx+

∫
R3

V (|Uc|)2
dx,

which is again not enough to conclude P (Uc) > 0 when V takes negative values.



CHAPTER 12

Appendix

In this appendix, we give some elementary properties of (2.1), which are mostly
based on theoretical functional analysis arguments. They include some basic de-
composition of the phase space, the well-posedness of (2.1), and the standard com-
plexification procedure.

We start with some elementary properties of L. First we prove that n−(L) =
dimX− in assumption (H2) is the maximal dimension of subspaces where 〈L·, ·〉 <
0.

Lemma 12.1. If N ⊂ X is a subspace such that 〈Lu, u〉 < 0 for all u ∈ N\{0},
then dimN ≤ n−(L).

Proof. Let X± be given in (H2) and P+,0,− be the projections associated to
the decomposition X = X+ ⊕ kerL ⊕X−. For any u ∈ X, P−u = 0 would imply
u ∈ kerL ⊕ X+ and thus 〈Lu, u〉 ≥ 0, so u /∈ N . Therefore, P− : N → X− is
injective and in turn it implies dimN ≤ dimX−. �

In order to proceed we have to introduce some notations. Given a closed
subspace Y ⊂ X, let iY : Y → X be the embedding and then i∗Y : X∗ → Y ∗.
Define

LY = i∗Y LiY : Y → Y ∗,

Y ⊥L = ker(i∗Y L) = {u ∈ X | 〈Lu, iY v〉 = 〈Lu, v〉 = 0, ∀v ∈ Y },
(12.1)

which satisfy

(12.2) L∗Y = LY and 〈LY u, v〉 = 〈Lu, v〉, ∀u, v ∈ Y.

The following is a simple technical lemma.

Lemma 12.2. Assume (H1-3). Let Y ⊂ X be a closed subspace.

(1) Suppose the quadratic form 〈L·, ·〉 is non-degenerate (in the sense of (2.4))
on Y , then X = Y ⊕ Y ⊥L .

(2) Assume dim kerL < ∞ and kerLY = {0}, then 〈L·, ·〉 is non-degenerate
on Y .

(3) If X = kerL⊕ Y then 〈L·, ·〉 is non-degenerate on Y .

Proof. We first notice that LY being an isomorphism implies Y ∩Y ⊥L = {0}.
For any u ∈ X, let

u1 = L−1
Y i∗Y Lu ∈ Y =⇒ 〈Lu1 − Lu, v〉 = 0, ∀v ∈ Y,

and thus u2 = u− u1 ∈ Y ⊥L which implies X = Y ⊕ Y ⊥L .
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In order prove the second statement, from the standard argument, it suffices
to show that

(12.3) inf
u∈Y \{0}

sup
v∈Y \{0}

|〈Lu, v〉|
‖u‖‖v‖

> 0.

According to Remark 2.2 and the assumption of the lemma, there exist closed
subspaces X≤0 and X+ such that the decomposition X = X≤0 ⊕X+ is orthogonal
with respect to both (·, ·) and 〈L·, ·〉, dimX≤0 < ∞, 〈Lu, u〉 ≤ 0 for all u ∈ X≤0,
and for some δ > 0, 〈Lu, u〉 ≥ δ‖u‖2 for all u ∈ X+. This splitting is associated to
the orthogonal projections P≤0,+ : X → X≤0,+. Let Y+ = Y ∩X+ and

Y1 = {u ∈ Y | 〈Lu, v〉 = 0, ∀v ∈ Y+}.

Clearly, Y+ and Y1 are both closed subspaces of Y . Much as in the first statement,
using the uniform positive definiteness of 〈Lu, u〉 on Y+, we have Y = Y+ ⊕ Y1 via

u = u+ + (u− u+), where u+ = L−1
Y+
i∗Y+

Lu ∈ Y+, ∀u ∈ Y.

For any u1 ∈ Y1\{0}, let x≤0,+ = PX≤0,+
u1 and we have u1 = x≤0 + x+. Since

PX≤0
u1 = 0 would imply u1 ∈ X+∩Y = Y+ contradictory to Y = Y+⊕Y1, we obtain

that the linear mapping PX≤0
|Y1

is one-to-one. Therefore, dimY1 < ∞. From the
definition of Y1, if u1 ∈ Y1\{0} satisfies that 〈Lu1, v〉 = 0 for all v ∈ Y1, we would
have LY u1 = 0 which contradicts the assumption kerLY = {0}. Therefore, LY |Y1

defines an isomorphism from Y1 to Y ∗1 as dimY1 <∞ and thus there exists δ′ > 0
such that for any u1 ∈ Y1\{0}, there exists v ∈ Y1 such that 〈LY u1, v〉 ≥ δ′‖u1‖‖v‖.

Consider any u = u1 + u+ ∈ Y . If ‖u1‖ ≥ ‖u+‖, there exists v ∈ Y1 such that

〈Lu, v〉 = 〈Lu1, v〉 ≥ δ′‖u1‖‖v‖ ≥
δ′

2
‖u‖‖v‖.

If ‖u+‖ ≥ ‖u1‖, then let v = u+ and we have

〈Lu, v〉 = 〈Lu+, u+〉 ≥ δ‖u+‖2 ≥
δ

2
‖u‖‖v‖.

Therefore, (12.3) is obtained and the second statement is proved.
Finally we prove the last statement. We first show the non-degeneracy of 〈L·, ·〉

on X+⊕X− though a standard procedure. The bounded symmetric quadratic form
〈L·, ·〉 on X+ ⊕X− induces bounded linear operators

Lα,β = i∗XαLiXβ : Xβ → X∗α, α, β ∈ {+,−}.

Since L++ and −L−− are both symmetric and bounded below, thus isomorphic,
and L+− = L∗−+, so the same are true for

L++ − L+−L
−1
−−L−+ and − (L−− − L−+L

−1
++L+−).

It is easy to verify that

L−1 = (L++ − L+−L
−1
−−L−+)−1i∗X+

+ (L−− − L−+L
−1
++L+−)−1i∗X−

is a bounded operator from (X+⊕X−)∗ to X+⊕X−. In general, if X = kerL⊕Y ,
there exists an isomorphism T : X− ⊕ X+ → kerL such that Y = graph(T ).
The non-degeneracy of 〈L·, ·〉 on Y follows immediately from its non-degeneracy on
X− ⊕X+. The proof of the lemma is complete. �



12. APPENDIX 127

Remark 12.1. The first statement in the lemma holds actually for any closed
subspace Y ⊂ X as long as 〈L·, ·〉 is non-degenerate on Y . The finite dimensionality
assumption on kerL is essential for the second statement in the above lemma. A
counter example is

X = l2 ⊕ l2, L = I ⊕ 0, Y =
{

({xn}, {yn}) ∈ X | xn =
1

n
yn
}
,

for which dim kerL = ∞, n− (L) = 0, kerL|Y = {0}, but 〈L·, ·〉 is not non-
degenerate on Y in the sense of (2.4).

The next lemma will allow us to decompose equation (2.1).

Lemma 12.3. Suppose X1,2 ⊂ X are closed subspaces satisfying X = X1⊕X2.
Let P1,2 : X → X1,2 be the associated projections, which imply P ∗1,2 : X∗1,2 → X∗,
and

Jjk = PjJP
∗
k : D(Jjk)→ Xj , D(Jjk) = (P ∗k )−1

(
D(J) ∩ P ∗kX∗k

)
, j, k = 1, 2.

(1) If ker i∗X2
⊂ D(J), then J11 and J21 are bounded operators defined on X∗1 ,

J∗11 = −J11, J22 = −J∗22, and J∗12 = −J21, and J12 can be extended to the
bounded operator −J∗21 = J∗∗12 defined on X∗2 .

(2) If 〈Lu1, u2〉 = 0, for all uj ∈ Xj, j = 1, 2, then LXj ⊂ ker i∗X3−j
, LX1,2

satisfy (H2) on X1,2, n−(L) = n−(LX1
)+n−(LX2

), and kerL = kerLX1
⊕

kerLX2 .
(3) Assume 〈Lu1, u2〉 = 0, for all uj ∈ Xj, j = 1, 2, and ker i∗X2

⊂ D(J), then
the combinations (Xj , LXj , Jjj), j = 1, 2, satisfy (H1-3).

Proof. For j = 1, 2, define X̃∗j as

(12.4) X̃∗j = P ∗j X
∗
j = ker i∗X3−j

= {f ∈ X∗ | 〈f, u〉 = 0, ∀u ∈ X3−j} ⊂ X∗.
Clearly, it holds

(12.5) iX1P1 + iX2P2 = IX , P ∗1 i
∗
X1

+ P ∗2 i
∗
X2

= IX∗ , X∗ = X̃∗1 ⊕ X̃∗2 .

Assume X̃∗1 = P ∗1X
∗
1 ⊂ D(J). The Closed Graph Theorem implies that the

closed operator JP ∗1 : X∗1 → X is actually bounded, and thus J11 and J21 are
bounded as well. The property J∗11 = −J11 is obvious from J∗ = −J and the

boundedness of J11. We also obtain from this assumption and (12.5) that D(J)∩X̃∗2
is dense in X̃∗2 and thus J12 and J22 are densely defined, as P ∗j : X∗j → X̃∗j is an
isomorphism. It remains to prove J∗12 = −J21 and J∗22 = −J22.

Suppose u = J∗12g, or equivalently, g ∈ X∗1 and u ∈ X2 satisfy, ∀f ∈ D(J12) ⊂
X∗2 ,

(12.6) 〈P ∗2 f, iX2u− iX1P1JP
∗
1 g〉 = 〈f, u〉 = 〈g, J12f〉 = 〈P ∗1 g, JP ∗2 f〉,

where we used PjiXj = id and P3−jiXj = 0 on Xj . For any h ∈ X∗1 , we have

〈P ∗1 h, ix2
u− iX1

P1JP
∗
1 g〉 = 〈P ∗1 g, JP ∗1 h〉.

Therefore, (12.5) and (12.6) imply u = J∗12g is equivalent to

〈γ, iX2
u− iX1

P1JP
∗
1 g〉 = 〈P ∗1 g, Jγ〉, ∀γ ∈ D(J)

⇐⇒iX2
u− iX1

P1JP
∗
1 g = J∗P ∗1 g = −JP ∗1 g

⇐⇒u = −P2JP
∗
1 g = −J21g

Therefore, J∗12 = −J21.
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Similarly, using the assumption X̃∗1 ⊂ D(J), one can prove u = J∗22g ∈ X2,
g ∈ X∗2 , if and only if

iX2u+ iX1J
∗
21g = J∗P ∗2 g ⇐⇒ u = −P2JP

∗
2 g = −J22g.

Therefore, we obtain J∗22 = −J22.
Assume 〈Lu1, u2〉 = 0, for all uj ∈ Xj , j = 1, 2. As a direct consequence, we

have LXj ⊂ X̃∗j , which, along with (12.5), immediately implies

L = P ∗1LX1
P1 + P ∗2LX2

P2, P ∗j LXjPj(X) ⊂ X̃j ,

which in turn yield

kerL = kerLX1 ⊕ kerLX2 , kerLXj = Xj ∩ kerL, j = 1, 2.

Let
Y1,2 = {u ∈ X1,2 | (u, v) = 0, ∀v ∈ kerLX1,2

}, Y = Y1 ⊕ Y2,

which implies
X = Y ⊕ kerL = Y1 ⊕ Y2 ⊕ kerL,

and
〈Lyj , y′1 + y′2 + u〉 = 〈Lyj , y′j〉 = 〈LYjyj , y′j〉,

for any yj , y
′
j ∈ Yj , j = 1, 2, and u ∈ kerL. Let PY1,2,0 be the projections associated

to this decomposition, then we have

L(Yj) ⊂ Ỹ ∗j , P ∗YjY
∗
j = ker i∗kerL⊕Y3−j

, j = 1, 2.

Assumption (H2) implies that L|Y : Y → R(L) is an isomorphism to the closed

subspace R(L) ⊂ X∗. Therefore, L(Y1,2) ⊂ Ỹ ∗1,2 are closed subspaces and L|Y1,2
:

Y1,2 → L(Y1,2) are isomorphisms. It implies that LY1,2
are isomorphisms from Y1,2

to closed subspaces LY1,2(Y1,2) ⊂ Y ∗1,2. Due to their boundedness and symmetry,
we obtain that LY1,2Y1,2 is equal to the orthogonal complement of kerL∗Y1,2

=

kerLY1,2
= {0}. So LY1,2

: Y1,2 → Y ∗1,2 are isomorphisms, which induce bounded
non-degenerate symmetric quadratic forms on Y1,2. From the standard theory on
symmetric quadratic forms, Yj , j = 1, 2, can be split into Yj = Yj+ ⊕ Yj−, where
closed subspaces Yj± are orthogonal with respect to both (·, ·) and 〈L·, ·〉. Moreover,
there exists δ > 0 such that

±〈LXju, u〉 = ±〈Lu, u〉 ≥ δ‖u‖2, ∀u ∈ Yj±.
This proves that Xj satisfies (H2) with

Xj = YJ− ⊕ kerLXj ⊕ Yj+, j = 1, 2.

Finally, since X = X1 ⊕X2, there exists C > 0 such that,

‖u1‖2 + ‖u2‖2 ≤ C‖u1 + u2‖2, ∀ u1,2 ∈ X1,2.

Therefore, the splitting

X = (Y1− ⊕ Y2−)⊕ kerL⊕ (Y1+ ⊕ Y2+)

satisfies the properties in (H2), which implies n−(L) = n−(LX1
) + n−(LX2

).
Finally, assume 〈Lu1, u2〉 = 0, for all uj ∈ Xj , j = 1, 2, and P ∗1X

∗
1 ⊂ D(J). To

complete the proof of the lemma, we only need to show that (H3) is satisfied by
(Xj , LXj , Jjj), j = 1, 2. This is obvious for j = 1, as J11 is a bounded operator,
and thus we only need to work on j = 2. Let X± ⊂ X be the closed subspaces
assumed in (H2-3) and Z = X− ⊕ X+. Since X = kerL ⊕ Z = kerL ⊕ Y , Z
can be represented as the graph of a bounded linear operator from Y to kerL.
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As kerL = kerLX1
⊕ kerLX2

and Y = Y1 ⊕ Y2, there exist bounded operators
Sjk : Yk → kerLXj such that

Z = {y1 + y2 + Σ2
j,k=1Sjkyk | y1,2 ∈ Y1,2}.

We will first show

(12.7) W , {f ∈ X∗2 | 〈f, u〉 = 0, u ∈ Z2} ⊂ D(J22),

where
Z2 = {y2 + S22y2 | y2 ∈ Y2} ⊂ X2.

Trivially extend Sjk to be an operator from Xk to kerLXj ⊂ Xj via

Sjk(yk + vk) = Sjkyk, ∀ yk ∈ Yk, vk ∈ kerLXk .

It leads to SjkSkl = 0, ∀j, k, l = 1, 2. Given any f ∈ W ⊂ X∗2 , one may compute,
for any

u = y1 + y2 + Σ2
j,k=1Sjkyk ∈ Z,

using the definition of W , and the property of the extensions of Sjk,

〈P ∗2 f − P ∗1 S∗21f, u〉 =〈f, y2 + S21y1 + S22y2〉 − 〈S∗21f, y1 + S11y1 + S12y2〉
=〈f, S21y1〉 − 〈f, S21y1 + S21S11y1 + S21S12y2〉 = 0.

Therefore, (H3) implies P ∗2 f − P ∗1 S∗21f ∈ D(J). Since we assume P ∗1X
∗
1 ⊂ D(J),

we obtain P ∗2 f ∈ D(J) and thus f ∈ D(J22) which proves (12.7).
Since y2 → y2 + S22y2 is an isomorphism from Y2 to Z2,

〈L(y2 + S22y2), y′2 + S22y
′
2〉 = 〈Ly2, y

′
2〉,

and LY2
is isomorphic, we have 〈L·, ·〉 is non-degenerate on Z2 and LZ2

is also an
isomorphism. Therefore, there exist closed subspaces X2± ⊂ Z2 and δ > 0 such
that Z2 = X2− ⊕ X2+, dimX2− = n−(LX2

), and ±〈LX2
u, u〉 ≥ δ‖u‖2, for any

u ∈ X2±. It along with (12.7) and X2 = Z2 ⊕ kerLX2 completes the proof of the
lemma. �

Remark 12.2. Under assumptions 〈Lu1, u2〉 = 0, for all uj ∈ Xj, j = 1, 2,
and P ∗1X

∗
1 ⊂ D(J), (Xj , LXj , Jjj), j = 1, 2, satisfies the same hypothesis (H1-H3)

as (X,L, J) and n−(L) = n−(LX1) +n−(LX2). Moreover, it is easily verified based
on these assumptions that JjjLXj = PjJL|Xj . Therefore, this lemma would often
be applied to reduce the problem to subspaces when JL(X1) ⊂ X1, which implies
JL has certain upper triangular structure.

Corollary 12.1. LJ : D(J) → X∗ is a closed operator and consequently
(JL)∗ = −LJ .

Proof. Let X± and kerL satisfy the requirements in (H2-3) and let X1 =
kerL and X2 = X−⊕X+. Clearly, we have, LX1

= 0, 〈Lu1, u2〉 = 0, for all uj ∈ Xj ,
j = 1, 2, and P ∗1X

∗
1 ⊂ D(J) due to (H3). Using

iX1P1 + iX2P2 = IX , LiX1 = 0, i∗X1
L = 0,

LJ can be rewritten in this decomposition

LJγ = P ∗2LX2
J21i

∗
X1
γ + P ∗2LX2

J22i
∗
X2
γ, ∀γ ∈ X∗,

which is equivalent to using the blockwise decomposition of J and L. Since J21 is
continuous, P ∗2LX2

J21i
∗
X1

is continuous too. Moreover, the facts that LX2
: X2 →

X∗2 is an isomorphism, P ∗2 has a continuous left inverse i∗X2
as P2iX2

= IX2
, along
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with the closedness of J22 imply that P ∗2LX2
J22 and thus P ∗2LX2

J22i
∗
X2

is a closed
operator. Therefore, LJ is closed.

Since (LJ)∗ = JL is densely defined and thus (LJ)∗∗ = −(JL)∗ is well defined.
The closeness of LJ implies LJ = (LJ)∗∗ = −(JL)∗. �

Remark 12.3. We would like to point out that, in the proof Lemma 12.3 and
Corollary 12.1, we do not use the assumption that n−(L) < ∞. Therefore, they
actually hold even if n−(L) =∞ except that n−(LX1,2

) might be ∞.

The following is a simple, but useful, technical lemma.

Lemma 12.4. There exist closed subspaces X± ⊂ X satisfying the properties in
(H2-3) and in addition,

(1) X = X0⊕X−⊕X+ is a L-orthogonal splitting with associated projections
P0,±, where X0 = kerL;

(2) LX± : X± → X∗± are isomorphic; and

(3) X̃∗0,− ⊂ D(J) and D(J) ∩ X̃∗+ is dense in X̃∗+, where X̃∗±,0 , P ∗±,0X
∗
±,0

(see (12.1) and (12.4)).

Proof. Let Y± ⊂ X be closed subspaces satisfying hypothesis (H2-3). Let
Y = Y− ⊕ Y+, P : X → Y be the projection associated to the decomposition

X = X0 ⊕ Y , X̃∗0 = (I − P )∗X∗0 , and Ỹ ∗ = P ∗Y ∗, which are closed subspaces.

According to (H3), we have X̃∗0 ⊂ D(J). Consequently, Ỹ ∗ ∩ D(J) is dense in

Ỹ ∗ as X∗ = X̃∗0 ⊕ Ỹ ∗. Our assumptions imply LY : Y → Ỹ ∗ is an isomorphism,
which induces a bounded symmetric quadratic form on Y with Morse index equal
to n−(L). Therefore, there exists a closed subspace X− ⊂ Y such that dimX− =
n−(L), L(X−) ⊂ D(J), and 〈Lu, u〉 ≤ −δ‖u‖2, for all u ∈ X−. Let

X+ = {u ∈ Y | 〈Lu, v〉 = 0, ∀v ∈ X−}.

Since L is uniformly negative on X−, Lemma 12.2 implies the L-orthogonal splitting
Y = X− ⊕X+ and thus the L-orthogonal decomposition X = X0 ⊕X− ⊕X+ as
well. The rest of the proof follows easily from the facts that LY is isomorphic,
X∗ = X̃∗0⊕X̃∗−⊕X̃∗+, dimX− = n−(L), X̃∗0 ⊂ D(J), and X̃∗− = L(X−) ⊂ D(J). �

Remark 12.4. Under assumption (2.2), it is possible to choose X± such that
X+ ⊕ X− = (kerL)⊥ satisfies all properties in Lemma 12.4, where (kerL)⊥ is
defined in (2.3). In fact, let Y = (kerL)⊥, then (2.2) implies that the splitting
X = kerL⊕Y satisfies all assumptions in Lemma 12.3. The rest of the construction
of X± ⊂ Y = (kerL)⊥ follows in exactly the same procedure as in the proof of
Lemma 12.4.

In order to establish the well-posedness of the linear equation in the next, we
start with the following lemma.

Lemma 12.5. There exists an equivalent inner product (·, ·)L on X, a linear
operator A : D(JL) → X which is anti-self-adjoint with respect to (·, ·)L, and a
bound linear operator B : X → X such that JL = A+B.

Proof. Let X = X− ⊕X0 ⊕X+ be a decomposition as given in Lemma 12.4
with X0 = kerL. Let

L± = ±P ∗±i∗X±LiX±P± : X → X∗,
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which satisfy

L∗± = L±, L = L+ − L−, 〈L±u, v〉 = ±〈LX±u, v〉 = ±〈Lu, v〉, ∀u, v ∈ X±.
Let R : X → X∗ be the isomorphism corresponding to (·, ·) through the Riesz
Representation Theorem and

L0 = P ∗0 i
∗
X0
RiX0

PX0
: X → X∗ ←→ 〈L0u, v〉 = (P0u, P0v).

From Lemma 12.4 and assumptions (H2-3), it is easy to verify that

(u, v)L , 〈(L+ + L− + L0)u, v〉 = 〈L+u, v〉+ 〈L−u, v〉+ (P0u, P0v)

is uniformly positive and defines an equivalent inner product on X. Let

A = J(L+ + L− + L0) = JL+ 2JL− + JL0 , JL−B.
Since P ∗0,−X

∗
0,− ⊂ D(J), the Closed Graph Theorem implies that B is bounded. If

dim kerL <∞, B is obviously of finite rank. The proof of the lemma is complete.
�

A direct consequence of this lemma is the well-posedness of equation (2.1) which
follows from the standard perturbation theory of semigroups.

Proposition 12.1. JL generates a C0 group etJL of bounded linear operators
on X.

Complexification. For considerations where complex eigenvalues are involved, we
have to work with the standard complexification of X and the associated operators.
Let

X̃ = {x = x1 + ix2 | x1,2 ∈ X} with x1 + ix2 = x1 − ix2

equipped with the complexified inner product

(x1 + ix2, x
′
1 + ix′2) = (x1, x

′
1) + (x2, x

′
2) + i

(
(x2, x

′
1)− (x1, x

′
2)
)
.

Instead of complexifying L as a linear operator directly, it is much more convenient
for us to complexify its corresponding real symmetric quadratic form 〈Lu, v〉 into
a complex Hermitian symmetric form

B(x′1 + ix′2, x1 + ix2) = 〈L̃(x1 + ix2), (x′1 + ix′2)〉
=〈Lx1, x

′
1〉+ 〈Lx2, x

′
2〉+ i

(
〈Lx1, x

′
2〉 − 〈Lx2, x

′
1〉
)
,(12.8)

for any x1,2, x
′
1,2 ∈ X. Accordingly L is complexified to a (anti-linear) mapping L̃

from X̃ to X̃∗ satisfying

(12.9) L̃(cx+ c′x′) = c̄L̃x+ c̄′L̃x′.

A similar complexification can also be carried out for J corresponding to a Hermit-
ian symmetric form on X̃∗ and a (anti-linear) mapping from X̃∗ → X̃.

The composition J̃ ◦ L̃ of (anti-linear) mappings J̃ and L̃ is a closed complex

linear operator from D(J̃ L̃) ⊂ X̃ to X̃. The fact that J̃L is anti-symmetric with

respect to the Hermitian symmetric form 〈L̃u, v〉, that is,

(12.10) 〈L̃(J̃ L̃u), v〉 = −〈L̃u, J̃L̃v〉,

will be used frequently. According to Corollary 12.1, the dual operator of J̃ L̃ is
given by

(12.11) (J̃ L̃)∗ = −L̃J̃ .
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It is easy to verify that L̃, J̃ , J̃ L̃ and L̃J̃ are real in the sense

(12.12) 〈L̃x, x′〉 = 〈L̃x̄, x′〉, 〈f, J̃g〉 = 〈f̄ , J̃ ḡ〉, J̃ L̃x = J̃ L̃x̄, L̃J̃x = L̃J̃ x̄.

This implies that the spectrum of J̃ L̃ and L̃J̃ are symmetric about the real axis in
the complex plane.

Remark 12.5. In fact, on the complexified Hilbert space X̃ (or on X̃∗), a
linear operator or a Hermitian form is the complexification of a (real) operator or

a symmetric quadratic form on X (or on X̃∗) if and only if (12.12) holds.

In the rest of the paper, with slight abuse of notations, we will writeX,JL, 〈Lu, v〉
also for their complexifications unless confusion might occur.

Remark 12.6. The linear group of bounded operators etJL obtained in Propo-
sition 12.1 is also complexified accordingly when needed.

Remark 12.7. Exactly the same statements in Lemma 12.2, 3.1, 3.2 hold in
the complexified framework.
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[73] Yosida, Kōsaku, Functional analysis. Reprint of the sixth (1980) edition. Classics in Mathe-
matics. Springer-Verlag, Berlin, 1995.

[74] Wei, D., Zhang, Z. and Zhao, W. Linear Inviscid damping for a class of monotone shear

flow in Sobolev spaces, Comm. Pure. Appl. Math., 71 (2018), 617–687.
[75] Wei, D., Zhang, Z. and Zhao, W. Linear inviscid damping and vorticity depletion for shear

flows, Ann. PDE 5 (2019), no. 1, Art. 3, 101 pp.

[76] Zeidler, Eberhard, Nonlinear functional analysis and its applications. I. Fixed-point theo-
rems. Translated from the German by Peter R. Wadsack. Springer-Verlag, New York, 1986.

[77] Zillinger, C. Linear inviscid damping for monotone shear fows in a finite periodic channel,

boundary effects, blow-up and critical Sobolev regularity, Arch. Ration. Mech. Anal. 221
(2016), no. 3, 1449-1509.


	Chapter 1. Introduction
	Chapter 2. Main results
	2.1. Set-up
	2.2. Structural decomposition
	2.3. Exponential Trichotomy
	2.4. Index Theorems and spectral properties
	2.5. Structural stability/instability
	2.6. A theorem where L does not have a positive lower bound on X+
	2.7. Some Applications to PDEs

	Chapter 3. Basic properties of Linear Hamiltonian systems
	Chapter 4. Finite dimensional Hamiltonian systems
	Chapter 5. Invariant subspaces
	5.1. Maximal non-positive invariant subspaces
	5.2. Further discussions on invariant subspaces and invariant decompositions

	Chapter 6. Structural decomposition
	Chapter 7. Exponential trichotomy
	Chapter 8. The index theorems and the structure of Ei
	8.1. Proof of Theorem 2.3: the index counting formula
	8.2. Structures of subspaces Ei of generalized eigenvectors
	8.3. Subspace of generalized eigenvectors E0 and index k00
	8.4. Non-degeneracy of "426830A L, "526930B  on Ei

	Chapter 9. Perturbations
	9.1. Persistent exponential trichotomy and stability
	9.2. Perturbations of purely imaginary spectra

	Chapter 10. Proof of Theorem 2.7 where (H2.b) is weakened
	Chapter 11. Hamiltonian PDE models
	11.1. Stability of Solitary waves of Long wave models
	11.2. Stability of periodic traveling waves
	11.3. Modulational Instability of periodic traveling waves
	11.4. The spectral problem Lu=u
	11.5. Stability of steady flows of 2D Euler equation
	11.6. Stability of traveling waves of 2D NLS

	Chapter 12. Appendix
	Bibliography

