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Abstract. We study the inviscid damping of Couette flow with an expo-
nentially stratified density. The optimal decay rates of the velocity field
and the density are obtained for general perturbations with minimal
regularity. For Boussinesq approximation model, the decay rates we get
are consistent with the previous results in the literature. We also study
the decay rates for the full Euler equations of stratified fluids, which
were not studied before. For both models, the decay rates depend on
the Richardson number in a very similar way. Besides, we also study the
dispersive decay due to the exponential stratification when there is no
shear.

1. Introduction

Couette flow in exponentially stratified fluid is a shear flow U(y) = Ry with
the density profile ρ0(y) = Ae−βy. The stability of such a flow was first stud-
ied by Taylor ([21]) in the half space by the method of normal modes. He
presented a convincing but somewhat incomplete analysis to show that the
spectrum of the linearized equation (now called Taylor-Goldstein equation) is

quite different when the Richardson number B2 = βg
R2 (g is the gravitational

constant) is greater or less than 1/4. He found that there exist infinitely many
discrete neutral eigenvalues when B2 > 1

4 and no such neutral eigenvalues ex-

ist when B2 < 1
4 . This claim was later proved by Dyson ([10]) and Dikki ([9]).

However, Taylor did not provide a clear answer to the problem of stability of
Couette flow. From 1950s, there have been lots of work trying to understand
the stability of stratified Couette flow, by studying the initial value problem.
They include Høiland ([15]), Eliassen et al. ([11]), Case ([6]), Dikki ([8]), Kuo
([16]), Hartman ([14]), Chimonas ([7]), Brown and Stewartson ([4]), Farrell
and Ioannou ([13]). We refer to Section 3.2.3 of the book of Yaglom ([22]) for
a detailed survey of the literature. Most of the papers used the Boussinesq
approximation. One exception is Dikki ([8]), where he proved the Liapunov
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stability of Couette flow in the half space for the full stratified Euler equa-
tions, and for any B2 > 0. We note that for the exponentially stratified fluid
(i.e. ρ0(y) = Ae−βy), the Boussinesq approximation is valid only when β is
small. One interesting result following from the initial value approach is the
inviscid damping of velocity fields. Such inviscid damping phenomena was
known by Orr ([18]) in 1907, where the Couette flow in a homogeneous fluid
was considered. Orr showed that the horizontal and vertical velocities decay
by t−1 and t−2 respectively. Such damping is not due to the viscosity, but
instead is due to the mixing of the vorticity under the Couette flow. In re-
cent years, the inviscid damping phenomena attracted new attention. In [17],
Lin and Zeng showed that if we consider initial (vorticity) perturbation in
the Sobolev space Hs

(
s < 3

2

)
then the nonlinear damping is not true due

to the existence of nonparallel steady flows of the form of Kelvin’s cats eye
near Couette. In [2], Bedrossian and Masmoudi proved the nonlinear inviscid
damping for perturbations near Couette in Gevrey class (i.e. almost analytic).
The linear inviscid damping for more general shear flows in a homogeneous
fluid were also studied in [24] [23].

In this paper, our goal is to get the precise estimates of linear decay rates
for Couette flow in exponentially stratified fluid, which might be useful in the
future study of nonlinear damping. We restrict ourselves to the case in the
whole space. The including of the boundary (half space, finite channel) causes
additional complication, as can be seen from Taylor’s results mentioned at
the beginning.

Our first result is about the linear decay estimates for solutions of the
linearized equations under Boussinesq approximation. Consider the steady
shear flow v0 = (Ry, 0) with an exponentially stratified density profile ρ0(y) =

Ae−βy, where R ∈ R, A > 0, β ≥ 0 are constants. Denote B2 = βg
R2 to be the

Richardson number. When β is small, we approximate ρ0(y) by A (1− βy)
and the linearized equations under the Boussinesq approximation (see Section
2.1) is

(∂t +Ry∂x)∆ψ = −∂x
( ρ
A

)
g, (1.1)

(∂t +Ry∂x)
( ρ
A

)
= β∂xψ, (1.2)

where ψ and ρ
A are the perturbations of stream function and relative density

variation.

Theorem 1.1. Let
(
ψ(t;x, y), ρ

A (t;x, y)
)
be the solution of (1.1)-(1.2) with the

initial data

ψ(0;x, y) = ψ0(x, y),
ρ(0;x, y)

A
= ρ0(x, y),

where y ∈ R and x is periodic with period L. Denote the velocity v = ∇⊥ψ =
(vx, vy). Below, f ≲ g stands for f ≤ Cg for a constant C depending only on

R, β, g. We denote ⟨f⟩ :=
√
1 + f2 and P ̸=0 to be the projection to nonzero
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Fourier modes (in x), that is,

P ̸=0f(t;x, y) = f(t;x, y)− 1

L

∫ L

0

f(t;x, y)dx.

The following estimates hold true:

(i) If 0 < B2 < 1
4 , let ν =

√
1
4 −B2, then

∥P̸=0v
x∥L2 ≲ ⟨t⟩−

1
2+ν

(
∥ψ0∥H1

xH
2
y
+ ∥ρ0∥L2

xH
1
y

)
,

∥vy∥L2 ≲ ⟨t⟩−
3
2+ν

(
∥ψ0∥H1

xH
3
y
+ ∥ρ0∥L2

xH
2
y

)
,

∥P̸=0
ρ

A
∥L2 ≲ ⟨t⟩−

1
2+ν

(
∥ψ0∥H1

xH
2
y
+ ∥ρ0∥L2

xH
1
y

)
.

(ii) If B2 > 1
4 then

∥P ̸=0v
x∥L2 ≲ ⟨t⟩−

1
2

(
∥ψ0∥H1

xH
2
y
+ ∥ρ0∥L2

xH
1
y

)
,

∥vy∥L2 ≲ ⟨t⟩−
3
2

(
∥ψ0∥H1

xH
3
y
+ ∥ρ0∥L2

xH
2
y

)
,

∥P ̸=0
ρ

A
∥L2 ≲ ⟨t⟩−

1
2

(
∥ψ0∥H1

xH
2
y
+ ∥ρ0∥L2

xH
1
y

)
.

(iii) If B2 = 1
4 , then

∥P ̸=0v
x∥L2 ≲ ⟨t⟩−

1
2 ⟨log ⟨t⟩⟩

(
∥ψ0∥H1

xH
2
y
+ ∥ρ0∥L2

xH
1
y

)
,

∥vy∥L2 ≲ ⟨t⟩−
3
2 ⟨log ⟨t⟩⟩

(
∥ψ0∥H1

xH
3
y
+ ∥ρ0∥L2

xH
2
y

)
,

∥P ̸=0
ρ

A
∥L2 ≲ ⟨t⟩−

1
2 ⟨log ⟨t⟩⟩

(
∥ψ0∥H1

xH
2
y
+ ∥ρ0∥L2

xH
1
y

)
.

(iv) If B2 = 0, i.e., β = 0, then
∥∥ ρ
A

∥∥
L2 (t) = ∥ρ0∥L2 and

∥P̸=0v
x∥L2 ≲ ∥ρ0∥L2

xH
1
y
+ ⟨t⟩−1 ∥ψ0∥H1

xH
3
y
,

∥vy∥L2 ≲ ⟨t⟩−1 ∥ρ0∥L2
xH

2
y
+ ⟨t⟩−2 ∥ψ0∥H1

xH
4
y
.

(v) If B2 = ∞, i.e. R = 0, then g
β

∥∥ ρ
A

∥∥2
L2 + ∥v∥2L2 is conserved. The

following decay estimates hold true in L2
xL

∞
y ,

∥P ̸=0v
x∥L2

xL
∞
y

≲ |t|− 1
3

(
∥ψ0∥

H
3/2
x

(
H

9/2
y ∩W 1,1

y

) + ∥ρ0∥
H

1/2
x

(
H

9/2
y ∩W 1,1

y

)) ,
∥vy∥L2

xL
∞
y

≲ |t|− 1
3

(
∥ψ0∥

H
5/2
x

(
H

7/2
y ∩L1

y

) + ∥ρ0∥
H

3/2
x

(
H

7/2
y ∩L1

y

)) ,
∥P ̸=0

ρ

A
∥L2

xL
∞
y

≲ |t|− 1
3

(
∥ψ0∥

H
5/2
x

(
H

9/2
y ∩W 1,1

y

) + ∥ρ0∥
H

3/2
x

(
H

7/2
y ∩L1

y

)) .
Theorem 1.1 gives a complete picture of the linear damping for the

Couette flow in an exponentially stratified fluid in an infinite channel (i.e.
−∞ < y < +∞ and x periodic). More specifically, we obtain optimal decay
rates for initial perturbations of minimal regularity. We make some comments
to relate our results to the previous works on this problem. When B2 > 1

4 , the
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decay rates t−
3
2 for vy and t−

1
2 for vx were obtained by Booker and Bretherton

([3]) for a special class of solutions, which generalized the earlier results in
[19, Chap. 5] for B2 ≫ 1. In [14], the decay rates as in Theorem 1.1 (i)-(iii)
were obtained for special solutions by hypergeometric functions, which are
similar to g1, g2 defined in (3.4) and (3.5). However, it was not shown in [14]
that general solutions can be expressed by these special solutions. Chimonas
([7]) considered the case B2 < 1

4 and wrongly claimed that vy decays at the

rate t2ν−1 and vx grows by t2ν . Later, an error in [7] was pointed out by
Brown and Stewartson ([4]), where they also found the correct decay rates
as in Theorem 1.1. In [4], the initial value problem was solved for analytic
initial data by taking the Laplace transform in time and then the decay rates
were obtained from the asymptotic analysis of the inverse Laplace transform
of the solutions. Moreover, it was assumed in [4] that the discrete neutral
eigenvalues do no exist, such that there are no poles in the Laplace transform
of their solutions. In our analysis, we do not need to assume the nonexistence
of discrete neutral eigenvalues, which actually follows as a corollary from the
decay estimates in Theorem 1.1 for any B2 > 0. This contrasts significantly
with the case in the half space ([21] [9] [10]) or in a finite channel ([11]), where
it was shown that there exist infinitely many discrete neutral eigenvalues
when B2 > 1

4 . In Theorem 1.1, the decay rates are optimal with the minimal

regularity requirement for the initial data. In particular, when B2 < ∞ it
suffices to have the initial perturbations of vorticity and density variation
ω (0) , ρ0 ∈ H1 to get the optimal decay for ∥vx∥L2 , and ω (0) , ρ0 ∈ H2 to
get the optimal decay for ∥vy∥L2 . These minimal regularity requirement on
the initial data are consistent with the results in [17] for the Couette flow
with constant density. Moreover, if B → 0+ (i.e. ν → 1

2−), the decay rates

for the horizontal and vertical velocities are t−
1
2+ν and t−

3
2+ν respectively

even when ρ0 = 0, which are almost one order slower than the rates (t−1 and
t−2 respectively) for homogeneous fluids (i.e. B = 0). This suggests that the
stratified effects cannot be ignored even when the steady density is a small
deviation of the constant.

The decay rate t−
1
3 for the case B2 = ∞ (i.e. no shear flow) is optimal

(see the example at the end of Section 6.1). When (x, y) ∈ R2, the optimal

decay rate was shown to be t−
1
2 in [12]. We note that the decay mechanisms

are very different for the cases of B2 = ∞ and B2 <∞. When B2 <∞, the
decay of ∥v∥L2 is due to the mixing of vorticity caused by the shear motion.
When B2 = ∞, ∥v∥L2 does not decay while the decay of ∥v∥L∞ is due to
dispersive effects of the linear waves in a stably stratified fluid.

Most papers on Couette flow used the Boussinesq approximation to
analyze the linearized solutions. However, this approximation is valid only
when β is small. For β not small, the full Euler equations should be used.
In this case, the linearized equatuions at the Couette flow (Ry, 0) with the
exponential density profile ρ0(y) = Ae−βy become

β [R∂x − (∂t +Ry∂x) ∂y]ψ + (∂t +Ry∂x)∆ψ = −∂x
(
ρ

ρ0

)
g, (1.3)
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(∂t +Ry∂x)

(
ρ

ρ0

)
= β∂xψ. (1.4)

We obtain similar results on decay estimates in the e−
1
2βy weighted norms.

Theorem 1.2. Let
(
ψ(t;x, y), ρ

ρ0
(t;x, y)

)
be the solution of (1.3)-(1.4) with

the initial data

ψ(0;x, y) = ψ0(x, y),
ρ(0;x, y)

ρ0(y)
= ρ0(x, y),

where y ∈ R and x is periodic with period L. Let v = ∇⊥ψ = (vx, vy). The
following is true:

(i) If 0 < B2 < 1
4 , let ν =

√
1
4 −B2, then

∥e− 1
2βyP̸=0v

x∥L2 ≲ ⟨t⟩−
1
2+ν

(
∥e− 1

2βyψ0∥H1
xH

2
y
+ ∥e− 1

2βyρ0∥L2
xH

1
y

)
,

∥e− 1
2βyvy∥L2 ≲ ⟨t⟩−

3
2+ν

(
∥e− 1

2βyψ0∥H1
xH

3
y
+ ∥e− 1

2βyρ0∥L2
xH

2
y

)
,

∥e− 1
2βyP̸=0ρ/ρ0∥L2 ≲ ⟨t⟩−

1
2+ν

(
∥e− 1

2βyψ0∥H1
xH

2
y
+ ∥e− 1

2βyρ0∥L2
xH

1
y

)
.

(ii) If B2 > 1
4 then

∥e− 1
2βyP ̸=0v

x∥L2 ≲ ⟨t⟩−
1
2

(
∥e− 1

2βyψ0∥H1
xH

2
y
+ ∥e− 1

2βyρ0∥L2
xH

1
y

)
,

∥e− 1
2βyvy∥L2 ≲ ⟨t⟩−

3
2

(
∥e− 1

2βyψ0∥H1
xH

3
y
+ ∥e− 1

2βyρ0∥L2
xH

2
y

)
,

∥e− 1
2βyP ̸=0ρ/ρ0∥L2 ≲ ⟨t⟩−

1
2

(
∥e− 1

2βyψ0∥H1
xH

2
y
+ ∥e− 1

2βyρ0∥L2
xH

1
y

)
.

(iii) If B2 = 1
4 , then

∥e− 1
2βyP ̸=0v

x∥L2 ≲ ⟨t⟩−
1
2 ⟨log ⟨t⟩⟩

(
∥e− 1

2βyψ0∥H1
xH

2
y
+ ∥e− 1

2βyρ0∥L2
xH

1
y

)
,

∥e− 1
2βyvy∥L2 ≲ ⟨t⟩−

3
2 ⟨log ⟨t⟩⟩

(
∥e− 1

2βyψ0∥H1
xH

3
y
+ ∥e− 1

2βyρ0∥L2
xH

2
y

)
,

∥e− 1
2βyP ̸=0ρ/ρ0∥L2 ≲ ⟨t⟩−

1
2 ⟨log ⟨t⟩⟩

(
∥e− 1

2βyψ0∥H1
xH

2
y
+ ∥e− 1

2βyρ0∥L2
xH

1
y

)
.

(iv) If B2 = 0, i.e, β = 0, then the results are the same as in the
Boussinesq case, with ρ/ρ0 replacing ρ

A .

(v) If B2 = ∞, i.e. R = 0, then

∥∥∥e− 1
2βyv

∥∥∥2
L2

+
g

β

∥∥∥∥e− 1
2βy

ρ

ρ0

∥∥∥∥2
L2
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is conserved and

∥e− 1
2βyP ̸=0v

x∥L2
xL

∞
y

≲|t|− 1
3

(
∥e− 1

2βyψ0∥
H

3/2
x

(
H

9/2
y ∩W 1,1

y

)
+∥e− 1

2βyρ0∥
H

1/2
x

(
H

9/2
y ∩W 1,1

y

)) ,
∥e− 1

2βyvy∥L2
xL

∞
y

≲|t|− 1
3

(
∥e− 1

2βyψ0∥
H

5/2
x

(
H

7/2
y ∩L1

y

)
+∥e− 1

2βyρ0∥
H

3/2
x

(
H

7/2
y ∩L1

y

)) ,
∥e− 1

2βyP ̸=0ρ/ρ0∥L2
xL

∞
y

≲|t|− 1
3

(
∥e− 1

2βyψ0∥
H

5/2
x

(
H

9/2
y ∩W 1,1

y

)
+∥e− 1

2βyρ0∥
H

3/2
x

(
H

7/2
y ∩L1

y

)) .
Compared with Theorem 1.1, it is interesting to note that for the e−

1
2βy

weighted v and ρ, the decay rates and the initial regularity requirement for
the full equations are exactly the same as in the Boussinesq approximation.

Lastly, we make some comments on the proof. First, we use Fourier
transform on the linearized equations in the sheared coordinates and then
reduce them to a second order ODE for the stream function. The general so-
lution is expressed by two special solutions of hypergeometric functions. The
decay rates and initial regularity are then obtained by using the asymptotic
behaviors of hypergeometric functions. In the case of B2 = ∞ (i.e. no shear),
the decay rates are obtained by the dispersive estimates and oscillatory inte-
grals.

This paper is organized as follows. In Section 2, we derive the linearized
equations and give some identities of hypergeometric functions to be used
later. In Section 3, we solve the linearized equations by hypergeometric func-
tions. In Section 4 and 5, we obtain the decay estimates from the solution
formula for the case B2 < ∞. In Section 6, the dispersive decay estimates
are obtained for the case B2 = ∞.

2. Preliminary

2.1. Linearized Euler Equation and Boussinesq Approximation

The equations for two dimensional inviscid incompressible flows in stratified
fluids are

ρ (∂t + v · ∇)v +∇p = ρg, (2.1)

(∂t + v · ∇) ρ = 0, (2.2)

∇ · v = 0,

where (x, y) ∈ T × R, v = (vx, vy) is the velocity, ρ is the density and
g = (0,−g) is the gravitational acceleration directing downward with g being
the gravitational constant. The simplest stationary solution is the shear flow,
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with v0 = (U(y), 0) and ρ0 = ρ0(y). Let ψ = ψ(t;x, y) be the stream function
such that v = ∇⊥ψ. Here ∇⊥ = (−∂y, ∂x).

We consider the linearized equations near a shear (v0, ρ0). Let v = ∇⊥ψ
and ρ be infinitesimal perturbations of velocity and density. The linearized
equations are

ρ0 [(∂t + U(y)∂x)v + (vy∂y)v0] +∇p = ρg, (2.3)

(∂t + U(y)∂x) ρ+ vyρ′0 (y) = 0. (2.4)

∇ · v = 0.

Taking the curl of (2.3), we get

−ρ
′
0(y)

ρ0
[U ′(y)∂xψ + (∂t + U(y)∂x) (−∂yψ)] (2.5)

+ (∂t + U(y)∂x)∆ψ − U ′′(y)∂xψ = −∂x
(
ρ

ρ0

)
g.

The equation (2.4) can be written as

(∂t + U(y)∂x)
ρ

ρ0
= −∂xψ

ρ′0(y)

ρ0
. (2.6)

Consider Couette flow with an exponential density profile, that is, U(y) = Ry,
ρ0(y) = Ae−βy. Then (2.5)-(2.6) become

β [R∂x − (∂t +Ry∂x) ∂y]ψ + (∂t +Ry∂x)∆ψ = −∂x
(
ρ

ρ0

)
g, (2.7)

(∂t +Ry∂x)

(
ρ

ρ0

)
= β∂xψ. (2.8)

If R ̸= 0, denote B2 = βg
R2 to be the Richardson number, T = Rρ

βρ0(y)
be the

relative density perturbation, ω = −∆ψ be the vorticity perturbation and let
t′ = Rt. Then we have

−β [∂x − (∂t′ + y∂x) ∂y]ψ + (∂t′ + y∂x)ω = B2∂xT,

(∂t′ + y∂x)T = ∂xψ.

For convenience we still use t for t′. Thus the resulting linearized system is

−β [∂x − (∂t + y∂x) ∂y]ψ + (∂t + y∂x)ω = B2∂xT, (2.9)

(∂t + y∂x)T = ∂xψ, (2.10)

ω = −∆ψ. (2.11)

The system (2.9)-(2.11) is rather complicated. Many authors, including
Høiland ([15]), Case ([6]), Kuo ([16]), Hartman ([14]), Chimonas ([7]), Brown
and Stewartson ([4]), Farrell and Ioannou ([13]), chose to consider the Boussi-
nesq approximation, where the variation of density is ignored except for the
gravity force term ρg. To apply the Boussinesq approximation, the density



8 J. Yang and Z. Lin

perturbation should be relatively small compared with the constant density.
Under this approximation, the Euler momentum equation becomes

ρ̄ (∂t v+ (v · ∇)v) +∇p = ρg,

where ρ̄ is a constant and ρ is the variation of density. The linearized Boussi-
nesq equations near a shear flow (U (y) , 0) with the density variation profile
ρ0 (y) is

(∂t + U(y)∂x)∆ψ − U ′′(y)∂xψ = −∂x
(
ρ

ρ̄

)
g, (2.12)

(∂t + U(y)∂x)
ρ

ρ̄
= −∂xψ

ρ′0
ρ̄
. (2.13)

Compared this with the linearized original equation (2.5), it can be regarded
as the case when ρ′0/ρ0 is very small, such that the first term of (2.5) is
neglected and ρ0 is taken to be a constant ρ̄. For Couette flow U(y) = Ry with
the exponential profile ρ0 = Ae−βy, to use the Boussinesq approximation, β
should be small which implies that ρ0 ≈ A (1− βy). Thus, we consider the
linearized Boussinesq equations near Couette flow (Ry, 0) with the linear
density variation profile ρ0 (y) = −Aβy and a constant density background
ρ̄ = A. Then (2.12)-(2.13) become

(∂t +Ry∂x)∆ψ = −∂x
( ρ
A

)
g, (2.14)

(∂t +Ry∂x)
( ρ
A

)
= β∂xψ. (2.15)

If R ̸= 0, denoting B2 = βg
R2 , T = Rρ

βA and scaling the time t by Rt, then we

have

(∂t + y∂x)ω = B2∂xT, (2.16)

(∂t + y∂x)T = ∂xψ, (2.17)

ω = −∆ψ. (2.18)

2.2. Sobolev spaces

Without loss of generality, from now on we assume period length L in x
direction is 2π. Define the Fourier transform of f(x, y) ((x, y) ∈ T× R), as

f̂(k, η) =
1

2π

∫
T×R

e−ixk−iyηf(x, y)dxdy, (k, η) ∈ Z× R.

Fourier inversion formula is

f(x, y) =
1

2π

∑
k∈Z

∫
R
eixk+iyη f̂(k, η)dxdy.

The Sobolev space Hsx
x H

sy
y is defined to be all functions f in L2 (T× R)

satisfying ∑
k∈Z

(1 + k2)sx
∫
R

(
1 + η2

)sy ∣∣∣f̂(k, η)∣∣∣2 dη < +∞,
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with the norm

∥f∥Hsx
x H

sy
y

=

(∑
k∈Z

(1 + k2)sx
∫
R

(
1 + η2

)sy ∣∣∣f̂(k, η)∣∣∣2 dη) 1
2

.

Similarly, we define

∥f∥Hsx
x W

sy,p
y

=

(∑
k∈Z

(1 + k2)sx∥f̂(k, y)∥2
W

sy,p
y

) 1
2

,

where W
sy,p
y is the Lp Sobolev space in R and

f̂(k, y) =
1√
2π

∫
T
e−ixkf(x, y)dx, k ∈ Z.

2.3. Hypergeometric Functions

Gaussian hypergeometric function F (a, b; c; z) is defined by the power series

F (a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!

for |z| < 1, where

(x)n =

{
1 n = 0,
x(x+ 1) · · · (x+ n− 1) n > 0.

Its value F (z) for |z| ≥ 1 is defined by the analytic continuation. If c, z ∈ R,
and a, b are complex conjugate, then F (a, b; c; z) is also real. The following
lemma is known as Gauss’ contiguous relation.

Lemma 2.1. The derivative of F (z) = F (a, b; c; z) can be expressed as

dF

dz
=
ab

c
F (a+ 1, b+ 1; c+ 1; z)

=
c− 1

z
(F (a, b; c− 1; z)− F (a, b; c; z))

=
1

c(1− z)
[(c− a) (c− b)F (a, b; c+ 1; z) + c (a+ b− c)F (a, b; c; z)] .

Hypergeometric functions are related to solutions of Euler’s hypergeo-
metric differential equation.

Lemma 2.2. Assume c is not an integer. Euler’s hypergeometric differential
equation

z(1− z)f ′′(z) + [c− (a+ b+ 1)z] f ′(z)− abf(z) = 0 (2.19)

has two linearly independent solutions

f1(z) = F (a, b; c; z),

f2(z) = z1−cF (1 + a− c, 1 + b− c; 2− c; z).
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The proof of these two lemmas can be found in pages 57 and 74 of the
book ([1]).

Hypergeometric functions have one branch point at z = 1, and another
at z = ∞. The default cut-line connecting these two branch points is chosen
as z > 1, z ∈ R. Pfaff transform can relate the value of a hypergeometric
functions near z = 1 to the value of another one near z = ∞ in the following
way:

F (a, b; c; z) = (1− z)−bF

(
c− a, b; c;

z

z − 1

)
, (2.20)

F (a, b; c; z) = (1− z)−bF

(
c− a, b; c;

z

z − 1

)
. (2.21)

By combining these two transforms, we obtain the Euler transform

F (a, b; c; z) = (1− z)c−a−bF (c− a, c− b; c; z) . (2.22)

When Re(c) > Re(a+ b) we have the Gauss formula

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
. (2.23)

When Re(c) < Re(a+ b), F (a, b; c; 1) is infinity.
The following lemma plays an important role in solving the linearized

equations in the next Section.

Lemma 2.3. The Wronskian of the two solutions listed above is

W (z) = f1(z)f
′
2(z)− f ′1(z)f2(z) = (1− c)z−c(1− z)c−1−a−b.

Proof. By Liouville’s formula, the Wronskian of Euler’s hypergeometric dif-
ferential equation (2.19) can be written as

W (z) = C exp

(
−
∫
c− (a+ b+ 1)z

z(1− z)
dz

)
= C exp (− log(1− z)(a+ b+ 1− c)− c log(z))

= Cz−c(1− z)c−1−a−b = Cz−c +O(z−c−1)

To determine the constant C, it is sufficient to calculate the leading order
term of W (z) in the power series expansion near z = 0. By the definition,

f1(0) = 1, f ′1(0) =
ab

c
, f2(z) ∼ z1−c, f ′2(z) ∼ (1− c)z−c

when z → 0, so C = 1− c and W (z) = (1− c)z−c(1− z)c−1−a−b. □

3. Solutions by Hypergeometric functions

In this section, we apply Fourier transform on the linearized systems (2.16-
2.18) based on the Boussinesq approximation and (2.9-2.11) based on full
Euler equations respectively. Then we reduce them to a second order ODE
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in t, and solve it explicitly by using hypergeometric functions. We will study
these equations in the sheared coordinates (z, y) = (x− ty, y) and define

f(t; z, y) = ω(t; z + ty, y) = ω(t;x, y),

ϕ(t; z, y) = ψ(t; z + ty, y) = ψ(t;x, y),

τ(t; z, y) = T (t; z + ty, y) = T (t;x, y).

3.1. Boussinesq approximation

In the new coordinates (z, y), equations (2.16-2.18) become the following:

∂tf(t; z, y) = (∂t + y∂x)ω(t;x, y) = B2∂xT (t;x, y) = B2∂zτ(t; z, y),

∂tτ(t; z, y) = (∂t + y∂x)T (t;x, y) = ∂xψ(t;x, y) = ∂zϕ(t; z, y),[
∂zz + (∂y − t∂z)

2
]
ϕ(t; z, y) = ψxx + ψyy = −ω(t;x, y) = −f(t; z, y).

By the Fourier transform (z, y) → (k, η), we get

f̂t = B2(ik)τ̂ , τ̂t = (ik)ϕ̂,[
(ik)2 + (iη − ikt)2

]
ϕ̂ = −f̂ . (3.1)

Differentiate (3.1) twice with respect to t to get[
(ik)2 + (iη − ikt)2

]
ϕ̂t + 2(iη − ikt)(−ik)ϕ̂ = −f̂t = −B2(ik)τ̂ , (3.2)[

(ik)2 + (iη − ikt)2
]
ϕ̂tt + 4(iη − ikt)(−ik)ϕ̂t + 2(−ik)2ϕ̂

=− f̂tt = −B2(ik)τ̂t = −B2(ik)2ϕ̂.

For fixed k ̸= 0 and η, define s = t − η
k and s0 = −η

k . Then we obtain a

second order linear ODE for ϕ̂

(1 + s2)ϕ̂tt + 4sϕ̂t + (2 +B2)ϕ̂ = 0. (3.3)

First, we look for special solutions of the form ϕ̂(t; k, η) = g(−s2). Let u =

−s2, then ϕ̂t = −2sg′ and ϕ̂tt = 4s2g′′ − 2g′. Equation (3.3) becomes

u(1− u)g′′ +

(
1

2
− 5

2
u

)
g′ − 2 +B2

4
g = 0.

This is in the form of Euler’s hypergeometric differential equation (2.19)

with c = 1
2 and a, b = 3

4 ±
ν
2 , where ν =

√
1
4 −B2. By Lemma 2.2, it has two

linearly independent solutions

g1(s) = F (a, b; c;u) = F

(
3

4
− ν

2
,
3

4
+
ν

2
;
1

2
;−s2

)
, (3.4)

g2(s) = −iu1−cF (1 + a− c, 1 + b− c; 2− c;u) = sF

(
5

4
− ν

2
,
5

4
+
ν

2
;
3

2
;−s2

)
.

(3.5)
Therefore, the general solutions to the equation (3.3) can be written as

ϕ̂ = C1g1(s) + C2g2(s), (3.6)
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where C1, C2 are some constants depending only on (k, η). Note that although
a hypergeometric function has a branch point or singularity at z = 1, we only
need its value at z = −s2 which lies on the negative real axis. Therefore, there
is no ambiguity or singularity in (3.6).

The coefficients C1, C2 are determined by the initial conditions ψ(0;x, y)

and T (0;x, y). Let ψ̂0(k, η), T̂ 0(k, η) be the Fourier transforms of ψ(0;x, y)
and T (0;x, y). First,

ϕ̂(0; k, η) = ϕ̂0(k, η) = ψ̂0(k, η),

and by equation (3.2),

f̂t = k2(1 + s2)ϕ̂t + 2k2sϕ̂.

Noticing that when t = 0, s = −η
k = s0, so we have

ϕ̂t(0; k, η) =
f̂t(0; k, η)− 2k2s0ϕ̂(0; k, η)

k2(1 + s20)
=
B2(ik)τ̂(0; k, η)− 2k2s0ϕ̂(0; k, η)

k2(1 + s20)

=
1

1 + s20

(
iB2

k
τ̂0 − 2s0ϕ̂

0

)
=

1

1 + s20

(
iB2

k
T̂ 0 − 2s0ψ̂

0

)
.

Now we have a linear system for (C1, C2)

C1g1(s0) + C2g2(s0) = ψ̂0,

C1g
′
1(s0) + C2g

′
2(s0) =

1

1 + s20

(
iB2

k
T̂ 0 − 2s0ψ̂

0

)
.

Therefore, the coefficients are

C1(k, η) =
1

∆

[
g′2(s0) +

2s0
1 + s20

g2(s0)

]
ψ̂0(k, η)

+
1

∆

[
− iB2

1 + s20
g2(s0)

]
T̂ 0(k, η)

k
,

(3.7)

C2(k, η) =
1

∆

[
−g′1(s0)−

2s0
1 + s20

g1(s0)

]
ψ̂0(k, η)

+
1

∆

[
iB2

1 + s20
g1(s0)

]
T̂ 0(k, η)

k
,

(3.8)

where by Lemma 2.3

∆ = g1(s0)g
′
2(s0)− g′1(s0)g2(s0)

= −i(−2s0)

(
1− 1

2

)(
−s20

)− 1
2
(
1 + s20

)−2
=

1

(1 + s20)
2 ,

which is strictly positive for all s0 ∈ R.
Thus the solution of (3.3) is given explicitly by

ϕ̂(t; k, η) = C1(k, η)g1(s) + C2(k, η)g2(s).
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As for τ̂ , from equation (3.2), for B2 > 0 we have

τ̂(t; k, η) =− ik

B2

(
(1 + s2)ϕ̂t + 2sϕ̂

)
, (3.9)

=− ik

B2

[
(1 + s2) (C1(k, η)g

′
1(s) + C2(k, η)g

′
2(s))

+2s (C1(k, η)g1(s) + C2(k, η)g2(s))] .

3.2. Full Euler Equations

Now we solve the linearized systems (2.9)-(2.11) based on the full Euler equa-
tions. With f, ϕ, τ defined at the beginning of this section, equations (2.9)-
(2.11) turn into

−β [∂z − ∂t (∂y − t∂z)]ϕ+ ∂tf = B2∂zτ, (3.10)

∂tτ = ∂zϕ, −
[
∂zz + (∂y − t∂z)

2
]
ϕ = f.

By the Fourier transform (z, y) → (k, η), (3.10) becomes

−β [ik − ∂t (iη − ikt)] ϕ̂+ f̂t = B2(ik)τ̂ . (3.11)

Differentiate above with respect to t, we get

−β [ik∂t − ∂tt (iη − ikt)] ϕ̂+ f̂tt = B2(ik)τ̂t.

Substituting

τ̂t = (ik)ϕ̂, f̂ = −
[
(ik)2 + (iη − ikt)2

]
ϕ̂, (3.12)

we have

∂tt
[
k2 + (η − kt)2 + β(iη − ikt)

]
ϕ̂− β(ik)ϕ̂t +B2k2ϕ̂ = 0.

Define χ = e−
1
2βyϕ, then ϕ̂(k, η) = χ̂(k, η + 1

2 iβ) and the above equation
implies

∂tt

[
k2 +

(
η − 1

2
iβ − kt

)2

+ β

(
i

(
η − 1

2
iβ

)
− ikt

)]
χ̂

−β(ik)χ̂t +B2k2χ̂ = 0,

After simplification, we have

∂tt

[
1

4
β2 + k2 + (η − kt)

2

]
χ̂− iβkχ̂t +B2k2χ̂ = 0.

For k ̸= 0, again define s = t− η
k , s0 = −η

k , then

∂tt

[(
1

4
β2 + k2 + k2s2

)
χ̂

]
− iβkχ̂t +B2k2χ̂ = 0.

Define m =
√

1
4β

2 + k2, κ = k
m , β1 = β

2m , then we have

∂tt
[(
m2 + k2s2

)
χ̂
]
− iβkχ̂t +B2k2χ̂ = 0,

∂tt
[(
1 + κ2s2

)
χ̂
]
− 2iβ1κχ̂t +B2κ2χ̂ = 0.
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Set u = −iκs, then

−∂uu
(
1− u2

)
χ̂− 2β1χ̂u +B2χ̂ = 0,(

1− u2
)
χ̂uu + (2β1 − 4u)χ̂u − (2 +B2)χ̂ = 0.

Define v = 1−u
2 , then

v (1− v) χ̂vv + (−β1 + 2− 4v)χ̂v − (2 +B2)χ̂ = 0, (3.13)

which is of the form of Euler’s hypergeometric differential equation (2.19)

with c = 2−β1 and a, b = 3
2 ± ν, where ν =

√
1
4 −B2. By Lemma 2.2, it has

two linear independent solutions,

g3(s) = F

(
3

2
− ν,

3

2
+ ν; 2− β1; v

)
= F

(
3

2
− ν,

3

2
+ ν; 2− β1;

1 + iκs

2

)
,

g4(s) =

(
1 + iκs

2

)−1+β1

F

(
1

2
+ β1 − ν,

1

2
+ β1 + ν;β1;

1 + iκs

2

)
Therefore, the general solution to equation (3.13) is

χ̂ = C3g3(s) + C4g4(s),

where C3, C4 are constants depending only on (k, η). Note that we only need
values of g1, g2 at

1
2 + κs

2 i (s ∈ R), that is, on the line Re(z) = 1
2 . Therefore,

the branch point at z = 1 will not cause any ambiguity or singularity.
The initial conditions ψ(0;x, y) and T (0;x, y) are used to determine the

coefficients C3, C4. Denote µ = e−
1
2βyτ , Ψ0 = e−

1
2βyψ0,Υ0 = e−

1
2βyT 0, then

χ̂(0; k, η) = ϕ̂0
(
k, η − 1

2
iβ

)
= ̂e− 1

2βyψ0 = Ψ̂0.

By equations (3.11) and (3.12), we have

ϕ̂t =
1

1 + s2 − iβ
k s

[(
2iβ

k
− 2s

)
ϕ̂+

iB2

k
τ̂

]
.

Hence

χ̂t(t; k, η) = ϕ̂t

(
t; k, η − 1

2
iβ

)
=

1

1 +
(
s+ iβ

2k

)2
− iβ

k

(
s+ iβ

2k

) [(2iβ

k
− 2s− 2

iβ

2k

)
χ̂+

iB2

k
µ̂

]

=
1

1 + |s̃|2

(
iB2

k
χ̂− 2s̃µ̂

)
,

and

χ̂t(0; k, η) =
1

1 + |s̃0|2

(
iB2

k
Υ̂0 − 2s̃0Ψ̂0

)
,

where s̃ = s− iβ
2k , s̃0 = s0 − iβ

2k .
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So we have a linear system for (C3, C4) :

C3g3(s0) + C4g4(s0) = Ψ̂0,

C3g
′
3(s0) + C4g

′
4(s0) =

1

1 + |s̃0|2

(
iB2

k
Υ̂0 − 2s̃0Ψ̂0

)
,

which gives

C3(k, η) =
1

∆

[
g′4(s0) +

2s̃0
1 + |s̃0|2

g4(s0)

]
Ψ̂0(k, η)

+
1

∆

[
− iB2

1 + |s̃0|2
g4(s0)

]
Υ̂0(k, η)

k
,

C4(k, η) =
1

∆

[
−g′3(s0)−

2s̃0
1 + |s̃0|2

g3(s0)

]
Ψ̂0(k, η)

+
1

∆

[
iB2

1 + |s̃0|2
g3(s0)

]
Υ̂0(k, η)

k
,

where by Lemma 2.3

∆ = g3(s0)g
′
4(s0)− g′3(s0)g4(s0)

=
κi

2
(−1 + β1)

(
1

2
+
κs0
2
i

)−2+β1
(
1

2
− κs0

2
i

)−2−β1

,

which is never zero, because |κ|, β1 ∈ (0, 1) by definition. Moreover,

|κ| ≥ 1√
1
4β

2 + 1
, 1− β1 ≥ 1− β/2√

1
4β

2 + 1

are both uniformly bounded away from zero for all integers k ̸= 0. Hence

|∆|−1 =

∣∣∣∣12 +
κs0
2
i

∣∣∣∣4 ∣∣∣κ2 ∣∣∣−1

(1− β1)
−1 ≲ ⟨s0⟩4 .

By equations (3.11) and (3.12), for B2 > 0 we have

τ̂(t; k, η) = − ik

B2

[
−2iβ

k
ϕ̂− iβ

k
sϕ̂t + (1 + s2)ϕ̂t + 2sϕ̂

]
,
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and

µ̂(t; k, η) =τ̂

(
t; k, η − 1

2
iβ

)
=− ik

B2

[
−2iβ

k
χ̂− iβ

k

(
s+

iβ

2k

)
χ̂t +

(
1 +

(
s+

iβ

2k

)2
)
χ̂t

+2

(
s+

iβ

2k

)
χ̂

]
=− ik

B2

[(
1 + s2 +

β2

4k2

)
χ̂t + 2

(
s− iβ

2k

)
χ̂

]
=− ik

B2

[(
1 + |s̃|2

)
χ̂t + 2s̃χ̂

]
.

4. Decay estimates in the case of Boussinesq approximation

In this section, we use the solution formula obtained in the last section to
obtain the inviscid decay estimates in Theorem 1.1, for solutions of the lin-
earized equations under Boussinesq approximation.

4.1. The case B2 > 0 and B2 ̸= 1
4

By expanding g1(s), g2(s), g
′
1(s0), g

′
2(s0) at infinity, we obtain the following

asymptotics

g1(s) =
√
π

[
Γ(ν)

Γ(−1
4 + ν

2 )Γ(
3
4 + ν

2 )
s−

3
2+ν

+
Γ(−ν)

Γ(− 1
4 − ν

2 )Γ(
3
4 − ν

2 )
s−

3
2−ν

]
+O

(
|s|− 7

2+Re(ν)
)
,

(4.1)

g2(s) =

√
π

2

[
Γ(ν)

Γ(14 + ν
2 )Γ(

5
4 + ν

2 )
s−

3
2+ν

+
Γ(−ν)

Γ( 14 − ν
2 )Γ(

5
4 − ν

2 )
s−

3
2−ν

]
+O

(
|s|− 5

2+Re(ν)
)
,

(4.2)

g′1(s0) =2
√
π

[ (
−3

4 + ν
2

)
Γ(ν)

Γ(− 1
4 + ν

2 )Γ(
3
4 + ν

2 )
s
− 5

2+ν
0

+

(
−3

4 − ν
2

)
Γ(−ν)

Γ(−1
4 − ν

2 )Γ(
3
4 − ν

2 )
s
− 5

2−ν
0

]
+O

(
|s0|−

7
2+Re(ν)

)
,

(4.3)

g′2(s0) =
√
π

[ (
− 3

4 + ν
2

)
Γ(ν)

Γ( 14 + ν
2 )Γ(

5
4 + ν

2 )
s
− 5

2+ν
0

+

(
− 3

4 − ν
2

)
Γ(−ν)

Γ(14 − ν
2 )Γ(

5
4 − ν

2 )
s
− 5

2−ν
0

]
+O

(
|s0|−

7
2+Re(ν)

)
.

(4.4)
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For B2 < 1
4 or > 1

4 , ν is real or pure imaginary. We treat these cases
separately.

4.1.1. The case 0 < B2 < 1
4 . In this case ν is a real number between 0 and

1
2 . By using the above asymptotics of g1 (s) , g2 (s), we obtain bounds for the
coefficients of C1, C2 (defined in (3.7), (3.8)). Since

1

∆

[
g′2(s0) +

2s0
1 + s20

g2(s0)

]
≲ ⟨s0⟩4 ⟨s0⟩−

5
2+ν

= ⟨s0⟩
3
2+ν

,

1

∆

[
− iB2

1 + s20
g2(s0)

]
≲ ⟨s0⟩4 ⟨s0⟩−

7
2+ν

= ⟨s0⟩
1
2+ν

,

1

∆

[
−g′1(s0)−

2s0
1 + s20

g1(s0)

]
≲ ⟨s0⟩4 ⟨s0⟩−

5
2+ν

= ⟨s0⟩
3
2+ν

,

1

∆

[
iB2

1 + s20
g1(s0)

]
≲ ⟨s0⟩4 ⟨s0⟩−

7
2+ν

= ⟨s0⟩
1
2+ν

,

and

|g1(s)|, |g2(s)| ≲ ⟨s⟩−
3
2+ν

,

so we have

|C1(k, η)| ≲ ⟨s0⟩
3
2+ν

∣∣∣ψ̂0(k, η)
∣∣∣+

∣∣∣T̂ 0(k, η)
∣∣∣

⟨s0⟩ |k|

 ,

|C2(k, η)| ≲ ⟨s0⟩
3
2+ν

∣∣∣ψ̂0(k, η)
∣∣∣+

∣∣∣T̂ 0(k, η)
∣∣∣

⟨s0⟩ |k|

 .

Therefore∣∣∣ϕ̂(t; k, η)∣∣∣ = |C1(k, η)g1(s) + C2(k, η)g2(s)| (4.5)

≲ ⟨s⟩−
3
2+ν ⟨s0⟩

3
2+ν

∣∣∣ψ̂0(k, η)
∣∣∣+

∣∣∣T̂ 0(k, η)
∣∣∣

⟨s0⟩ |k|

 .

To get the decay estimates in the physical space (x, y) from above, we note

that the term ⟨s⟩−
3
2+ν

does not decay when t ≈ η
k (i.e. s ≈ 0) and as com-

pensation the additional regularity of initial data is needed to ensure the
decay. This is made precise in the following lemma.

Lemma 4.1. Assume that there exists a > 0 and b, c ∈ R such that

|ĝ(t; k, η)| ≲ ⟨s⟩−a ⟨s0⟩b |k|c
∣∣∣ĥ(k, η)∣∣∣ , 0 ̸= k ∈ Z, η ∈ R, (4.6)

then

∥P ̸=0g (t)∥L2(T×R) ≲ ⟨t⟩−a ∥h∥Hc
xH

b+a
y

.
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Proof. We have∫
R
|ĝ(t; k, η)|2 dη =

∫
|s|=|t− η

k |≥ 1
2 |t|

|ĝ(t; k, η)|2 dη +
∫
|t− η

k |≤ 1
2 |t|

|ĝ(t; k, η)|2 dη

=I1 + I2.

By (4.6), we have

I1 ≲ ⟨t⟩−2a
∫
|t− η

k |≥ 1
2 |t|

⟨s0⟩2b |k|2c
∣∣∣ĥ(k, η)∣∣∣2 dη.

Since
∣∣t− η

k

∣∣ ≤ 1
2 |t| implies |s0| =

∣∣η
k

∣∣ ≥ 1
2 |t|, so

I2 ≲ ⟨t⟩−2a
∫
|t− η

k |≤ 1
2 |t|

⟨s0⟩2b+2a |k|2c
∣∣∣ĥ(k, η)∣∣∣2 dη.

Thus ∫
R
|ĝ(t; k, η)|2 dη ≲ ⟨t⟩−2a

∫
R
⟨s0⟩2b+2a |k|2c

∣∣∣ĥ(k, η)∣∣∣2 dη,
and

∥P ̸=0g (t)∥2L2(T×R) =
∑
k ̸=0

∫
R
|ĝ(t; k, η)|2 dη

≲ ⟨t⟩−2a
∑
k ̸=0

|k|2c
∫
R
⟨η⟩2b+2a

∣∣∣ĥ(k, η)∣∣∣2 dη
≲ ⟨t⟩−2a ∥h∥2Hc

xH
b+a
y

.

□

Since the velocity perturbation

vx(t;x, y) =− ∂yψ(t;x, y) = (−∂y + t∂z)ϕ(t; z, y),

vy(t;x, y) =∂xψ(t;x, y) = ∂zϕ(t; z, y),

so by (4.5), we have

|v̂x (t; k, η)| =
∣∣∣iksϕ̂(t; k, η)∣∣∣

≤ ⟨s⟩−
1
2+ν ⟨s0⟩

3
2+ν

|k|
∣∣∣ψ̂0(k, η)

∣∣∣+
∣∣∣T̂ 0(k, η)

∣∣∣
⟨s0⟩

 ,

|v̂y (t; k, η)| =
∣∣∣ikϕ̂(t; k, η)∣∣∣

≤ ⟨s⟩−
3
2+ν ⟨s0⟩

3
2+ν

|k|
∣∣∣ψ̂0(k, η)

∣∣∣+
∣∣∣T̂ 0(k, η)

∣∣∣
⟨s0⟩

 .
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From equation (3.9) we know

|τ̂(t; k, η)| ≤
∣∣∣∣ kB2

∣∣∣∣ [(1 + s2) |C1(k, η)g
′
1(s) + C2(k, η)g

′
2(s)|

+2|s| |C1(k, η)g1(s) + C2(k, η)g2(s)|]

≲ ⟨s⟩−
1
2+ν ⟨s0⟩

3
2+ν

|k|
∣∣∣ψ̂0(k, η)

∣∣∣+
∣∣∣T̂ 0(k, η)

∣∣∣
⟨s0⟩

 .

By Lemma 4.1,

∥P ̸=0v
x∥L2 ≲ ⟨t⟩−

1
2+ν

(
∥ψ0∥H1

xH
2
y
+ ∥T 0∥L2

xH
1
y

)
,

∥vy∥L2 ≲ ⟨t⟩−
3
2+ν

(
∥ψ0∥H1

xH
3
y
+ ∥T 0∥L2

xH
2
y

)
,

and

∥P ̸=0T (t; ·, ·)∥L2 = ∥P ̸=0τ(t; ·, ·)∥L2 ≲ ⟨t⟩−
1
2+ν

(
∥ψ0∥H1

xH
2
y
+ ∥T 0∥L2

xH
1
y

)
.

4.1.2. The case B2 > 1
4 . In this case, ν =

√
1
4 −B2 is pure imaginary. Then

from (4.1-4.4), we have

|g1(s)| ≲ ⟨s⟩−
3
2 , |g2(s)| ≲ ⟨s⟩−

3
2 ,

|g′1(s0)| ≲ ⟨s0⟩−
5
2 , |g′2(s0)| ≲ ⟨s0⟩−

5
2 .

By similar calculations,

∥P ̸=0v
x∥L2 ≲ ⟨t⟩−

1
2

(
∥ψ0∥H1

xH
2
y
+ ∥T 0∥L2

xH
1
y

)
,

∥vy∥L2 ≲ ⟨t⟩−
3
2

(
∥ψ0∥H1

xH
3
y
+ ∥T 0∥L2

xH
2
y

)
,

∥P̸=0T∥L2 ≲ ⟨t⟩−
1
2

(
∥ψ0∥H1

xH
2
y
+ ∥T 0∥L2

xH
1
y

)
.

Since T is just ρ/A times a positive constant, this completes the proof of
Theorem 1.1(i)-(ii).

4.2. The case B2 = 1
4

When B2 = 1
4 , ν = 0, the asymptotic approximations (4.1) and (4.2) no

longer hold true, but the following expansions at infinity emerge instead,

g1(s) = F

(
3

4
,
3

4
;
1

2
;−s2

)
=

2
√
π

Γ
(
− 1

4

)
Γ
(
3
4

)s− 3
2 log (s)−

2
√
π
(
γ +𝟋

(
3
4

)
+ 2
)

Γ
(
− 1

4

)
Γ
(
3
4

) s−
3
2 +O

(
|s|− 7

2

)
,

g2(s) = sF

(
5

4
,
5

4
;
3

2
;−s2

)
=

√
π

Γ
(
1
4

)
Γ
(
5
4

)s− 3
2 log (s)−

√
π
(
γ +𝟋

(
1
4

)
+ 2
)

Γ
(
1
4

)
Γ
(
5
4

) s−
3
2 +O

(
|s|− 7

2

)
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where γ is the Euler constant, 𝟋(x) = Γ′(x)
Γ(x) is the digamma function. It can

be seen that with the logarithm function, both solutions decay a little bit
slower than before.

Similarly, their derivatives also have different asymptotic approxima-
tions

g′1(s0) =− 9

4
s0F

(
7

4
,
7

4
;
3

2
;−s20

)
=− 3

√
π

Γ
(
−1

4

)
Γ
(
3
4

)s− 5
2

0 log (s0)

+
3
√
π
(
γ +𝟋

(
3
4

)
+ 8

3

)
Γ
(
−1

4

)
Γ
(
3
4

) s
− 5

2
0 +O

(
|s0|−

7
2

)
,

g′2(s0) =F

(
5

4
,
5

4
;
3

2
;−s20

)
− 25

12
s20F

(
9

4
,
9

4
;
5

2
;−s20

)
=− 3

√
π

2Γ
(
1
4

)
Γ
(
5
4

)s− 5
2

0 log (s0)

+
3
√
π
(
γ +𝟋

(
1
4

)
+ 8

3

)
2Γ
(
1
4

)
Γ
(
5
4

) s
− 5

2
0 +O

(
|s0|−

7
2

)
.

Therefore, we obtain the following estimates

|g1(s)| ≲ ⟨s⟩−
3
2 ⟨log ⟨s⟩⟩ , |g2(s)| ≲ ⟨s⟩−

3
2 ⟨log ⟨s⟩⟩ ,

|g′1(s0)| ≲ ⟨s0⟩−
5
2 ⟨log ⟨s0⟩⟩ , |g′2(s0)| ≲ ⟨s0⟩−

5
2 ⟨log ⟨s0⟩⟩ ,

and as a result

|C1(k, η)| ≲ ⟨s0⟩
3
2 ⟨log ⟨s0⟩⟩

∣∣∣ψ̂0(k, η)
∣∣∣+

∣∣∣T̂ 0(k, η)
∣∣∣

⟨s0⟩ |k|

 ,

|C2(k, η)| ≲ ⟨s0⟩
3
2 ⟨log ⟨s0⟩⟩

∣∣∣ψ̂0(k, η)
∣∣∣+

∣∣∣T̂ 0(k, η)
∣∣∣

⟨s0⟩ |k|

 .

Therefore, we have∣∣∣ϕ̂(t; k, η)∣∣∣ = |C1(k, η)g1(s) + C2(k, η)g2(s)|

≲ ⟨s⟩−
3
2 ⟨s0⟩

3
2 ⟨log ⟨s⟩⟩ ⟨log ⟨s0⟩⟩

∣∣∣ψ̂0(k, η)
∣∣∣+

∣∣∣T̂ 0(k, η)
∣∣∣

⟨s0⟩ |k|

 ,

from which the estimates of |v̂x (t; k, η)| , |v̂y (t; k, η)| and |τ̂(t; k, η)| follow.
Then the decay rates of vx, vy, T can be obtained similarly as in the proof
of Lemma 4.1, so we only sketch it. Notice that for any a ≥ 1

2 , the function

h (x) = ⟨x⟩a
⟨log⟨x⟩⟩ is increasing for all x ≥ 0. When |s| ≤ 1

2 |t| (implying |s0| ≥
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1
2 |t|), we have

⟨s⟩−a ⟨s0⟩
3
2 ⟨log ⟨s⟩⟩ ⟨log ⟨s0⟩⟩ ≤ ⟨s0⟩

3
2 ⟨log ⟨s0⟩⟩ ≤

h (s0)

h
(
1
2 t
) ⟨s0⟩ 3

2 ⟨log ⟨s0⟩⟩

≲ ⟨t⟩−a ⟨log ⟨t⟩⟩ ⟨s0⟩
3
2+a

.

On the other hand, when |s| ≥ 1
2 |t|, we have

⟨s⟩−a ⟨s0⟩
3
2 ⟨log ⟨s⟩⟩ ⟨log ⟨s0⟩⟩ ≲ ⟨t⟩−a ⟨log ⟨t⟩⟩ ⟨s0⟩

3
2+a

,

since ⟨log ⟨s0⟩⟩ ≤ ⟨s0⟩a. Similar to the proof of Lemma 4.1, we get

∥P̸=0v
x∥L2 ≲ ⟨t⟩−

1
2 ⟨log ⟨t⟩⟩

(
∥ψ0∥H1

xH
2
y
+ ∥T 0∥L2

xH
1
y

)
,

∥vy∥L2 ≲ ⟨t⟩−
3
2 ⟨log ⟨t⟩⟩

(
∥ψ0∥H1

xH
3
y
+ ∥T 0∥L2

xH
2
y

)
.

and

∥P ̸=0T∥L2 ≲ ⟨t⟩−
1
2 ⟨log ⟨t⟩⟩

(
∥ψ0∥H1

xH
2
y
+ ∥T 0∥L2

xH
1
y

)
.

4.3. The case B2 = 0

When B2 = 0, that is, β = 0, then by (2.14)-(2.15), we get

(∂t +Ry∂x)∆ψ =− ∂x

( ρ
A

)
g,

(∂t +Ry∂x)
( ρ
A

)
=0.

For convenience, we let R = 1. Again, we define

f(t; z, y) =ω(t; z + ty, y) = ω(t;x, y),

ϕ(t; z, y) =ψ(t; z + ty, y) = ψ(t;x, y),

τ(t; z, y) =
ρ

A
(t; z + ty, y) =

ρ

A
(t;x, y).

Then
∂tf(t; z, y) = g∂zτ(t; z, y), ∂tτ(t; z, y) = 0.

So

τ̂(t; k, η) =τ̂(0; k, η),

f̂ (t; k, η) =f̂ (0; k, η) + tikgτ̂(0; k, η) = ω̂0(k, η) + tikgρ̂0 (k, η) ,

where ω(0;x, y) = ω0(x, y), ρ
A (0;x, y) = ρ0 (x, y). Thus by (3.1), we get∣∣∣ϕ̂(t; k, η)∣∣∣ = 1

k2 (1 + s2)

∣∣∣f̂ (t; η, k)∣∣∣
≲ ⟨s⟩−2 ⟨s0⟩2

∣∣∣ψ̂0(k, η)
∣∣∣+ |t| 1

|k|
⟨s⟩−2 ∣∣ρ̂0(k, η)∣∣ .

Therefore

|v̂x (t; k, η)| ≲ ⟨s⟩−1 ⟨s0⟩2 |k|
∣∣∣ψ̂0(k, η)

∣∣∣+ |t| ⟨s⟩−1 ∣∣ρ̂0(k, η)∣∣ ,
|v̂y (t; k, η)| ≲ ⟨s⟩−2 ⟨s0⟩2 |k|

∣∣∣ψ̂0(k, η)
∣∣∣+ |t| ⟨s⟩−2 ∣∣ρ̂0(k, η)∣∣ .
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By Lemma 4.1, we get

∥P ̸=0v
x∥L2 ≲ ∥ρ0∥L2

xH
1
y
+ ⟨t⟩−1 ∥ψ0∥H1

xH
3
y
,

∥vy∥L2 ≲ ⟨t⟩−1 ∥ρ0∥L2
xH

2
y
+ ⟨t⟩−2 ∥ψ0∥H1

xH
4
y
.

Also,
∥∥ ρ
A

∥∥
L2 (t) =

∥∥ρ0∥∥. When ρ0 ̸= 0, there is no decay for ρ
A and P ̸=0v

x.

When ρ0 = 0, we get

∥P̸=0v
x∥L2 ≲ ⟨t⟩−1 ∥ψ0∥H1

xH
3
y
, ∥vy∥L2 ≲ ⟨t⟩−2 ∥ψ0∥H1

xH
4
y
,

which exactly recovers the linear decay results in [17] for the homogeneous
fluids.

Remark 4.2. For small B > 0, the decay rates for ∥P ̸=0v
x∥L2 and ∥vy∥L2 are

t−
1
2+ν and t−

3
2+ν respectively even when ρ0 = 0. Hence, if B → 0+ (i.e. ν →

1
2−), surprisingly the decay rates are almost one order slower than the case of
homogeneous fluids (B = 0). This apparent gap is due to the vanishing of the

coefficient of ⟨s⟩−
3
2+ν

terms in the asymptotics of hypergeometric functions
(4.1)-(4.4).

5. Decay estimates for the full Euler equation

In this section, we prove the decay estimates in Theorem 1.2 for the linearized
system of the full Euler equation. The proof is very similar to the Boussinesq
case, so we only sketch it.

5.1. The case 0 < B2 <∞

For each B2 > 0, we can find similar bounds for

χ̂ = C3(k, η)g3(s) + C4(k, η)g4(s)
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as in the Boussinesq case. For B2 > 0 and B2 ̸= 1
4 , the asymptotics of g3, g4 at

s = ∞ are

g3(s) =

(
1

2
− iκs

2

)−1−β1
[

Γ(2− β1)Γ(−2ν)

Γ
(
3
2 − ν

)
Γ
(
1
2 − β1 − ν

) (− iκs
2

)− 1
2+β1−ν

+
Γ(2− β1)Γ(2ν)

Γ
(
3
2 + ν

)
Γ
(
1
2 − β1 + ν

) (− iκs
2

)− 1
2+β1+ν

+O
(
|s|− 3

2+Re(ν)
)]

g4(s) =

(
1

2
+
iκs

2

)−1+β1
[

Γ(β1)Γ(−2ν)

Γ
(
− 1

2 − ν
)
Γ
(
1
2 + β1 − ν

) (− iκs
2

)− 1
2−β1−ν

+
Γ(β1)Γ(2ν)

Γ
(
− 1

2 + ν
)
Γ
(
1
2 + β1 + ν

) (− iκs
2

)− 1
2−β1+ν

+O
(
|s|− 3

2+Re(ν)
)]

g′3(s) =

(
iκ

2

)(
1

2
− iκs

2

)−β1
[(

3
2 + ν

)
Γ(2− β1)Γ(−2ν)

Γ
(
3
2 − ν

)
Γ
(
1
2 − β1 − ν

) (− iκs
2

)− 5
2+β1−ν

+

(
3
2 − ν

)
Γ(2− β1)Γ(2ν)

Γ
(
3
2 + ν

)
Γ
(
1
2 − β1 + ν

) (− iκs
2

)− 5
2+β1+ν

+O
(
|s|− 7

2+Re(ν)
)]

g′4(s) =

(
iκ

2

)(
1

2
+
iκs

2

)β1
[(

− 3
2 − ν

)
Γ(2− β1)Γ(−2ν)

Γ
(
−1

2 − ν
)
Γ
(
1
2 + β1 − ν

) ( iκs
2

)− 5
2−β1−ν

+

(
−3

2 + ν
)
Γ(2− β1)Γ(2ν)

Γ
(
−1

2 + ν
)
Γ
(
1
2 + β1 + ν

) ( iκs
2

)− 5
2−β1+ν

+O
(
|s|− 7

2+Re(ν)
)]

.

For B2 = 1
4 , the expansions at s = ∞ are

g3(s) =

(
1

2
− iκs

2

)−β1

×

[
2Γ(2− β)

√
πΓ
(
1
2 − β

) (− iκs
2

)− 3
2+β1

log

(
− iκs

2

)
+O

(
|s|− 3

2+β1

)]
,

g4(s) =

(
1

2
+
iκs

2

)β1

×

[
Γ(β)

2
√
πΓ
(
1
2 + β

) (− iκs
2

)− 3
2−β1

log

(
− iκs

2

)
+O

(
|s|− 3

2−β1

)]
,

g′3(s) =

(
iκ

2

)(
1

2
− iκs

2

)−β1

×

[
3Γ(2− β)

√
πΓ
(
1
2 − β

) (− iκs
2

)− 5
2+β1

log

(
− iκs

2

)
+O

(
|s|− 5

2+β1

)]
,
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g′4(s) =

(
iκ

2

)(
1

2
+
iκs

2

)β1

×

[
3Γ(β)

4
√
πΓ
(
1
2 + β

) (− iκs
2

)− 5
2−β1

log

(
− iκs

2

)
+O

(
|s|− 5

2−β1

)]
.

Thus, we have the same bounds for χ̂, that is,

|χ̂(t; k, η)| ≲ ⟨s⟩−
3
2+ν ⟨s0⟩

3
2+ν

∣∣∣Ψ̂0(k, η)
∣∣∣+

∣∣∣Υ̂0(k, η)
∣∣∣

⟨s0⟩ |k|

 ,

when 0 < B2 < 1
4 ;

|χ̂(t; k, η)| ≲ ⟨s⟩−
3
2 ⟨s0⟩

3
2

∣∣∣Ψ̂0(k, η)
∣∣∣+

∣∣∣Υ̂0(k, η)
∣∣∣

⟨s0⟩ |k|

 ,

when B2 > 1
4 , and

|χ̂(t; k, η)| ≲ ⟨s⟩−
3
2 ⟨s0⟩

3
2 ⟨log ⟨s⟩⟩ ⟨log ⟨s0⟩⟩

∣∣∣Ψ̂0(k, η)
∣∣∣+

∣∣∣Υ̂0(k, η)
∣∣∣

⟨s0⟩ |k|

 ,

when B2 = 1
4 .

Since

e−
1
2βyvy(t;x, y) = e−

1
2βy∂xψ(t;x, y) = ∂xe

− 1
2βyϕ(t;x− ty, y) = ∂zχ(t; z, y),

e−
1
2βyvx(t;x, y) =e−

1
2βy (−∂yψ(t;x, y)) = e−

1
2βy(−∂y + t∂z)ϕ(t; z, y)

=(−∂y + t∂z)
(
e−

1
2βyϕ(t; z, y)

)
− 1

2
βe−

1
2βyϕ(t; z, y)

=

(
−∂y + t∂z −

1

2
β

)
χ(t;x, y),

the decay estimates for e−
1
2βyvx and e−

1
2βyvy (in Theorem 1.2 (i)-(iii)) can

be proved as in the Boussinesq case. The decay of the density variation can
be obtained similarly.

5.2. The case B2 = 0

When B2 = 0, i.e., β = 0, the linearized equations are exactly the same as
the Boussinesq case. Thus all the estimates are the same.

6. Dispersive decay in the absence of shear

The shear plays a crucial role in the inviscid damping. Without a shear, the
decay mechanism is totally different. When B2 < ∞, the decay of ∥v∥L2 is
due to the mixing of vorticity caused by the shear motion. When B2 = ∞,
∥v∥L2 does not decay but we have the decay of ∥v∥L∞ due to dispersive
effects of the linear waves in a stably stratified fluid.
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6.1. Boussinesq Case

When there is no shear, i.e. R = 0, B2 = ∞, the equations (2.14-2.15) become

∂t∆ψ = −∂x
( ρ
A

)
g, ∂t

( ρ
A

)
= β∂xψ.

Denote T = ρ
βA , then above equations become

∆ψt = −∂xTβg, (6.1)

∂tT = ∂xψ. (6.2)

6.1.1. The L2 Stability. Multiplying (6.1) by ψ and then integrating by parts
with (6.2), we get the following invariant

d

dt

(
βg

∫∫
T 2dxdy +

∫∫
|∇ψ|2 dxdy

)
= 0.

This shows that in the L2 norm, the perturbations of velocity and density
are Liapunov stable but do not decay. However, below we show that their
L∞ norms decay due to the dispersive effects.

6.1.2. The L∞ Decay. First, we solve (6.1)-(6.2) by Fourier transforms. De-
note N2 = βg to be the squared Brunt-Väisälä frequency. By Fourier trans-
form (x, y) → (k, η), (

(iη)2 + (ik)2
)
ψ̂t = −(ik)N2T̂ , (6.3)

T̂t = (ik)ψ̂. (6.4)

Combining (6.3)-(6.4), we get

d2

dt2
ψ̂ = −λ2ψ̂,

where λ2(k, η) = k2N2

k2+η2 . For k ̸= 0, its solutions are

ψ̂(t) = C1e
iλt + C2e

−iλt.

By initial conditions,

ψ̂(0) = C1 + C2 = ψ̂0, ψ̂′(0) = iλ(C1 − C2) =
iλ2

k
T̂ 0,

thus

C1,2 =
1

2

(
ψ̂0 ± λ

k
T̂ 0

)
.

By (6.3),

T̂ = − ik

λ2
ψ̂t =

k

λ

(
C1e

iλt − C2e
−iλt

)
.

To prove the L∞ decay of solutions, we need two lemmas.

Lemma 6.1. (Van der Corput) Let h(x) be either convex or concave on [a, b]
with −∞ ≤ a < b ≤ ∞. Then∣∣∣∣∫ a

b

eih(η)dη

∣∣∣∣ ≤ 2

(
min
[a,b]

|h′|
)−1

,

∣∣∣∣∫ a

b

eih(η)dη

∣∣∣∣ ≤ 4

(
min
[a,b]

|h′′|
)− 1

2

. (6.5)



26 J. Yang and Z. Lin

Lemma 6.2. For λ(k, η) = |k|N√
k2+η2

and n sufficiently large,∣∣∣∣∫ n

−n

ei(λt+ηy)dη

∣∣∣∣ ≲ |k| 32 |Nt|− 1
3 + |Nt|− 1

2 |k|− 1
2n

3
2 .

Proof. We can assume N = 1 without loss of generality. Notice that

λ(η) =
1√

1 +
(
η
k

)2 =
⟨η
k

⟩−1

,

λ′(η) =− η

k2

⟨η
k

⟩−3

,

λ′′(η) =
2η2 − k2

k4

⟨η
k

⟩−5

,

and λ(η) has two inflection point, η1,2 = ±
√
2
2 k. Let n >

√
2
2 |k|. Choose ϵ > 0

so small that all the Taylor’s expansion below are valid in (ηi − ϵ, ηi + ϵ) , i =
1, 2. Define

S1 = (−n, η1 − ϵ) ∪ (η1 + ϵ, η2 − ϵ) ∪ (η2 + ϵ, n) .

By (6.5), we have∣∣∣∣∫
S1

ei(λt+ηy)dη

∣∣∣∣ ≤4

(
min
[a,b]

|t||λ′′|
)− 1

2

=4|t|− 1
2

(
2n2 − k2

k4

⟨n
k

⟩−5
)− 1

2

≲|k|− 1
2 |t|− 1

2n
3
2 ,

provided n = n(ϵ) is sufficiently large. For large t, we can divide (η1 − ϵ, η1 +

ϵ) =
{
|t|− 1

3 < |η − η1| < ϵ
}
∪
{
|η − η1| ≤ |t|− 1

3

}
= S2 ∪ S3, so that∣∣∣∣∫ η1+ϵ

η1−ϵ

ei(λt+ηy)dη

∣∣∣∣ ≤ 4|t|− 1
2

(
min
S2

|λ′′|
)− 1

2

+ 2|t|− 1
3 .

For η ∈ S2, we have

|λ′′(η)| =
∣∣2η2 − k2

∣∣
k4

⟨η
k

⟩−5

=
2 |η − η1| |η − η2|

k4

⟨η
k

⟩−5

>
2 |η − η2|

k4

⟨η
k

⟩−5

|t|− 1
3

≳|k|−3|t|− 1
3 .

Therefore∣∣∣∣∫ η1+ϵ

η1−ϵ

ei(λt+ηy)dη

∣∣∣∣ ≲ 4|t|− 1
2

(
|k|−3|t|− 1

3

)− 1
2

+ 2|t|− 1
3 ≲ |k| 32 |t|− 1

3 .
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Applying similar estimates to (η2 − ϵ, η2 + ϵ) will complete the proof of this
lemma. □

Now we prove the L∞ decay of the solutions of (6.1)-(6.2). By Fourier
inverse transform formula,

P̸=0ψ(t;x, y) =
1

2π

∑
k ̸=0

(
eikx

∫ ∞

−∞
ψ̂(t)eiηydη

)

=
1

2π

∑
k ̸=0

(
eikx

∫ ∞

−∞

(
C1(k, η)e

iλt + C2(k, η)e
−iλt

)
eiηydη

)
,

where ∣∣∣∣∫ ∞

−∞
C1(k, η)e

iλteiηydη

∣∣∣∣
≤1

2

∣∣∣∣∫ ∞

−∞
ψ̂0(k, η)eiλteiηydη

∣∣∣∣+ 1

2|k|

∣∣∣∣∫ ∞

−∞
λT̂ 0(k, η)eiλteiηydη

∣∣∣∣ .
Define

I(y) =

∫ n

−n

eiλ(k,η)tψ̂0(k, η)eiηydη

=
√
2π
(
eiλ(k,η)tχ[−n,n]ψ̂0(k, η)

)∨
(y)

=
(
eiλ(k,η)tχ[−n,n]

)∨
∗ ψ̂0(k, y),

then

∥I(y)∥L∞ ≤
∥∥∥∥(eiλ(k,η)tχ[−n,n]

)∨∥∥∥∥
L∞

y

∥ψ̂0(k, ·)∥L1
y

≤
∥∥∥∥∫ n

−n

eiλ(k,η)teiηydη

∥∥∥∥
L∞

y

∥ψ̂0(k, ·)∥L1
y
.

Here, ∨ stands for the inverse Fourier transform. By lemma 6.2, we have∣∣∣∣∫ ∞

−∞
ψ̂0(k, η)eiλteiηydη

∣∣∣∣
≤
∫
|η|>n

∣∣∣ψ̂0(k, η)
∣∣∣dη + |I(y)|

≲
(∫

|η|>n

⟨η⟩−2α
dη

) 1
2

∥ψ̂0(k, ·)∥Hα
y

+
(
|k| 32 |Nt|− 1

3 + |k|− 1
2 |Nt|− 1

2n
3
2

)
∥ψ̂0(k, ·)∥L1

y

≲
(
n−α+ 1

2 + |k| 32 |t|− 1
3 + |k|− 1

2 |t|− 1
2n

3
2

)(
∥ψ̂0(k, ·)∥Hα

y
+ ∥ψ̂0(k, ·)∥L1

y

)
.
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Choose n = |t|
1

2α+2 , for α ∈
(
1
2 ,

7
2

]
, we have∣∣∣∣∫ ∞

−∞
ψ̂0(k, η)eiλteiηydη

∣∣∣∣ ≲ |k| 32 |t|−
2α−1
4α+4

(
∥ψ̂0∥Hα

y
+ ∥ψ̂0∥L1

y

)
.

If the initial condition is smooth enough, then∣∣∣∣∫ ∞

−∞
ψ̂0(k, η)eiλteiηydη

∣∣∣∣ ≲ |k| 32 |t|− 1
3

(
∥ψ̂0∥

H
7/2
y

+ ∥ψ̂0∥L1
y

)
.

Similarly,∣∣∣∣∫ ∞

−∞
λT̂ 0(k, η)eiλteiηydη

∣∣∣∣ ≲ N |k| 32 |t|− 1
3

(
∥T̂ 0∥

H
7/2
y

+ ∥T̂ 0∥L1
y

)
.

Therefore, we have

∥P ̸=0ψ̂(t; k, ·)∥L∞
y

≲|t|− 1
3

(
|k| 32 ∥ψ̂0∥

H
7/2
y

+ |k| 32 ∥ψ̂0∥L1
y

+|k| 12 ∥T̂ 0∥
H

7/2
y

+ |k| 12 ∥T̂ 0∥L1
y

)
.

Hence the decay in L2
xL

∞
y is obtained:

∥P ̸=0ψ∥L2
xL

∞
y

≲|t|− 1
3

(
∥ψ0∥

H
3/2
x H

7/2
y

+ ∥ψ0∥
H

3/2
x L1

y

+∥T 0∥
H

1/2
x H

7/2
y

+ ∥T 0∥
H

1/2
x L1

y

)
,

∥P ̸=0v
x∥L2

xL
∞
y

≲|t|− 1
3

(
∥ψ0∥

H
3/2
x H

9/2
y

+ ∥ψ0∥
H

3/2
x W 1,1

y

+∥T 0∥
H

1/2
x H

9/2
y

+ ∥T 0∥
H

1/2
x W 1,1

y

)
,

∥vy∥L2
xL

∞
y

≲|t|− 1
3

(
∥ψ0∥

H
5/2
x H

7/2
y

+ ∥ψ0∥
H

5/2
x L1

y

+∥T 0∥
H

3/2
x H

7/2
y

+ ∥T 0∥
H

3/2
x L1

y

)
.

Similarly, for the density we have

∥P ̸=0T∥L2
xL

∞
y

≲|t|− 1
3

(
∥ψ0∥

H
5/2
x H

9/2
y

+ ∥ψ0∥
H

5/2
x W 1,1

y

+∥T 0∥
H

3/2
x H

7/2
y

+ ∥T 0∥
H

3/2
x L1

y

)
.

Below, we show that the decay rate |t|− 1
3 obtained above is sharp by

constructing an example. Recall that the solution to (6.3)-(6.4) is

ψ̂(t; k, η) = C1e
iλt + C2e

−iλt.

where k ̸= 0, λ2(k, η) = k2N2

k2+η2 and C1,2(k, η) are determined by ψ̂0, T̂ 0.

Therefore, for a fixed k, we consider a function of the form

ψ̂(t; k, η) = f(η)eiλt,

where f(η) is to be chosen below. By the Fourier inverse formula

ψ(t; k, y) =
1√
2π

∫ ∞

−∞
f(η)eiλt+iηydη.
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We will look at the value of ψ at y = ct where c is a constant to be determined
later. Define

g(η) := λ (η) + cη =
kN√
k2 + η2

+ cη.

We note that η∗ = k√
2
is one inflection point of λ (η) (the other one is − k√

2
).

Let c = 2N
3
√
3k
, then g′′ (η∗) = λ′′ (η∗) = 0,

g′ (η∗) = −η
∗N

k2

⟨
η∗

k

⟩−3

+ c = − 2N

3
√
3k

+ c = 0,

and

g′′′ (η∗) = −N

k3

⟨
η∗

k

⟩−7
(
−9

η∗

k
+ 6

(
η∗

k

)3
)

=
N

k3
16

27

√
3 > 0

Thus near η∗, we have

g (η) = g(η∗) +
1

6
g′′′ (η∗) (η − η∗)

3
+ o

(
(η − η∗)

3
)
, (6.6)

and

g′ (η) =
1

2
g′′′ (η∗) (η − η∗)

2
+ o

(
(η − η∗)

2
)
. (6.7)

Choose δ > 0 small such that (6.6) and (6.7) hold true in I = (η∗ − δ, η∗ + δ).
In particular, g′ (η) > 0 when η ∈ I and η ̸= η∗, thus g (η) is monotone in I.
For a function f with its support in I, letting u = g(η) we have

ψ̂(t; k, ct) =
1√
2π

∫ ∞

−∞
f(η)eiλt+iηctdη

=
1√
2π

∫ ∞

−∞
f(g−1(u))eiut

1

g′ (g−1(u))
du.

In the above, 1
g′(g−1(u)) has singularity at u∗ = g(η∗) = 4

√
2

3
√
3
N . Since

u = g (η) = u∗ +O(η − η∗)3, η ∈ I,

so the order of singularity is

1

g′ (g−1(u))
= O

(
1

|η − η∗|2

)
= O

(
1

|u− u∗|
2
3

)
. (6.8)

Choose

f(η) =
g′ (η)

|g (η)− u∗|
2
3

χI (η) =
g′
(
g−1(u)

)
|u− u∗|

2
3

χI (η) ,

which by (6.8) is smooth in its support I. Hence the inverse Fourier transform
of f is smooth, and has finite Hs

y norm for arbitrarily s > 0. By (6.6),

a− = g (η∗ − δ)− g (η∗) < 0, a+ = g (η∗ + δ)− g (η∗) > 0.
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Therefore, we have

ψ̂(t; k, ct) =
1

2π

∫ g(η∗+δ)

g(η∗−δ)

1

|u− u∗|
2
3

eiutdu

=
eiu

∗t

2π

∫ a+

a−

ξ−
2
3 eiξtdξ

=
eiu

∗t

2πt
1
3

∫ a+t

a−t

ξ′
− 2

3 eiξ
′
dξ′,

while

lim
t→+∞

∫ a+t

a−t

ξ′
− 2

3 eiξ
′
dξ′ =

∫ ∞

−∞
x−

2
3 eixdx =

√
3Γ

(
1

3

)
.

Therefore, ∥ψ̂(t; k, ·)∥L∞
y

cannot decay faster than t−
1
3 .

Remark 6.3. The optimal t−
1
3 decay obatined above for (x, y) ∈ T× R is

essentially for the one dimensional case (in y). By contrast, in [12] the dis-

persive decay of solutions of (6.1)-(6.2) was shown to be t−
1
2 for the 2D case,

i.e., (x, y) ∈ R2. The decay rate in [12] was obtained by the Littlewood-Paley
decomposition and stationary phase lemma.

6.2. Original Euler Equation

When there is no shear, i.e. R = 0, the original Euler equations (2.7-2.8)
become

−β∂t∂yψ + ∂t∆ψ =− ∂x

(
ρ

ρ0

)
g,

∂t

(
ρ

ρ0

)
=β∂xψ.

Likewise, define T = ρ
βρ0(y)

, then the equations read

(−β∂y +∆)ψt = −∂xTβg, (6.9)

∂tT = ∂xψ. (6.10)

Let Ψ = e−
1
2βyψ,Υ = e−

1
2βyT , then the equations (6.9)-(6.10) become(

−1

4
β2 +∆

)
Ψt = −N2∂xΥ, ∂tΥ = ∂xΨ. (6.11)

By the Fourier transform (x, y) → (k, η), we have(
−1

4
β2 + (iη)2 + (ik)2

)
Ψ̂t = −(ik)N2Υ̂, Υ̂t = (ik)Ψ̂.

Therefore,
d2

dt2
Ψ̂ = −λ2Ψ̂,

where

λ2 =
k2N2

k2 + η2 + β2

4

.
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Its solutions are
Ψ̂(t) = C1e

iλt + C2e
−iλt,

where

C1,2 =
1

2

(
Ψ̂0 ± λ

k
Υ̂0

)
.

Similar to the Boussinesq case, we have the following conservation law for
(6.11)

0 =
d

dt

(∫∫ (
1

4
β2 |Ψ|2 + |∇Ψ|2 +N2 |Υ|2

)
dxdy

)
.

By integration by parts,∫∫ (
1

4
β2 |Ψ|2 + |∇Ψ|2 +N2 |Υ|2

)
dxdy

=
∥∥∥e− 1

2βyvx
∥∥∥2
L2

+
∥∥∥e− 1

2βyvy
∥∥∥2
L2

+
g

β

∥∥∥∥e− 1
2βy

ρ

ρ0

∥∥∥∥2
L2

.

This shows that there is no decay in the L2 norm for e−
1
2βyv and e−

1
2βy ρ

ρ0
.

For the L∞ decay, notice that

λ2 =
k2N2

k2 + η2 + β2

4

=
m2 (κN)

2

m2 + η2
.

where m =
√

1
4β

2 + k2, κ = k
m . By lemma 6.2 we have∣∣∣∣∫ n

−n

ei(λt+ηy)dη

∣∣∣∣ ≲|m| 32 |κNt|− 1
3 + |κNt|− 1

2 |m|− 1
2n

3
2

≃|k| 32 |t|− 1
3 + |t|− 1

2 |k|− 1
2n

3
2 ,

since κ ≃ 1,m ≃ k. Accordingly, we have

∥e− 1
2βyP ̸=0ψ∥L2

xL
∞
y

≲|t|− 1
3

(
∥Ψ0∥

H
3/2
x H

7/2
y

+ ∥Ψ0∥
H

3/2
x L1

y

+∥Υ0∥
H

1/2
x H

7/2
y

+ ∥Υ0∥
H

1/2
x L1

y

)
,

∥e− 1
2βyP̸=0v

x∥L2
xL

∞
y

≲|t|− 1
3

(
∥Ψ0∥

H
3/2
x H

9/2
y

+ ∥Ψ0∥
H

3/2
x W 1,1

y

+∥Υ0∥
H

1/2
x H

9/2
y

+ ∥Υ0∥
H

1/2
x W 1,1

y

)
,

∥e− 1
2βyvy∥L2

xL
∞
y

≲|t|− 1
3

(
∥Ψ0∥

H
5/2
x H

7/2
y

+ ∥Ψ0∥
H

5/2
x L1

y

+∥Υ0∥
H

3/2
x H

7/2
y

+ ∥Υ0∥
H

3/2
x L1

y

)
,

∥e− 1
2βyP̸=0T∥L2

xL
∞
y

≲|t|− 1
3

(
∥Ψ0∥

H
5/2
x H

9/2
y

+ ∥Ψ0∥
H

5/2
x W 1,1

y

+∥Υ0∥
H

3/2
x H

7/2
y

+ ∥Υ0∥
H

3/2
x L1

y

)
.
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