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Abstract. We consider the linear stability problem for a 3D cylindrically
symmetric equilibrium of the relativistic Vlasov–Maxwell system that de-
scribes a collisionless plasma. For an equilibrium whose distribution func-
tion decreases monotonically with the particle energy, we obtained a linear
stability criterion in our previous paper [24]. Here we prove that this cri-
terion is sharp; that is, there would otherwise be an exponentially growing
solution to the linearized system. We also treat the considerably simpler
periodic 11

2 D case. The new formulation introduced here is applicable
as well to the non-relativistic case, to other symmetries, and to general
equilibria.

1. Introduction

We consider a plasma at such high temperature or low density that colli-
sions can be ignored compared with the electromagnetic forces. Such a col-
lisionless plasma is modeled by the relativistic Vlasov–Maxwell (RVM)
system. We assume all physical constants like the speed of light c and
the mass of particles m to be 1, for the sole purpose of simplifying our
notation. All the results we obtain below can be modified straightfor-
wardly to apply to the true physical situations with general masses, charges,
etc. In the physical literature, the non-relativistic version of the Vlasov–
Maxwell system is more commonly considered but our results easily ex-
tend to that case. Our notation is as follows. Let f ±(t, x, v) be the ion
and electron distribution functions, E(t, x) and B(t, x) be the electric
and magnetic fields and Eext, Bext be the external fields. Then the RVM
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system is

∂t f ± + v̂ · ∇x f ± ± (E + Eext + v̂ × (B + Bext)) · ∇v f ± = 0,(1a)

∂tE = ∇ × B − j, ∇ · E = ρ, ρ =
∫

( f + − f −)dv,(1b)

∂tB = −∇ × E, ∇ · B = 0, j =
∫

v̂( f + − f −)dv,(1c)

where v̂ = v/〈v〉 and 〈v〉 = √
1 + |v|2. Alternatively, in many physical

problems [3,4], a non-neutral plasma is also considered, where there is only
a single species of particle.

One of the central problems in the theory of plasmas is to understand
plasma stability and instability [26,30]. For example, to control the plasma
instability in a fusion device is a key issue for the nuclear fusion program.
Many other examples occur in astrophysical contexts. So far, most studies
on plasma stability are based on macroscopic MHD models. For such fluid
models, the famous energy principle was discovered by Bernstein, Frie-
man, Kruskal and Kulsrud [2] in the 1950s, first for static equilibria and
later for symmetry-preserving perturbations of symmetric equilibria [27].
These energy principles allow one to reduce the study of linear stability
to checking the positivity of a certain relatively simple quadratic energy
form W(ξ, ξ). They have been widely used in the plasma physics com-
munity [5,8] to study many types of important plasma instabilities. How-
ever, the collision-dominant assumption required in deriving these MHD
models from kinetic models is seriously violated in many almost collision-
less situations in nuclear fusion [5] and space plasmas [28]. This puts into
question the applicability of such energy principles in physical situations
where collisions are infrequent. While energy principles have been derived
for some simple approximate models, such as collisionless MHD and guid-
ing center models [19,20,9], there have been very few such studies on the
more accurate but more complicated microscopic Vlasov–Maxwell models.
A good understanding of stability for Vlasov systems could provide a theor-
etical basis to compare and check the validity of stability results for various
approximate plasma models like MHD. Moreover, many plasma instabil-
ity phenomena have an essentially microscopic nature, for which kinetic
models like Vlasov–Maxwell are required [28].

Combining the results of this paper with [24], we have established
an energy principle for a large class of symmetric equilibria of various
Vlasov–Maxwell systems. More precisely, for a large class of equilibria that
enjoy certain kinds of symmetry, the study of linear stability of symmetry-
preserving perturbations is reduced to simply checking the positivity of
a self-adjoint operator L0, or equivalently the positivity of the quadratic
form (L0ξ, ξ). Compared with the usual MHD energy principle, our energy
principle has several new features and advantages. In the MHD case, the
quadratic energy form W(ξ, ξ) can be written as (Fξ, ξ) where the force
operator F has a complicated spectral structure such as gaps in its essential
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spectrum [8]. It is difficult to analyze, especially in higher dimensions
and in non-trivial magnetic field geometries. Our operator L0 for RVM
is essentially an elliptic operator plus a bounded non-local term and thus
has a relatively simple spectral structure. This structure allows us to obtain
important additional information about the linear instability. For example,
we show that the maximal growth rate is controlled by the lowest negative
eigenvalue of L0 and that the number of growing modes equals the number
of negative eigenvalues of L0.

Linear stability under the condition L0 ≥ 0 was proven in [24]. The
main result of the present paper is to prove the converse; that is, to construct
a growing mode if L0 � 0. As in [24] we specifically consider two RVM
models, the simpler 11

2 D periodic case with x ∈ R, v ∈ R2, and the full
3D case in the whole space R3 with cylindrical symmetry. However, our
methods are also applicable to Vlasov–Maxwell models with other sym-
metries, with boundary conditions, or in a non-relativistic setting, and will
yield similar results.

Now we state our main result for the cylindrically symmetric 3D case.
As remarked in [24], the existence of a plasma equilibrium of the 3D
RVM model in the whole space requires an external field. To simplify
notation we consider a 3D non-neutral electron plasma with an external
field. This scenario does indeed occur in many physical situations [3].
So f + = 0, and instead of f − we use the notation f for the electrons.
Our equilibrium is cylindrically symmetric with electron distribution f 0 =
µ(e, p), where

e =
√

1 + |v|2 − φ0(r, z) − φext(r, z),

p = r
(
vθ − A0

θ(r, z) − Aext
θ (r, z)

)
and with equilibrium fields

E0 = −∂rφ
0er − ∂zφ

0ez, B0 = −∂z A0
θer + 1

r
∂r

(
rA0

θ

)
ez.

In order to be an equilibrium, (A0
θ , φ

0) must satisfy the elliptic system

∆φ0 = ∂zzφ
0 + ∂rrφ

0 + 1

r
∂rφ

0 =
∫

µdv(2)
(

∆ − 1

r2

)
A0

θ = ∂zz A0
θ + ∂rr A0

θ + 1

r
∂r A0

θ − 1

r2
A0

θ =
∫

v̂θµdv.(3)

Here we use cylindrical coordinates (r, θ, z) and denote by (er, eθ , ez) the
standard basis. We also assume axisymmetry of the external fields in the
form

Eext = −∂rφ
ext(r, z)er − ∂zφ

extez,

Bext = −∂z Aext
θ (r, z)er + 1

r
∂r

(
rAext

θ

)
ez.
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We assume that the equilibrium is confined, namely that f 0 has compact
support S in phase space. Having compact support is a realistic assump-
tion for a confined plasma. We make the further assumption that f 0 and
E0, B0 are continuous everywhere, including on the boundary of the support.
In [24], with properly chosen external fields, an example of a continuous
non-neutral plasma equilibrium with support in a torus was constructed.
We also assume that ∂µ/∂e = µe < 0 inside S. This condition is widely
believed to make the equilibrium more likely to be stable [3,9,29]. We
study the stability of such an equilibrium under perturbations that preserve
cylindrical symmetry.

In order to state our main results, we define certain linear operators
acting on cylindrically symmetric scalar functions h ∈ L2(R3) by

A0
1h = −∂zzh − ∂rrh − 1

r
∂rh −

∫
µedvh +

∫
µeP (h)dv,(4)

A0
2h = −∂zzh − ∂rrh − 1

r
∂rh + 1

r2
h −

∫
v̂θµpdvrh −

∫
v̂θµeP (v̂θh)dv,

(5)

B0h =
∫

µeP (v̂θh)dv −
∫

v̂θµedvh,(6)

and

L0 = (B0)∗(A0
1

)−1
B0 + A0

2,(7)

where P is the projection operator of L2
|µe| onto ker D. Here D denotes the

transport operator associated with the steady fields, namely

D = v̂ · ∇x + (E0 + Eext + v̂ × (B0 + Bext)) · ∇v

and L2
|µe| denotes the |µe|-weighted L2

x,v space. It was proven in [24] that
these operators are well-defined and that L0 is self-adjoint. First we recall
our previous result in [24].

Theorem 1.1 ([24]). Consider a non-negative axisymmetric equilibrium
( f 0, E0, B0) as above with compact support S in phase space. Assume
µe < 0 inside S. For axisymmetric perturbations, we have following results.

(i) L0 ≥ 0 implies spectral stability. That is, if L0 ≥ 0 then there does
not exist a growing mode.

(ii) Any growing mode must be purely growing. That is, if

[eλt f(x, v), eλtE(x), eλtB(x)] (Reλ > 0)

with E, B ∈ L2, f ∈ L1 ∩ L∞ is a solution of the linearized system,
then λ is real.

(iii) If L0 � 0 and −α2 denotes the lowest negative eigenvalue of the
operator L0, then the maximal growth rate λ cannot exceed α.
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Theorem 1.1 asserts the linear stability if L0 ≥ 0 and it also estimates
the maximal growth rate if L0 � 0. However, it leaves open the converse,
namely the question of the existence of a growing mode when L0 � 0.
In this paper, we fill this gap by showing that there indeed always exists
a growing mode if L0 � 0. This is the main result of the present paper.

Theorem 1.2. Under the same assumptions as in Theorem 1.1,

(i) if L0 � 0, there exists a growing mode; that is, an exponentially
growing weak solution

[eλt f(x, v), eλtE(x), eλtB(x)] (λ > 0)

of the linearized problem with f ∈ L1 ∩ L∞ and E, B ∈ H1.
(ii) The dimension of the space of symmetry-preserving growing modes

equals the dimension of the negative eigenspace of L0.

The combination of Theorems 1.1 and 1.2, establishes an “energy princi-
ple” for this class of equilibria, in terms of the relatively simple operator L0.
Thus this operator L0 not only provides the sharp stability criterion, but also
contains information about the number of unstable modes and their maximal
growth rate. The projection P that occurs in the definition of L0 is a highly
non-local operator since Ph(x, v) turns out to be essentially the average
of h in the phase space occupied by the particle trajectory with the steady
field (E0 + Eext, B0 + Bext) starting at (x, v). So our sharp stability criterion
L0 ≥ 0 is also highly non-local, which reflects the collective nature of
plasma stability. Because of the condition µe < 0, it turns out that all the
non-local terms are stabilizing.

In [11], Y. Guo investigated the stability of a two-species plasma satisfy-
ing 3D RVM without external fields, in a bounded domain with the perfectly
conducting boundary condition. In a similar setting to ours, a sufficient con-
dition for stability was obtained in [11] by the energy-Casimir method.
Extending the calculations in [11] to the whole space case, we would obtain
the stability condition that L0 > 0, where L0 is the differential operator

L0 = −∂zz − ∂rr − 1

r
∂r + 1

r2
− r

∫
v̂θµpdv,(8)

the last two terms being multiplication operators. However, since L0 > L0,
the stability criterion L0 ≥ 0 in our Theorem 1.1 is a significant im-
provement because of the additional stabilizing effects that come from the
non-local terms in L0. More importantly, in the 11

2 D case discussed below,
we showed in [24] that these non-local stabilizing terms are indispensable to
prove the stability of any equilibrium, even a homogeneous one. We believe
that the non-local stabilizing terms must play an important role in plasma
stability in the 3D case as well.

The simplest case that permits a magnetic field is the so-called
11

2 dimensional case. In this case, physical space is one-dimensional x ∈ R
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and momentum space is two-dimensional v = (v1, v2) ∈ R2. Moreover,
E = (E1, E2, 0) and B = (0, 0, B). We consider solutions that are periodic
in x and we may assume that there is no external field. In Sect. 2, before
going on to the proofs of Theorems 1.1 and 1.2 in 3D, we prove precise
analogues of our theorems for this much simpler case.

Our condition that L0 ≥ 0 or that L0 	≥ 0 can be verified in several
important cases. The simplest one is the purely 1D case for a homogeneous
equilibrium ( f 0 depending only on v), for which there is an explicit dis-
persion relation and the celebrated Penrose criterion. However, even for
a homogeneous equilibrium for which magnetic effects are included, the
problem becomes quite complicated. In fact, in [17] and in Sect. 4.1 of [24],
the stability criterion is worked out explicitly in terms of inequalities on
four weighted integrals of derivatives of µ.

In Sects. 4.2–4.4 of [24], we explicitly work out our stability criterion for
a periodic purely magnetic equilibrium in 11

2 D that is a small perturbation
of a homogeneous equilibrium, with minimal period P. There we prove in-
stability of any such periodic equilibrium under perturbations of period 2P.
Furthermore, we prove the stability of a particular class of equilibria under
perturbations of period P. More specifically, we construct an example of
the form µ+ = µ− = σ(〈v〉)(1 + p2) that is unstable under perturbations of
period 2P but stable under perturbations of period P. Thus perturbations of
longer wavelength are more likely to induce instability. The non-local term
in L0 plays a crucial role in these explicit results. In [25], we also prove the
validity of these stability and instability results on the non-linear dynamical
level.

Of course, in general an explicit verification of the location of the spec-
trum of a self-adjoint operator is not an easy task. Our result reduces
a complicated eigenvalue problem in the 6D phase space to the study of
a self-adjoint elliptic operator in the 3D physical space, and thus is much
easier to implement in the numerical study of plasma stability. Moreover,
our sharp criterion can be used to further derive simpler stability criteria in
some important physical regimes, such as the practical case of very large
external magnetic fields in the fusion reactors.

We now sketch the main ideas in the proofs of Theorems 1.2 and its
11

2 dimensional analogue, which are concerned with the construction of
growing modes provided that L0 � 0. We begin with some brief histor-
ical comments on linear instability for Vlasov systems. One of the main
difficulties in studying Vlasov instability is its collective and thus highly
non-local nature. In the physics literature, most classical studies [26,30]
treat homogeneous equilibria with vanishing electric and magnetic fields,
in which case an explicit algebraic dispersion relation is usually available.
However, any non-trivial electromagnetic field will make the dispersion
relations much more difficult to analyze because they depend upon some
complicated trajectory integrals. In [13] and later publications [14–16], Guo
and Strauss developed a perturbation approach to prove the instability of
some weakly inhomogeneous equilibria of Vlasov systems. They proved the
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instability of various electromagnetic structures that are close to an unstable
homogeneous equilibrium. In [22] Lin developed a new non-perturbative
approach to find purely growing modes for highly inhomogeneous equilibria
of 1D Vlasov–Poisson. This approach has recently been used [12] as well
for galaxy models satisfying 3D Vlasov–Poisson. There are two elements in
this approach. The first is to formulate a family of dispersion operators for
the electric potential, depending on a positive parameter λ. The second is to
prove the existence of a purely growing mode by finding a parameter λ0 for
which the dispersion operator has a non-trivial kernel. The key observation
is that these dispersion operators are self-adjoint due to the reversibility of
the particle trajectories. A continuity argument is applied to find the param-
eter λ0 corresponding to a growing mode, by comparing the spectra of the
dispersion operators for very small and very large values of λ.

Let us explain the difficulties in extending this approach to the full
electromagnetic case. We first recall the method in [24] for the periodic
11

2 D case. Assuming that the growing mode has periodic electromagnetic
potentials (φ,ψ) such that E1 = −∂xφ, B = ∂xψ, E2 = −∂tψ, we express f
in term of them by integrating along the trajectories. Plugging f into the
Maxwell system and using the condition µe < 0 to eliminate φ, we get
a self-adjoint dispersion operator for ψ alone. Then we apply the continuity
argument as in [22]. The difficulty with this approach is that the equation

∂t E1 = − j1(9)

(the first current equation of Maxwell) does not follow from the dispersion
operator. What we did in [24], under additional evenness assumptions in
the variable x, was to prove by means of a parity argument that j1 has zero
mean. Then (9) does indeed follow from the Poisson equation

∂x E1 = ρ

and we get a growing mode.
In order to make this construction in the 11

2 D case without any even-
ness assumption, we need a new formulation. To do this, we express
E1 = −∂xφ − λb where the scalar b is introduced to account for the possible
non-zero spatial average of E1 and λ is the exponential growth rate. Once
again we express f in terms of (φ,ψ, b) by integration over the trajectories
and plug it into the Maxwell system. Equation (9) can now be handled by
means of this additional number b. Again we eliminate φ using the con-
dition µe < 0 and the resulting equations for ψ and b can be written in
a self-adjoint matrix operator form. We then apply the continuity argument
to this new dispersion matrix by keeping track of its negative spectrum.

In the axisymmetric 3D case the proof of Theorem 1.2 is much more
subtle. We start with the electric potential φ and the magnetic potential
A = (Ar , Aθ , Az). Of course we define E = −∇φ − ∂tA and B = ∇ × A.
Our strategy is to represent f in terms of (φ, A) and plug it into the Maxwell
system to get a self-adjoint formulation for the electromagnetic potentials.
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Furthermore, we have the same difficulty as mentioned above that the current
equation

∂tE − ∇ × B = −j

does not follow from the construction. To surmount this difficulty as well
as achieve the self-adjointness, we impose the Coulomb gauge condition
∇ · A = 0 and use the cylindrical symmetry to define a “super-potential”
π(r, z) such that ∇×(πeθ ) = (Ar , 0, Az). This super-potential is an essential
part of our construction. The introduction of this “super-potential” π allows
us to separate the θ and (r, z) components of the current equation (40). The
resulting system for (φ, Aθ , π) indeed turns out to be self-adjoint.

We are looking for a growing mode solution [eλt f(x,v), eλtE(x), eλtB(x)]
for some λ > 0. We express f in terms of (φ, Aθ , π) by integrating along
the trajectories (characteristics) of the equilibrium to get formula (43) in
Sect. 3. This formula involves the non-local operator

(Qλk)(x, v) =
∫ 0

−∞
λeλsk(X(s; x, v), V(s; x, v))ds

where (X, V ) denotes the trajectories. Plugging the formula for f into the
Maxwell system, we get the system (45), (47), (48) of three equations for
the unknowns φ, Aθ and π. They are conveniently written in terms of several
linear operators Aλ

1,A
λ
2,A

λ
3,B

λ,Cλ,Dλ which involve Qλ and are defined
in Sect. 3. We then eliminate φ using the the condition µe < 0 and (45)
to get a 2 × 2 self-adjoint matrix operator Mλ for (Aθ , π), depending on
a positive parameter λ:

Mλ

(
Aθ

π

)
=

(
0
0

)
, Mλ =

(
Lλ (F λ)∗

F λ −Aλ
4

)
,

where the operators Lλ,F λ and Aλ
4 are certain combinations of the other

operators.
The continuity argument consists of showing that a portion of the spec-

trum of Mλ moves from negative to positive values as λ increases from 0
to ∞ and therefore there exists a λ > 0 such that Mλ has a non-trivial
kernel. To accomplish this, we count the number of its negative eigenval-
ues. However, this matrix operator is bounded neither from below nor from
above, so the continuity argument cannot be applied directly.

In fact, −Aλ
4 in the lower right corner of Mλ has an infinite-dimensional

negative spectrum. We perform an n-dimensional truncation using a pro-
jection operator Pn; see Sect. 5. The truncated operator Mλ

n has entries that
are high-order integro-differential operators. It is bounded from below by
a bound depending on n. We prove that it has at least n + 1 negative eigen-
values for some small λ > 0 and has at most n negative eigenvalues for
some large λ < ∞. In order to accomplish the former statement (λ small),
we have to take the limit as λ ↘ 0. In the upper left corner of Mλ we
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have Lλ, whose formal limit is what we have called L0. The main assump-
tion is that L0 has a negative eigenvalue. This involves the limit Qλ → P ,
where the operator P takes the phase-space average over trajectories. (See
Lemma 4.1(b) and the remark that follows it.) Thus by continuity Mλn

n has
a non-trivial kernel for some λn in between (see Sect. 6). This provides an
approximate growing mode.

In Sect. 7 we let n → ∞. The limit of the approximate growing mode
is shown to satisfy the original linearized Vlasov–Maxwell system weakly.
However, it is still very subtle to show that this limit indeed gives us a true
growing mode. There are two issues to clarify. The first is to show that the
limit does not vanish, for which we need a uniform bound of the approximate
growing modes. The second issue is to show that the growth rate λn does
not tend to zero as n goes to infinity. For this, we need to get uniform control
of the spectrum of Mλ

n for small λ and large n. This turns out to be quite
delicate since the operators involved merely converge to their limits weakly
as λ ↘ 0. In our proof the compactness of the support of the confined
plasma equilibria plays a crucial role, allowing us to get some compactness
of the operators.

As for Theorem 1.2(ii), the lower bound on the number of growing
modes is a corollary of the continuity argument. To get the upper bound,
the key observation is that any two growing modes are orthogonal in some
sense due to a certain invariance property proven in [24]. We note that such
counting formulae are unknown for the standard energy principles [2,20]
for approximate plasma models like MHD. In our case the simple spectral
structure of the operator L0 is essential.

The new formulation and techniques developed in this paper can also
be used to detect linear instability of general Vlasov–Maxwell equilibria
without the monotone assumption µe < 0. The idea is to formulate the
growing mode problem as a 3 × 3 indefinite matrix dispersion operator
including φ and then to use the truncation and continuity arguments to
study it. In this way we find a sufficient instability criterion by utilizing
the difference of the signatures of the matrix operators at small and large
parameters. We illustrate this idea in Sect. 9 by getting a instability criterion
in 11

2D purely magnetic case that generalizes the sharp criterion in the
monotone case.

The methods of this paper and of [24] can also be used for non-relativistic
Vlasov–Maxwell systems and also for other symmetries, for example, the
21

2 D Vlasov–Maxwell system with its z-symmetry [7]. For such cases, but
still assuming that the distribution function depends monotonically on the
particle energy, we can establish similar energy principles in terms of a cer-
tain self-adjoint operator L0. For the non-relativistic case the operator L0

is formally obtained from its relativistic version by dropping the hat in v̂.
Since the results and the proofs are similar to the cases we treat here, we do
not elaborate any further.

The paper is organized as follows. In Sect. 2, we treat the easier 11
2 D case.

The proof for the 3D case is split into six sections. In Sect. 3, we formulate
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the problem using (φ, Aθ , π) and derive the dispersion matrix operator Mλ

for (Aθ , π). In Sect. 4, we present the key mapping and spectral properties
of the operators appearing in the formulation. In Sect. 5, we study their
behavior for small λ and introduce the finite-dimensional truncation. In
Sect. 6, we find the approximate growing mode for each n. In Sect. 7, we
take the limit of the approximate growing modes. In Sect. 8, we check
that this limit is indeed a true growing mode. In Sect. 9, we extend our
formulation to equilibria that are not monotone in the energy e.

2. 11
2 dimensional case

In this case, the physical space is one-dimensional x ∈ R and the momentum
space is two-dimensional v = (v1, v2) ∈ R2. Moreover, E = (E1, E2, 0)
and B = (0, 0, B). Assuming no external fields and setting all physical
constants to be 1, system (1) reduces to the following 11

2 D RVM system

∂t f ± + v̂1∂x f ± ± (E1 + v̂2 B)∂v1 f ± ± (E2 − v̂1 B)∂v2 f ± = 0(10a)

∂t E1 = − j1, ∂t E2 + ∂x B = − j2(10b)

∂t B = −∂x E2, ∂x E1 = ρ(10c)

with

ρ =
∫

( f + − f −)dv, ji =
∫

v̂i( f + − f −)dv (i = 1, 2).

The main reason to consider 11
2 D RVM is its simplicity and yet it preserves

many of the essential features of 3D RVM. We refer to [28] for astrophysical
applications of this model and to [6] for a proof of global well-posedness. We
will consider solutions of the system (10) that are periodic in the variable x
with a given period P.

First we take a P-periodic equilibrium

f 0,± = µ±(e±, p±) = µ±(〈v〉 ± φ0(x), v2 ± ψ0(x)
)
,(11)

E0
1 = −∂xφ

0, E0
2 = 0, B0 = ∂xψ

0,

where the pair (φ0, ψ0) satisfies the ODE system

∂2
xφ

0 = −ρ0 = −
∫

( f 0,+ − f 0,−)dv,

∂2
xψ

0 = − j0
2 = −

∫
v̂2( f 0,+ − f 0,−)dv.

(12)

We assume that

µ± ≥ 0, µ± ∈ C1, µ±
e < 0,

∣∣µ±
e

∣∣ + ∣∣µ±
p

∣∣ ≤ c(1 + |e|)−α(13)
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for some α > 2. In [24] we proved that there exist infinitely many periodic
electromagnetic equilibria of the above form. Now we denote

D± = v̂1∂x ± (
E0

1 + v̂2 B0
)
∂v1 ∓ v̂1 B0∂v2,

L2
|µ±

e | = {
f

∣∣ f periodic in x, ‖ f ‖2
± ≡

∫ P

0

∫ ∞

−∞
| f |2∣∣µ±

e

∣∣dvdx < ∞}
,

and P ± = the projection operator of L2
|µ±

e | onto ker D±. We define the

following linear operators acting on L2
P(R), where the subscript P refers to

the periodicity.

A0
1h = −∂2

x h − (∑
±

∫
µedv

)
h +

∑
±

∫
µ±

e P ±hdv.(14)

A0
2h = −∂2

x h − ( ∑
±

∫
v̂2µ

±
p dv

)
h −

∑
±

∫
µ±

e v̂2 P ±(v̂2h)dv.(15)

B0h = ( ∑
±

∫
µ±

p dv
)
h +

∑
±

∫
µ±

e P ±(v̂2h)dv(16)

and

L0 = (B0)∗(A0
1

)−1
B0 + A0

2.(17)

Similarly to the 3D case, we proved in [24] the following theorem.

Theorem 2.1. Consider periodic perturbations of any equilibrium satisfy-
ing the conditions given above. Then

(i) L0 ≥ 0 implies spectral stability.
(ii) Any growing mode must be purely growing.
(iii) If −α2 denotes the lowest eigenvalue of the operator L0, then the

maximal growth rate cannot exceed α.

Moreover, it was shown in [24] that if ψ0, φ0 are even functions of x
around x = P/2 and if L0 has an even eigenfunction corresponding to
a negative eigenvalue, then there exists a growing mode. In the following
theorem proven in this section, we assert that L0 � 0 always implies the
existence of a growing mode, without any additional evenness assumptions.

Theorem 2.2. Under the same assumptions,

(i) If L0 � 0, then there exists a real periodic growing mode [eλt f(x, v),
eλt E(x), eλt B(x)] with f, E, B ∈ W1,1

P and λ > 0, where E = (E1, E2).
(ii) The dimension of the space of growing modes equals the dimension of

the negative eigenspace of L0.
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The combination of Theorems 2.1 and 2.2 provides an energy principle
for the 11

2 D case, in terms of the operator L0.

With the sole purpose of simplifying our notation, we present the proof in
the case of a constant ion background n0. (For the more general two-species
case, the proofs remain almost the same except for the more cumbersome
notation.) Then the 11

2 D RVM for one species becomes

∂t f + v̂1∂x f − (E1 + v̂2 B)∂v1 f − (E2 − v̂1 B)∂v2 f = 0(18a)

∂t E1 = − j1 =
∫

v̂1 fdv, ∂t B = −∂x E2(18b)

∂t E2 + ∂x B = − j2 =
∫

v̂2 fdv(18c)

with the constraint

∂x E1 = n0 −
∫

fdv.(19)

Fixing any such equilibrium with a period P, we will consider the sys-
tem (21) with periodic boundary conditions of the same period P.

The equilibrium is assumed to have the form f 0 = µ(e, p), E0
1 =

−∂xφ
0, E0

2 = 0, B0 = ∂xψ
0, where the electromagnetic potentials (φ0, ψ0)

satisfy the ODE system

∂2
xφ

0 = n0 −
∫

µ(e, p)dv, ∂2
xψ

0 =
∫

v̂2µ(e, p)dv

with the electron energy and the “angular momentum” defined by

e = 〈v〉 − φ0(x), p = v2 − ψ0(x).(20)

(The e is distinguished from the exponential e in context.) The only assump-
tions we make on µ are

µ ≥ 0, µ ∈ C1, µe ≡ ∂µ

∂e
< 0(21)

and, in order for
∫
(|µe| + |µp|)dv to be finite,

(|µe| + |µp|)(e, p) ≤ c(1 + |e|)−α for some α > 2.(22)

Hence the linearized evolution equations are

(∂t + D) f = µev̂1E1 − µpv̂1 B + (µev̂2 + µp)E2,(23)

where D is the transport operator associated with the steady fields,

D = v̂1∂x − (
E0

1 + v̂2 B0
)
∂v1 + v̂1 B0∂v2
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together with

∂x E1 = −
∫

fdv, ∂t E1 =
∫

v̂1 fdv,

∂t E2 + ∂x B =
∫

v̂2 fdv, ∂t B + ∂x E2 = 0.

(24)

We define the Hilbert space

L2
|µe| = {

f(x, v)
∣∣ f P-periodic in x, ‖ f ‖2

|µe | ≡
∫ P

0

∫
R2

| f |2|µe|dvdx < ∞}

and denote its inner product by (·, ·)|µe |. Let P be the projection operator
of L2

|µe| onto the kernel of D. We also denote by L p
P(H2

P) the space of
P-periodic L p

x (H2
x ) functions for p ≥ 1.

Similarly to the two-species case, we define the following four operators,
each of which acts from H2

P to L2
P,

A0
1h = −∂2

x h − ( ∫
µedv

)
h +

∫
µePhdv,

A0
2h = −∂2

x h − ( ∫
v̂2µpdv

)
h −

∫
µev̂2P (v̂2h)dv,

B0h = ( ∫
µpdv

)
h +

∫
µeP (v̂2h)dv

and

L0 = (B0)∗(A0
1

)−1
B0 + A0

2.

In these definitions one should keep in mind that µ ≥ 0 is a function of x
and v, that µe = ∂µ/∂e < 0 and that µp = ∂µ/∂p. It was shown in [24]
that A0

1 is invertible on the range of B0 so that L0 is well-defined. The
following is the analogue of Theorem 2.2.

Theorem 2.3. Assume (21) and (22).

(i) If L0 � 0, then there exists a real growing mode [eλt f(x, v), eλt E(x),
eλt B(x)] with f, E, B ∈ W1,1 and λ > 0.

(ii) The dimension of the space of growing modes equals the dimension of
the negative eigenspace of L0.

For the proof of this theorem we introduce the particle paths (X(t; x, v),
V(t; x, v)), which are the characteristics of D. They are defined as the
solutions of

Ẋ = V̂ 1, V̇1 = ∂xφ
0(X) − V̂ 2∂xψ

0(X), V̇2 = V̂ 1∂xψ
0(X)(25)
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with the initial conditions X(0) = x, V(0) = v. Using the particle paths,
the next three operators depending on a parameter λ > 0 were already
introduced in [24]

Aλ
1h = −∂2

x h − ( ∫
µedv

)
h +

∫
µe

∫ 0

−∞
λeλsh(X(s))dsdv,

Aλ
2h = −∂2

x h + λ2h − ( ∫
v̂2µpdv

)
h −

∫
v̂2µe

∫ 0

−∞
λeλs V̂ 2(s)h(X(s))dsdv,

Bλh = ( ∫
µpdv

)
h +

∫
µe

∫ 0

−∞
λeλs V̂ 2(s)h(X(s))dsdv.

The following lemma in [24] shows that Aλ
1 is invertible on the range of Bλ,

so that the operator

Lλ = (Bλ)∗(Aλ
1

)−1
Bλ + Aλ

2.

is also well-defined.

Lemma 2.4 ([24]). Assume λ ≥ 0.

(i) The operators Aλ
j ,L

λ ( j = 1, 2) are self-adjoint on L2
P with the

common domain H2
P. Their spectra are discrete.

(ii) Aλ
1 ≥ 0.

(iii) The null-space N(Aλ
1) consists of the constant functions. The inverse

(Aλ
1)

−1 is bounded from {h ∈ L2
P | ∫ P

0 hdx = 0} = N(Aλ
1)

⊥ ⊃ R(Bλ)

into H2
P.

We also introduce the following three functions that depend on λ > 0.

bλ(x) =
∫

µe

∫ 0

−∞
λeλs V̂ 1(s)dsdv,

cλ(x) =
∫

v̂2µe

∫ 0

−∞
λeλs V̂ 1(s)dsdv,

dλ = (Bλ)∗(Aλ
1

)−1
bλ − cλ

and three constants

lλ = 1

P

∫ P

0

∫
v̂1µe

∫ 0

−∞
λeλs V̂ 1(s)dsdvdx,

mλ = 1

P

((
Aλ

1

)−1
bλ, bλ

)
, kλ = P(λ2 − lλ − mλ).

Define F λ to be the operator from R to L2
P by F λ(b) = bdλ. Its ad-

joint (F λ)∗ mapping L2
P to R is defined by F λ(ψ) = (ψ, dλ). We define
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the matrix operator Mλ from H2
P × R to L2

P × R by

Mλ

(
ψ

b

)
=

(
Lλψ + bdλ

−bkλ + (ψ, dλ)

)
=

(
Lλ F λ

(F λ)∗ −kλ

)(
ψ

b

)
.

By Lemma 2.4, it is obvious that Mλ is self-adjoint and has only discrete
spectrum. The following lemma explains the purpose of Mλ.

Lemma 2.5. If Mλ has a non-trivial nullspace of even functions for some
λ > 0, then there exists a purely growing mode in W1,1 of (23), (24).

To clarify the ideas, below we present our original derivation of the
matrix operator Mλ from the equations satisfied by a growing mode. The
proof of Lemma 2.5 is almost the reverse process of this derivation, as in
the proof of Lemma 2.5 of [24]. So we skip it here.

To derive Mλ, we start with a growing mode [eλt f(x, v), eλtE(x), eλtB(x)].
Since it was shown in [24] that a growing mode must be purely growing, we
can assume λ > 0. Define the electromagnetic potentials φ,ψ and a number
b ∈ R such that

B = ∂xψ, E2 = −λψ, E1 = −∂xφ − λb.

Then [ f(x, v), φ,ψ, b] must satisfy

λ f + D f = −µev̂1∂xφ − λbµev̂1 − µpv̂1∂xψ − (λµev̂2 + λµp)ψ(26)

and

∂x E1 = ρ, λE1 = − j1, λE2 + ∂x B = − j2, λB + ∂x E2 = 0(27)

with ρ = − ∫
fdv and ji = − ∫

v̂i fdv. Integrating (26) along the particle
trajectory, after an integration by parts we have

f(x, v) = − µeφ(x) − µpψ(x)

+ µe

∫ 0

−∞
λeλs[φ(X(s)) − V̂ 2(s)ψ(X(s)) − bV̂ 1(s)]ds.

(28)

The first and third equations of (27) are equivalent to −∂2
xφ = ρ and

(−∂2
x + λ2)ψ = j2. After plugging (28) into them, they become

Aλ
1φ = Bλψ + bbλ(29)

and

Aλ
2ψ = −(Bλ)∗φ + bcλ.(30)

The last equation in (27) is automatic.
The second equation in (27) is λE1 = − j1, from which we will now

derive an equation for b. By the continuity equation ∂x j1 + λρ = 0, we
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have ∂2
xφ = −ρ = 1

λ
∂x j1, which implies that ∂xφ = 1

λ
( j1 − 1

P

∫ P
0 j1dx).

Thus λE1 = − j1 is equivalent to λ2b = 1
P

∫ P
0 j1dx. Plugging (28) into this

result, we obtain

λ2b = 1

P

∫ P

0

∫
v̂1µe

∫ 0

−∞
λeλs{−φ(X(s))+bV̂ 1(s)+ V̂ 2(s)ψ(X(s))}dsdvdx

= I + II + III.

The first term is

I = − 1

P

∫ 0

−∞
λeλs

∫ P

0

∫
µeφ(x)V̂ 1(−s)dvdxds

= 1

P

∫ 0

−∞
λeλs

∫ P

0

∫
µeφ(x)V̂ 1(s)dvdxds = 1

P
(φ, bλ),

where for the first equality we changed variables (x, v) → (X(−s), V̂ (−s))
and for the second equality we changed variable v → −v and used the
trajectory property

(X(−s; x,−v1, v2),−V1(−s; x,−v1, v2), V2(−s; x,−v1, v2))

= (X(s; x, v1, v2), V1(s; x, v1, v2), V2(s; x, v1, v2)).

Similarly, III = − 1
P (ψ, cλ). By definition, II = blλ. Thus the equation for b

is

(λ2 − lλ)b = 1

P
[(φ, bλ) − (ψ, cλ)].(31)

By (29) we get

φ = (
Aλ

1

)−1
Bλψ + b

(
Aλ

1

)−1
bλ.

Plugging this into (30) and (31), we have the pair of equations Lλψ + bdλ

= 0 and −bkλ + (ψ, dλ) = 0 by definition of dλ, kλ and Lλ. That is, the
pair (ψ, b) belongs to the kernel of the matrix operator Mλ. We note that in
the above formulation the equation λE1 = − j1 is exactly taken care of by
the extra constant b.

In a similar way to the proof of Lemma 2.5 of [24], we can show that
a non-trivial kernel of Mλ indeed gives a growing mode. Moreover, we
also showed in [25] that for any growing mode, f ∈ W1,1 and the linear
instability implies non-linear instability in the macroscopic sense.

Lemma 2.6. If L0 	≥ 0, then there exists λ > 0 such that Mλ has a non-
trivial nullspace.
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Proof. Let nλ be the dimension of the eigenspace of Mλ corresponding
to its negative eigenvalues. We first claim that for sufficiently large λ,
nλ ≤ 1. Indeed, it is shown in [24] that Lλ ≥ λ2 − C0 for some constant C0
independent of λ. It is also easy to show that ‖dλ‖L2 ≤ C1 for some constant
C1 independent of λ, as in the proof of Lemma 2.4 of [24]. So

〈
Mλ

(
ψ

b

)
,

(
ψ

b

)〉
= (Lλψ,ψ) + 2b(ψ, dλ) − kλb2

≥ (λ2 − C0)‖ψ‖2
2 − 2C1|b|‖ψ‖2 − |kλ|b2

≥ −(
C2

1 + |kλ|)b2,

provided λ2 ≥ C0 + 1. Since b ∈ R, it follows that Mλ has at most a one-
dimensional negative subspace. We now show that if λ is small enough,
then nλ ≥ 2. It is shown in [24] that Lλ → L0 strongly when λ ↘ 0 and

lim
λ↘0

∫ 0

−∞
λeλsh(X(s), V(s))ds = Ph

in the norm of L2
|µe| for all h ∈ L2

|µe|. As in the proof of Lemma 3.3
of [24], the projection operator P maps a function that is odd or even
in v1 to another function with the same symmetry property. So as λ ↘ 0,
bλ → ∫

µeP (v̂1)dv = 0 and similarly cλ → 0 in L2
P strongly. Thus dλ → 0

and F λ → 0 in L2
P strongly as λ → 0. So we have

Mλ

(
ψ

b

)
→ M0

(
ψ

b

)
=

(
L0 0
0 −k0

) (
ψ

b

)

strongly in L2
P × R as λ → 0 for all ψ ∈ H2

P and b ∈ R. Here

k0 =
∫ P

0

∫
|µe|(P (v̂1))

2dvdx > 0.

Since L0 has at least one negative eigenvalue by assumption, M0 has at
least two negative eigenvalues. Thus by [18, IV-3.5], nλ ≥ 2 if λ is small
enough.

For λ > 0, it was shown in [24] that Lλ is continuous in the operator
norm. So Mλ is also continuous in the operator norm for λ > 0. Thus if Mλ

has no kernel for all λ > 0, then nλ remains a constant which is inconsistent
with the behavior of nλ near zero and infinity. So we conclude that for some
λ > 0, Mλ must have a non-trivial kernel. This completes the proof of the
Lemma. ��

Theorem 2.3(i) on the existence of growing modes follows immediately
by combining Lemma 2.5 and Lemma 2.6.
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For the proof of Theorem 2.3(ii), we need the following two lemmas.
We consider real functions below, as all growing modes should be by The-
orem 2.1. The following functionals were defined in [24].

J( f, E1, ψ) =
∫∫

1

|µe|( f + µpψ)2dvdx +
∫

[E1]2dx(32)

I( f, E1, ψ) = J( f, E1, ψ) −
∫∫

v̂2µpψ
2dvdx +

∫ [
(∂tψ)2 + (∂xψ)2]dx

(33)

and we denote

J( f, E1, ψ; f̃ , Ẽ1, ψ̃) =
∫∫

1

|µe|( f + µpψ)( f̃ + µpψ̃)dvdx

+
∫

E1 Ẽ1dx.

The next lemma follows immediately by polarization from Lemma 2.7
of [24].

Lemma 2.7. Consider two real solutions ( f i(t), Ei(t), Bi(t) = ∂xψ
i(t)),

i = 1, 2 to the linearized system (18), with initial data ( f i(0), Ei(0),
Bi(0) = ψi

x(0)) ∈ L1 in the constraint set

C =
{ ∫∫

f(0)dvdx = 0, ∂x E1(0) = −
∫

f(0)dv,

∫
B(0)dx = 0

}
,

satisfying J( f(0), E1(0), ψ(0)) < ∞. Then the functional

I
(

f 1, E1
1, ψ

1; f 2, E2
1, ψ

2
)
(t)

= J
(

f 1, E1
1, ψ

1; f 2, E2
1, ψ

2
) −

∫∫
v̂2µpψ

1ψ2dvdx

+
∫ [

∂tψ
1∂tψ

2 + ∂xψ
1∂xψ

2
]
dx

is independent of t. Furthermore, for all g ∈ ker D, the functionals

Kg( f i, ψi) =
∫∫ [

f i + (v̂2µe + µp)ψ
i
]
gdvdx(34)

are also independent of t.

Proof of Theorem 2.3 (ii). Assume the linearized system (23), (24) has l in-
dependent growing modes and the operator L0 has a k-dimensional negative
eigenspace. By the proof of Lemma 2.6, as λ increases from 0 to +∞, the
negative eigenvalues of Mλ must cross the imaginary axis at least n(M0)−1
times, with n(M0) = k+1 being the number of negative eigenvalues of M0.
Since we get a growing mode at each such crossing, there exist at least k
growing modes. Thus l ≥ k.
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It remains to show that l ≤ k. Suppose otherwise, l > k. Let {ζ1, . . . , ζk}
⊂ L2

P span the negative eigenspace of L0. Denote the l linearly independent
growing modes by eλi t[ f i(x, v), Ei

1(x), ψ
i(x)], i = 1, . . . , l, where ψi(x)

is the magnetic potential ∂xψ
i = Bi. By Theorem 2.1(ii), λi are real and

positive and we only need to consider real functions below.
First we will prove that {ψi(x)}l

i=1 are linearly independent. Indeed
suppose (c1, . . . , cl) ∈ Rl such that ψc(x) = ∑l

i=1 ciψ
i(x) = 0. We denote

f c = ∑l
i=1 ci f i and Ec

1 = ∑l
i=1 ci Ei

1. Applying Lemma 2.7 to any two
growing modes eλi t[ f i(x, v), Ei

1(x), ψ
i(x)] and eλj t[ f j(x, v), E j

1(x), ψ
j(x)]

with 1 ≤ i, j ≤ l, we have

0 = I
(

f i, Ei
1, ψ

i; f j, E j
1, ψ

j
)

= J
(

f i, Ei
1, ψ

i; f j, E j
1, ψ

j
) −

∫∫
v̂2µpψ

iψ jdvdx

+
∫ [

λiλjψ
iψ j + ψi

xψ
j
x

]
dx.

In particular,

0 = J
(

f c, Ec
1, ψ

c
) −

∫∫
v̂2µp[ψc]2dvdx(35)

+
∫ [

ψc
x

]2
dx +

∫ ( l∑
i=1

λiciψ
i
)2

dx.

But ψc = 0 so that

0 = J
(

f c, Ec
1, 0

) +
∫ ( l∑

i=1

λiciψ
i
)2

dx(36)

≥ J( f c, Ec, 0) =
∫∫

1

|µe| [ f c]2dvdx +
∫ [

Ec
1

]2
dx.

Thus we have f c = 0, Ec
1 = 0 and therefore

∑l
i=1 ci[ f i(x,v), Ei

1(x), ψ
i(x)]

= 0. It follows that c1 = · · · = cn = 0 by the linear independence of
[ f i(x, v), Ei

1(x), ψ
i(x)]l

i=1. This proves our claim that {ψi(x)}l
i=1 is linearly

independent.
If l > k , there exists a linear combination ψd(x) = ∑l

i=1 diψ
i(x) with

a non-zero vector (d1, . . . , dl) ∈ Rl, such that ψd ⊥ ζj for any 1 ≤ j ≤ k.
Using (35) for ψd , we have

0 = J
(

f d, Ed
1 , ψ

d
) −

∫∫
v̂2µp[ψd]2dvdx(37)

+
∫ [

ψd
x

]2
dx +

∫ ( l∑
i=1

λidiψ
i
)2

dx.
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Now by Lemma 2.7, for all g ∈ ker D each functional

Kg( f i, ψi) =
∫∫ [

f i + (v̂2µe + µp)ψ
i
]
gdvdx

vanishes, so that Kg( f d, ψd) = 0. Thus by Lemma 2.8 of [24], we have

J
(

f d, Ed
1 , ψ

d
) ≥

∫∫ ∣∣P (
v̂2ψ

d
)∣∣2|µe|dvdx + (

(B0)∗(A0
1

)−1
B0ψd, ψd

)

and (37) implies that

0 ≥ (
(B0)∗(A0

1

)−1
B0ψd, ψd

)

+
∫∫ {|µe|

∣∣P (
v̂2ψ

d
)∣∣2 − v̂2µp[ψd]2

}
dvdx +

∫ [
ψd

x

]2
dx

+
∫ ( l∑

i=1

λidiψ
i
)2

dx

= (
(B0)∗(A0

1

)−1
B0ψd, ψd

) + (
A0

2ψ
d, ψd

) +
∫ ( l∑

i=1

λidiψ
i
)2

dx

= (L0ψd, ψd) +
∫ ( l∑

i=1

λidiψ
i
)2

dx.

Since (L0ψd, ψd) ≥ 0, we deduce that
∑l

i=1 λidiψ
i = 0. So {ψi(x)}l

i=1 is
linearly dependent, which is a contradiction. Therefore l = k. This com-
pletes the proof of Theorem 2.3. ��

3. Formulation of the 3D problem

The 3D RVM for a non-neutral electron plasma with external fields is

∂t f + v̂ · ∇x f − (E + Eext + v̂ × (B + Bext)) · ∇v f = 0

∂tE − ∇ × B =
∫

v̂ fdv = −j

∂tB + ∇ × E = 0

∇ · E = −
∫

fdv = ρ, ∇ · B = 0

where x ∈ R3, v ∈ R3. We consider solutions of finite energy. Thus they
vanish in some averaged sense as |x| → ∞.

We use the same notation as in [24]. The cylindrical coordinates in R3

are (r, θ, z) and the standard cylindrical basis is er , eθ , ez . The equilibrium
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distribution function is assumed to have the form f 0 = µ(e, p), with

e =
√

1 + |v|2 − φ0(r, z) − φext(r, z),

p = r
(
vθ − A0

θ(r, z) − Aext
θ (r, z)

)
and the equilibrium fields are assumed to have the form

E0 = −∂rφ
0er − ∂zφ

0ez, B0 = −∂z A0
θer + 1

r
∂r

(
rA0

θ

)
ez,

with (A0
θ , φ

0) satisfying the elliptic system (2), (3). We assume f 0 has
compact support S in (x, v) space and f 0, E0, B0 are everywhere C1. Such
equilibria were constructed in the appendix of [24] for certain φext, Aext

θ

and µ. We assume that

µe < 0 on the set {µ > 0}.
For the perturbations E, B of the electromagnetic fields, we introduce

scalar and vector potentials φ and A such that

E = −∇φ − ∂tA and B = ∇ × A

and we impose the Coulomb gauge ∇ · A = 0. We will consider only
axisymmetric perturbations. In cylindrical coordinates we write A = Arer +
Aθeθ + Azez. We assume that Ar , Aθ , Az and φ are independent of θ. Some
differentiation rules in cylindrical coordinates are collected in the appendix.
Then the corresponding fields are given by

E = (Er, Eθ , Ez) = (−∂rφ − ∂t Ar ,−∂t Aθ ,−∂zφ − ∂t Az),

B = (Br, Bθ, Bz) =
(

−∂z Aθ , ∂z Ar − ∂r Az,
1

r
∂r(rAθ )

)
.

Then the linearized Vlasov equation becomes

∂t f + D f = −µe Dφ − µev̂ · ∂tA − rµp∂t Aθ − µp D(rAθ ),(38)

where

D = v̂ · ∇x − (E0 + Eext + v̂ × (B0 + Bext)) · ∇v

(see the appendix). The Maxwell equations become the scalar equation

∆φ = −ρ = −
∫

fdv(39)

together with the vector equation

∂2

∂t2
A + ∂

∂t
∇φ − ∆A = j = −

∫
v̂ fdv.(40)
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We are looking for an axisymmetric growing mode [eλt f(x, v), eλtE(x),
eλtB(x)], which means that we replace ∂t by λ everywhere. Here Reλ > 0
and (E, B) is independent of θ. By Theorem 1.1 of [24], λ must be real and
so λ > 0. Because of the Coulomb gauge condition, we have

0 = ∇ · A =1

r

∂(rAr)

∂r
+ ∂Az

∂z
,

so that we can introduce a super-potential π(r, z) such that

Ar = −∂zπ Az = 1

r
∂r(rπ) = ∂rπ + 1

r
π.

(Without this super-potential we would not have been able to deduce the
current equation at the end of the construction in Sect. 8.) Replacing ∂t by λ

and substituting v̂ · A = v̂θ Aθ − v̂r(−∂zπ) + v̂z(∂rπ + 1
r π), we rewrite the

Vlasov equation (38) as

(λ + D) f = −µe Dφ − (λ + D)(rµp Aθ ) − µeλv̂θ Aθ(41)

−µeλ

[
−v̂r∂z + v̂z

(
∂r + 1

r

)]
π.

We can explicitly invert the operator (λ+ D) by introducing the particle
paths (X(t; x, v), V(t; x, v)), which are the characteristics of D. They are
defined as the solutions of the ODE

Ẋ = V̂ , V̇ = −(E0 + Eext)(X) − V̂ × (B0 + Bext)(X)(42)

with the initial conditions X(0) = x, V(0) = v. Integrating (41) along the
path from t = −∞ to t = 0, we get

f(x, v) = −µeφ + µe

∫ 0

−∞
λeλsφ(X(s))ds − µprAθ

−µe

∫ 0

−∞
λeλs V̂ θ(s)Aθ (X(s))ds

−µe

∫ 0

−∞
λeλs

{
−V̂r(s)∂zπ(X(s)) + V̂z(s)

(
∂r + 1

r

)
π(X(s))

}
ds.

(43)

Now it is convenient to introduce several operators depending on a posi-
tive parameter λ. These operators will be used throughout the rest of the
paper. First, for k = k(x, v) we define the non-local operator

(Qλk)(x, v) =
∫ 0

−∞
λeλsk(X(s; x, v), V(s; x, v))ds
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where

Gk = −v̂r∂zk + v̂z

(
∂r + 1

r

)
k, G∗k = v̂r∂zk − v̂z∂rk.

Then we can rewrite formula (43) as

f = −µeφ + µeQ
λφ − µprAθ − µeQ

λ(v̂θ Aθ ) − µeQ
λ(Gπ).(44)

Moreover, substituting (44) into the Poisson equation −∆φ = ∫
fdv, we

obtain

−∆φ = −
( ∫

µedv
)
φ +

∫
µeQ

λφdv −
( ∫

µpdv
)

rAθ

−
∫

µeQ
λ(v̂θ Aθ )dv −

∫
µeQ

λ(Gπ)dv.

Furthermore, for h = h(r, z), we define all of the following operators.
Each one will appear later in the paper; for purposes of comparison it is
convenient to collect their definitions in one place.

Aλ
1h = −∆h − ( ∫

µedv
)
h +

∫
µeQ

λhdv

Aλ
2h =

(
−∆ + 1

r2
+ λ2

)
h − r

( ∫
v̂θµpdv

)
h −

∫
v̂θµeQ

λ(v̂θh)dv

Bλh = −( ∫
v̂θµedv

)
h +

∫
µeQ

λ(v̂θh)dv

Lλ = (Bλ)∗(Aλ
1

)−1
Bλ + Aλ

2

Cλh =
∫

v̂θµeQ
λ(Gh)dv, (Cλ)∗h =

∫
G∗(µeQ

λ(v̂θh)
)
dv

Dλh =
∫

µeQ
λ(Gh)dv, (Dλ)∗h = −

∫
G∗(µeQ

λ(h)
)
dv

Eλh =
∫

G∗(µeQ
λ(Gh)

)

F λ = (Dλ)∗(Aλ
1

)−1
Bλ − (Cλ)∗.

Gλ = Eλ + (Dλ)∗(Aλ
!
)−1

Dλ

Aλ
3 =

(
−∆ + 1

r2

)(
−∆ + 1

r2
+ λ2

)
− Eλ

Aλ
4 = Aλ

3 − (Dλ)∗(Aλ
1

)−1
Dλ =

(
−∆ + 1

r2

)(
−∆ + 1

r2
+ λ2

)
− Gλ.

Here these operators are defined formally. In the next section, they will be
defined carefully and their key properties will be derived.
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Since r
∫

µpdv = − ∫
v̂θµedv, the result below (44) can be written as

Aλ
1φ = Bλ Aθ + Dλπ.(45)

With ∂t replaced by λ, the Maxwell equation (40) becomes

λ2A + λ∇φ − ∆A = j.(46)

Taking the θ-component of (46) and substituting (44)

(λ2 − ∆)Aθ = −
∫

v̂θ fdv

= ( ∫
v̂θµedv

)
φ −

∫
v̂θµeQ

λφdv + ( ∫
v̂θµpdv

)
rAθ

+
∫

v̂θµeQ
λ(v̂θ Aθ )dv +

∫
v̂θµeQ

λ(Gπ)dv.

That is,

Aλ
2 Aθ = −(Bλ)∗φ + Cλπ.(47)

Lemma 3.1.

Aλ
3π = (Dλ)∗φ − (Cλ)∗ Aθ .(48)

Proof. First we claim that(
−∆ + 1

r2

)(
−∆ + 1

r2
+ λ2

)
π = ∂z jr − ∂r jz.(49)

Indeed, let K = jrer + jzez and I = (−∆)−1K so that eθ · I = 0. By the
continuity equation ∂tρ + ∇ · j = 0, for a growing mode we have

∇ · K =
(

∂r + 1

r

)
jr + ∂z jz = ∇ · j = −λρ = λ∆φ.

Thus the vector identity

∇ × (∇ × K) = −∆K + ∇(∇ · K)

takes the form

−∇ × (∇ × ∆I) = −∆K + λ∇∆φ

or

∇ × (∇ × I) = K − λ∇φ.

Now the r and z components of the Maxwell equation (46) can be written
as

(λ2 − ∆)(Arer + Azez) = K − λ∇φ.
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Furthermore,

Arer + Azez = −(∂zπ)er −
((

∂r + 1

r

)
π

)
ez = ∇ × (πeθ).

Combining the last three equations, we have

∇ × (λ2 − ∆)(πeθ) = ∇ × (∇ × I),

which is satisfied if

(λ2 − ∆)(πeθ) = ∇ × I = (∂z Ir − ∂r Iz)eθ .

Noting that ∆eθ = − 1
r2 eθ , we deduce

(
λ2 − ∆ + 1

r2

)
π = ∂z Ir − ∂r Iz.

Applying −∆ + 1
r2 to this result yields

(
−∆ + 1

r2

)(
−∆ + 1

r2
+ λ2

)
π = ∂z

(
−∆ + 1

r2

)
Ir − ∂r(−∆)Iz

= ∂z jr − ∂r jz

since [∂r,−∆] = 1
r2 ∂r . This proves the claim.

Upon substituting (44) into jr = ∫
v̂r fdv, the first and third terms vanish

because they are odd in vr . The same reasoning is valid for jz = ∫
v̂z f dv.

Therefore

∂z jr − ∂r jz = −∂z

∫
v̂r fdv + ∂r

∫
v̂z fdv(50)

= −∂z

∫
v̂rµeQ

λφdv + ∂r

∫
v̂zµeQ

λφdv

−∂z

∫
v̂rµeQ

λ(v̂θ Aθ)dv + ∂r

∫
v̂zµeQ

λ(v̂θ Aθ)dv

+∂z

∫
v̂rµeQ

λ(Gπ)dv − ∂r

∫
v̂zµeQ

λ(Gπ)dv.

The last four terms in (50) equal

−
∫

G∗[µeQ
λ(v̂θ Aθ )

]
dv +

∫
G∗[µeQ

λ(Gπ)
]
dv.

= −(Cλ)∗ Aθ + Eλπ.
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In (50) call the first two terms T(φ). Then

(T(φ),ψ)L2(R3) = 2π

∫∫
T(φ)ψrdrdz

= 〈
G∗[µeQ

λφ
]
, ψ

〉
L2(R6)

= 〈
Qλφ,µeGψ

〉
= 〈

φ,µeQ
λGψ

〉
by Lemma 4.1(d) below since φ is independent of v. The last expression
equals 〈

φ,Qλ[µeGψ]〉 = (φ,Dλψ)L2(R3) = ((Dλ)∗φ,ψ)L2(R3).

So T(φ) = (Dλ)∗φ. Thus by (49) and (50),(
−∆ + 1

r2

)(
−∆ + 1

r2
+ λ2

)
π = (Dλ)∗φ − (Cλ)∗ Aθ + Eλπ.

Hence

Aλ
3π = (Dλ)∗φ − (Cλ)∗ Aθ . ��

We now have three equations (45), (47) and (48) that link the un-
knowns φ, Aθ and π. Using (45) to eliminate φ , we obtain

Aλ
2 Aθ = −(Bλ)∗(Aλ

1

)−1[
BλAθ + Dλπ

] + Cλπ,

Aλ
3π = (Dλ)∗(Aλ

1

)−1[
BλAθ + Dλπ

] − (Cλ)∗ Aθ .

That is

Lλ Aθ = −(F λ)∗π,(51)

and

Aλ
4π = F λ Aθ .(52)

These are the basic reduced equations of which we want to find a non-zero
solution. Motivated by (51) and (52), we define the matrix operator

Mλ =
(

Lλ (F λ)∗

F λ −Aλ
4

)
(53)

of which we want to find a non-trivial nullspace.

4. The operators

Let the space L2
S consist of the cylindrically symmetric functions (functions

of r and z only) in L2(R3). For any positive integer k, let

Hk† = {
ψ ∈ L2

S(R
3)

∣∣ eiθψ ∈ Hk(R3)
}
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and ‖ψ‖Hk† = ‖eiθψ‖2
Hk(R3)

. Furthermore, we define V k† to be the closure

of the cylindrically symmetric functions in C∞
c (R3) with respect to the Ḣk

semi-norm

‖ψ‖2
V k† =

∑
|α|=k

‖∂α(eiθψ)‖2
L2.

We denote H−k† = (Hk†)∗ and V −k† = (V k†)∗. It follows easily that
ψ(r, z) ∈ H1† is equivalent to ψ,ψr, ψz, ψ/r ∈ L2(R3). Furthermore,
ψ(r, z) ∈ H2† is equivalent to ψ,ψrr , ψzz, (ψ/r)r ∈ L2(R3), and such
a function also satisfies ψr, ψz, ψ/r ∈ L2(R3). We also define the space
W2† = V 2† ∩ V 1† with the norm

‖ψ‖W2† = ‖∆(eiθψ)‖L2 + ‖∇(eiθψ)‖L2

and W−2† = (W2†)∗. We also denote V k to be the closure of the functions
in C∞

c (R3) with respect to the norm

‖ψ‖2
V k =

∑
|α|=k

‖∂αψ‖2
L2

and V −k = (V k)∗. We note that for any function ψ(r, z)

−∆(ψeiθ ) = eiθ

(
−∂2

z ψ − ∂2
r ψ − 1

r
∂rψ + 1

r2
ψ

)
.(54)

So in spite of the singular factor 1/r2, one can apply the usual elliptic
regularity theory to the operator −∂2

z −∂2
r − 1

r ∂r + 1
r2 , as pointed out to us by

F.H. Lin. The daggered spaces are designed to take account of this singular
factor.

We denote by | |2 the norm in L2
S(R

3), by ( , ) the inner product in
L2

S(R
3), by 〈 , 〉 the pairing of dual spaces, and by 〈 , 〉|µe| the inner product

in L2|µe|(R
6) where |µe(x, v)| is the weight with ‖ ‖|µe| the corresponding

norm. We defined the operator Qλ in the previous section.

Lemma 4.1 (Properties of Qλ). Let 0 < λ < ∞.

(a) Qλ : L2
|µe|(R

6) → L2
|µe|(R

6) with operator norm = 1.
(b) For all m ∈ L2

|µe|(R
6), ‖Qλm − P m‖|µe| → 0 as λ → 0, where P is

defined in the introduction.
(c) If σ > 0, then ‖Qλ − Qσ‖ = O(|λ − σ |) as λ → σ , where ‖ ‖ denotes

the operator norm from L2
|µe| to L2

|µe|.
(d) For v = vrer + vθeθ + vzez , denote ṽ = −vrer + vθeθ − vzez and

ñ(x, v) = n(x, ṽ). Then 〈Qλm, n〉|µe| = 〈m,Qλñ〉|µe|, for any m, n ∈
L2

|µe|(R
6).

(e) For all m ∈ L2
|µe|(R

6), ‖Qλm − m‖|µe| → 0 as λ → +∞.
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Proof. To prove (a),

〈Qλm, n〉|µe| =
∫ 0

−∞
λeλs

∫∫
(m

√|µe|)(X(s), V(s)) · (n
√|µe|)(x, v)dvdxds

≤ ‖m‖|µe|‖n‖|µe|.

Moreover, Qλ1 = 1.
Assertion (b) was proven in Lemma 2.6 of [24]. As for (c), we estimate

‖Qλm − Qσm‖|µe| ≤
∫ 0

−∞
|λeλs − σeσs|‖m(X(s), V(s))‖|µe|ds

=
∫ 0

−∞
|λeλs − σeσs|ds‖m‖|µe |

≤ C| ln λ − ln σ |‖m‖|µe|.

To prove (d), note that the characteristic ODE is invariant under the
transformation s → −s, r → +r, z → +z, vr → −vr , vθ → +vθ ,
vz → −ve. Thus

n(X(−s; x, v), V(−s; x, v)) = ñ(X(s; x, v), V(s; x, v)).

Now

〈Qλm, n〉|µe| =
∫ 0

−∞
λeλs

∫∫
|µe|m(X(s), V(s))n(x, v)dvdxds.

We change variables (X(s), V(s)) → (x, v) and (x, v) → (X(−s), V(−s))
with Jacobian = 1 to obtain

〈Qλm, n〉|µe| =
∫ 0

−∞
λeλs

∫ ∫
|µe|m(x, v)ñ(X(−s), V(−s))dvdxds

= 〈m,Qλñ〉|µe|.

Although Assertion (e) was essentially proven in Lemma 2.6 of [24],
we outline the proof here. Letting M denote the spectral measure of the
self-adjoint operator −iD in the space L2

|µe|, we have

Qλm − m =
∫
R

(
λ

λ + iα
− 1

)
dM(α)m.

Thus

‖Qλm − m‖2
|µe| ≤

∫
R

∣∣∣∣ λ

λ + iα
− 1

∣∣∣∣
2

d‖M(α)m‖2
|µe | → 0

as λ → +∞. ��
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Remark 1. Since
∫ 0
−∞ λeλsds = 1, the function

(Qλm)(x, v) =
∫ 0

−∞
λeλsm(X(s; x, v), V(s; x, v))ds(55)

is a weighted time average of the observable m along the particle trajectory.
By the same proof as in Lemma 4.1(b), we have

lim
T→∞

1

T

∫ T

0
m(X(s), V(s))ds = P m.(56)

But from the standard ergodic theory [1] of Hamiltonian systems, the limit of
the time average in (56) equals the phase space average of m in the set traced
by the trajectory. Thus P m has the meaning of the phase space average of
m and Lemma 4.1(b) states that the limit of the weighted time average (55)
equals the same phase space average. In particular, if the particle motion is
ergodic in the set Se,p determined by the two invariants e and p, and if dσe,p

denotes the induced measure of R3 × R3 on Se,p, then

P m = 1

σe,p(Se,p)

∫
Se,p

m(x)dσe,p(x).

For non-ergodic particles, we do not have such an explicit expression, but
P m still equals the phase space average of m on the set traced by the
particle.

Lemma 4.2. Let 0 < λ < ∞.

(a) Bλ maps L2 → L2 with operator bound independent of λ.
(b) Aλ

1, Aλ
2 and Lλ are self-adjoint on L2 with domains H2, H2† and H2†

respectively.
(c) The essential spectrum of Aλ

1 is [0,∞), while that of Aλ
2 and Lλ is

[λ2,∞).

(d) 〈Aλ
1h, h〉 > 0 for all 0 	= h ∈ H2.

(e) (Aλ
1)

−1 maps V −1 into V 1 with operator bound ≤ 1.
(f) For all h ∈ L2, (Lλ − L0)h → 0 strongly in L2 as λ → 0.

(g) If σ > 0, then as λ → σ , the operator norm from L2 to L2 of Aλ
2 − Aσ

2
tends to zero. The same is true of Bλ, Aλ

1, (Aλ
1)

−1 and Lλ.

Proof. Assertions (a), (b), (c), (d) and (f) were proven in Lemma 3.1 of [24].
As for (e), let us define A = Aλ

1 for brevity. Let φ ∈ V 1. Then

〈Aφ, φ〉 = |∇φ|22 +
∫ ∫

|µe|dvφ2dx − 〈Qλφ, φ〉|µe |

≥ |∇φ|2L2 = ‖φ‖2
V 1
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by Lemma 4.1(a). Denoting h = Aφ, we therefore have

‖A−1h‖2
V 1 = |∇φ|22 ≤ 〈Aφ, φ〉 = 〈h,A−1h〉 ≤ ‖h‖V−1‖A−1h‖V 1 .

Thus ‖A−1h‖V 1 ≤ ‖h‖V−1 . Finally, Assertion (g) follows directly from
Lemma 4.1(c). ��
Remark 2. The supports are under control in the following sense. Recall
that we assume f 0(x, v) = µ(e, p) has compact support ⊂ S ⊂ R3

x × R3
v.

We may assume S = Sx × Sv, both balls in R3. Let χ = χ(r, z) be a smooth
cut-off function for the spatial support of f 0 in Sx; that is, χ = 1 on the
spatial support of f 0 and has compact support inside Sx . Let Mχ be the
operator of multiplication by χ. Then

Bλ = BλMχ = MχBλ = MχBλMχ

and the same is true for all the operators Cλ, Dλ, Eλ, F λ, (Cλ)∗, (Dλ)∗,
(F λ)∗. Indeed,

µe(x, v) = µe(X(s; x, v), V(s; x, v))

because of the invariance of e and p under the flow. So for example

(Bλh)(x) = −h
∫

v̂θµedv +
∫

µeQ
λ(v̂θh)dv

= −h
∫

v̂θµedv +
∫

Qλ(µev̂θh)dv = (
MχBλMχh

)
(x).

Below, for any function space Y , we denote by Yc = {h ∈ Y | supp(h)

⊂ Sx}. Then V k
c = Ḣk

c = Hk
c and V k†

c = Ḣk†
c = Hk†

c . By mollification, Hk
c

is dense in V k. Furthermore, (H−k)c ⊂ V −k. The multiplication operator
Mχ maps V 1 into H1.

Lemma 4.3. For any λ > 0,

Cλ, Dλ, (F λ)∗ : H1†
loc → L2

c

(Cλ)∗, (Dλ)∗, F λ : L2
loc → H−1†

c

Eλ : H1†
loc → H−1†

c .

All these operator bounds are independent of λ. Furthermore, all these
operators are continuous functions of λ in the operator norms. As λ → 0+,
all these operators converge to 0 strongly (but not in operator norm).

Proof. By the preceding remark, the images all have support in the fixed
set Sx and the operators act on functions h depending only on χh. Now

〈Cλh, k〉 =
∫∫

v̂θµeQ
λ(Gχh)χk dvdx = −〈

Qλ(Gχh), v̂θχk
〉
|µe|
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so that

|〈Cλh, k〉| ≤ C‖χh‖H1†‖χk‖L2

with C independent of λ. The same proof works for all of the oper-
ators (in their appropriate spaces), except F λ and (F λ)∗. For F λ =
(Dλ)∗(Aλ

1)
−1Bλ − (Cλ)∗, it follows from Lemma 4.2(a) that the opera-

tor (Dλ)∗(Aλ
1)

−1Bλ = (Dλ)∗Mχ(Aλ
1)

−1Bλ maps

L2
loc → L2

c ⊂ H−1
c ⊂ V −1 → V 1 → H1

c ⊂ L2 → H−1†
c .

Similarly for (F λ)∗.
The continuity follows directly from Lemma 4.1(c). Now let us consider

the behavior as λ → 0. For any function φ ∈ H1†
c , by Lemma 4.1(b) we

have

Cλφ →
∫

v̂θµeP (Gφ)dv

strongly in L2 as λ → 0+. Clearly Gφ is odd in (vr, vz). By Lemma 3.3
in [24], it follows that P (Gh) is also odd in (vr, vz). But v̂θµe is even, so
that the integral

∫
v̂θµeP (Gh)dv vanishes. Therefore Cλ → 0 strongly as

λ → 0+. The proof is the same for the other operators. ��
We study the mapping properties of the operator Aλ

4 in the following
lemma.

Lemma 4.4. There exists λ1 > 0 such that for any 0 < λ < λ1, the
operator Aλ

4 maps W2† in a one-to-one manner onto W−2†. Therefore it has
a bounded inverse from W−2† onto W2†. Furthermore, (Aλ

4)
−1, if restricted

to V −2†, maps V −2† into V 2† with operator bound independent of λ.

Proof. It is convenient to introduce yet another operator Aλ
5 so that

Aλ
4 = UλAλ

5U
λ

where Uλ = (−∆ + 1
r2 + λ2)

1
2 . Then

Aλ
5 = −∆ + 1

r2
− (Uλ)−1Gλ(Uλ)−1,

where Gλ = Eλ + (Dλ)∗(Aλ
1)

−1Dλ. We remark that the operator Eλ ≤ 0;
however, this fact is not useful because the other operator (Dλ)∗(Aλ

1)
−1Dλ

≥ 0 so that the two signs are in conflict.
By (54), for φ ∈ L2

S we have

eiθ (Uλ)−1φ = (−∆ + λ2)− 1
2 (eiθφ)
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so that (Uλ)−1 : L2
S → H1† and H−1† → L2

S. We consider the two terms
in Gλ separately. The operator (Uλ)−1Eλ(Uλ)−1 = (Uλ)−1 MχEλMχ(Uλ)−1

maps

H2† → H3† → H1† → H−1†
c → L2.

Because the multiplication operator Mχ : H3† → H1† is compact, the
operator (Uλ)−1Eλ(Uλ)−1 is relatively compact with respect to −∆ + 1

r2 .
Similarly, the operator

(Uλ)−1(Dλ)∗(Aλ
1

)−1
Dλ(Uλ)−1 = (Uλ)−1(Dλ)∗Mχ

(
Aλ

1

)−1
DλMχ(Uλ)−1

maps

H2† → H3† → H1†
c → L2

c ⊂ H−1
c ⊂ V −1 → V 1

→ H1
c ⊂ L2

c → H−1†
c → L2

and it is relatively compact with respect to −∆+ 1
r2 . Therefore by the Kato–

Rellich and Weyl theorems, Aλ
5 is self-adjoint on L2

S with domain H2† and
its essential spectrum equals [0,+∞).

We split Aλ
5 into two parts as

Aλ
5 = 1

2

(
−∆ + 1

r2

)
+ Aλ

6, Aλ
6 = 1

2

(
−∆ + 1

r2

)
− (Uλ)−1Gλ(Uλ)−1

and claim that

Aλ
6 ≥ 0

for sufficiently small λ. To prove the claim, first note that Aλ
6 too is self-

adjoint on L2
S with domain H2† and its essential spectrum equals [0,∞).

So we merely need to show that the point spectrum of Aλ
6 is also contained

in [0,∞) for sufficiently small λ. We prove this by contradiction. If it were
not true, then there would be sequences λn ↘ 0, κn > 0 and 0 	= un ∈ H2†

such that Aλn
6 un = −κ2

nun . Let hn = eiθUλn un . Then 0 	= hn ∈ H3 and

1

2
(−∆)

(−∆ + λ2
n

)
hn = eiθGλn e−iθhn − κ2

n

(−∆ + λ2
n

)
hn.

Because of the support properties of Gλ, we can insert the cut-off func-
tion χ freely both before and after the exponentials. So if χhn = 0, then
1
2(−∆ + κ2

n)(−∆ + λ2
n)hn = 0, whence hn = 0. Therefore χhn 	= 0. We

normalize ‖χhn‖V 1 = 1.
By Lemma 4.3, eiθGλn e−iθ is bounded from H1 to H−1 uniformly in λ.

Hence (
−1

2
∆ + κ2

n

)(−∆ + λ2
n

)
hn = χeiθGλn e−iθχhn
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is a bounded sequence in H−1. Multiplying this equation by hn , we get
‖hn‖2

V 2 ≤ C‖χhn‖H1 ≤ C ′‖hn‖V 2 . Thus hn is bounded in V 2.
Taking a subsequence, we therefore have hn ⇀ h weakly in V 2. Since χ

has compact support, it follows that χhn → χh strongly in V 1 and that
‖χh‖V 1 = 1. Now for any � ∈ H1, we have∣∣〈eiθGλn e−iθhn, �

〉∣∣ = ∣∣〈χhn, eiθGλn e−iθχ�
〉∣∣ ≤ ‖Gλn e−iθχ�‖H−1†

since χhn is bounded in V 1. By Lemma 4.3, the right side tends to zero as
n → ∞. Thus eiθGλn e−iθ hn ⇀ 0 weakly in H−1.

Letting n → ∞, λn → 0, κn → κ0, the limit satisfies (− 1
2 ∆+κ2

0)(−∆)h
= 0, where h ∈ V 2. Since ∆h ∈ L2, we deduce ∆h = 0. We do not know
that h or ∇h belong to L2, but we can use Hardy’s inequality (valid for
functions in V 2) to estimate

|∇h(x0)| ≤ C

R3

∫
{|x−x0|<R}

|∇h|dx

≤ C ′

R3

( ∫ |∇h|2
|x − x0|2 dx

) 1
2

(R5)
1
2 = O(R− 1

2 )

for every point x0. Therefore h is a constant. Since h ∈ V 2, h ≡ 0. This
contradicts ‖χh‖V 1 = 1, which proves the claim.

The claim we have just proven means that 〈Aλ
6u, u〉 ≥ 0 for all u in the

domain H2† of the operator. Thus

〈
Aλ

5u, u
〉 ≥ 1

2

∫ (
|∇u|2 + 1

r2
u2

)
dx.

The right side is the squared norm of u in V 1†. The left side defines a bilinear
form a(u, u) that extends continuously to V 1†×V 1†. So by the Lax–Milgram
lemma, the operator Aλ

5 : V 1† → V −1† is one-to-one onto.
But Aλ

4 = UλAλ
5U

λ. Since for fixed λ > 0, the operator Uλ is an
isomorphism: W2† → V 1† and also V −1† → W−2†, we deduce that Aλ

4
maps W2† to W−2† in a one-to-one onto fashion. It is also clear that ‖h‖V 2† ≤
C‖Uλh‖V 1† so that (Uλ)−1 : V 1† → V 2† with a bound independent of λ
and (Uλ)−1 : V −2† → V −1† with a bound independent of λ. Therefore

(
Aλ

4

)−1 : V −2† → V −1† → V +1† → V +2†

with a bound independent of λ. ��
Lemma 4.5. If S is a ball inR3 , there exist constants C > 0 and λ2 ∈ (0, λ1)
such that 〈

Aλ
4u, u

〉 ≥ C‖u‖2
V 1†

for all u ∈ V 2† with support in S and all λ ∈ (0, λ2].
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Proof. We argue by contradiction in a similar way to the preceding proof. If
the lemma were false, then there would be sequences λn → 0 and un ∈ V 2†

with supports in S such that ‖un‖V 1† = 1 but 〈Aλn
4 un, un〉 → 0. By definition

of Aλ
4,

〈(
−∆ + 1

r2

)(
−∆ + 1

r2
+ λ2

n

)
un − Gλn un, un

〉
→ 0.

Letting hn = eiθun , we have
〈
(−∆)

(−∆ + λ2
n

)
hn, hn

〉 − 〈
eiθGλn e−iθ hn, hn

〉 → 0.

Thus

‖∆hn‖2
L2 + λ2

n‖∇hn‖2
L2 ≤ ‖Gλn ‖H1† �→H−1†‖hn‖2

H1 + 1.

Because the right side is bounded, we therefore have a bound for ∆hn
so that hn is bounded in V 2. Taking a subsequence, we have hn ⇀ h0
weakly in V 2 and consequently un ⇀ e−iθh0 weakly in V 2†. Because of
the uniformly bounded support, we can replace V 2† by H2† and use the
compact embedding to deduce that un → e−iθ h0 strongly in H1†. Therefore
1 = ‖e−iθh0‖V 1† = ‖h0‖V 1 . By the strong convergence of un in H1†,
and the strong convergence of Gλn as λn → 0 from Lemma 4.3, we have
〈Gλn un, un〉 → 0. Therefore

〈
(−∆)

(−∆ + λ2
n

)
hn, hn

〉 → 0.

So hn tends to zero strongly in V 2 and so also in V 1 (due to the bounded
support), which contradicts ‖h0‖V 1 = 1. ��

It follows immediately from either of the two preceding lemmas that
Mχ(Aλ

4)
−1 Mχ maps H−1† into H1† with a bound independent of λ.

5. Behavior for small λ

Lemma 5.1. There exists λ3 > 0 such that for any λ ∈ (0, λ3] the operator

N λ = Lλ + (F λ)∗(Aλ
4

)−1
F λ

is self-adjoint on L2
S with domain H2† and has essential spectrum [λ2,∞).

Moreover, if L0 has a negative eigenvalue, then N λ also has a negative
eigenvalue.

Proof. The bound λ2 is given in Lemma 4.5. By the proof of Lemma 3.1
in [24], the operator Lλ is relatively compact with respect to −∆+1/r2+λ2.
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By Lemmas 4.3 and 4.5, the operator (F λ)∗(Aλ
4)

−1F λ = Mχ · (F λ)∗ ·
{Mχ(Aλ

4)
−1Mχ} · F λ · Mχ maps

H2† → L2
c → H−1† → H1† → L2 → L2

c,

which implies that it is relatively compact with respect to −∆ + 1/r2 + λ2.
So the self-adjoint and the essential spectrum properties follow from the
Kato–Rellich and Weyl theorems.

Assume now that L0 has a negative eigenvalue k0 < 0 and let ζ0 ∈ H2†

be a normalized eigenvector. Write

〈N λζ0, ζ0〉 − k0 = 〈N λζ0, ζ0〉 − 〈L0ζ0, ζ0〉
= 〈(Lλ − L0)ζ0, ζ0〉 + 〈

(F λ)∗(Aλ
4

)−1
F λζ0, ζ0〉.

By Lemma 4.2(f), the first term on the right is less than ‖(Lλ − L0)ζ0‖L2

→ 0, as λ ↘ 0. By Lemma 4.5, the second term is bounded by∣∣〈(Aλ
4

)−1
MχF λζ0, MχF λζ0

〉∣∣ ≤ ∥∥Mχ

(
Aλ

4

)−1
Mχ

∥∥
H−1† �→H1†‖F λζ0‖2

H−1†

≤ C‖F λζ0‖2
H−1† → 0 as λ ↘ 0

because C is independent of λ, and using Lemma 4.3. Thus 〈N λζ0, ζ0〉 →
k0 < 0 as λ ↘ 0. So if λ3 is small enough and 0 < λ ≤ λ3, then N λ has
a negative eigenvalue. ��

Now we perform a finite-dimensional truncation of the matrix oper-
ator (53). Let {σ1, σ2, . . . } be a sequence of functions in H2†

c , for which
the finite linear combinations are dense in V 2†. Orthogonalize them so that
they form an orthonormal set in L2

S. As before, 〈 , 〉 denotes the usual L2

pairing and we will denote the standard inner product in Rn by a dot. Let n
be a positive integer. Define the projection operator Pn : V −2† → Rn and
its L2-adjoint P∗

n : Rn → V 2† by

Pnh = {〈h, σj〉}n
j=1, P∗

n b =
n∑

j=1

bjσj,

where h ∈ V −2† and b = (b1, . . . , bn) ∈ Rn. Then Pn P∗
n b = b for any b ∈

Rn, and P∗
n Pnh = ∑n

j=1〈h, σj〉σj for any h ∈ V −2†. Define the “approximate
matrix operator”

Mλ
n =

(
Lλ (F λ)∗ P∗

n

PnF
λ −PnA

λ
4 P∗

n

)

which takes V 2† × Rn into L2
S × Rn.

Lemma 5.2. Let 0 < λ ≤ λ3. For any η ∈ L2
loc, let us define dn =

(PnA
λ
4 P∗

n )−1 PnF
λη. Then

sup
n

‖P∗
n dn‖V 2† < ∞.
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Proof. Because λ is fixed, for brevity we denote A = Aλ
4 and F = F λ.

Note that α = PnAP∗
n is the n × n symmetric positive-definite matrix with

entries α jk = 〈A4σk, σj〉. Let c(n) = ‖χP∗
n dn‖H1† . We will show that c(n)

is bounded. Suppose on the contrary that c(n) → ∞. Let un = P∗
n dn/c(n)

so that ‖χun‖H1† = 1. Then PnAun = PnAP∗
n dn/c(n) = PnF η/c(n) so

that

〈Aun, un〉 =
〈
Aun,

1

c(n)
P∗

n dn

〉
= 1

c(n)
PnAun · dn

= 1

c2(n)
PnF η · dn = 1

c(n)
〈F η, un〉.

Thus〈(
−∆ + 1

r2

)(
−∆ + 1

r2
+ λ2

)
un, un

〉
= 〈

Gλun, un
〉 + 1

c(n)
〈F η, χun〉

so that, as in the proof of Lemma 4.4,

‖un‖2
W2† ≤ C‖χun‖2

H1† + 1

c(n)
‖χun‖H1† ≤ C + 1.

We take a subsequence so that un ⇀ u0 weakly in W2†. Then χun → χu0
strongly in H1†, so that ‖χu0‖H1† = 1. Fix an integer m ≥ 1 and let n ≥ m.
Then P∗

n δm = σm , where (δm)j = 1 for j = m and is otherwise 0. Then

〈Aun, σm〉 = PAun · δm = 1

c(n)
PnF η · δm = 1

c(n)
〈F η, σm〉 → 0

as n → ∞ since 〈F η, σm〉 is independent of n. Thus 〈Au0, σm〉 = 0 for
all m, so that Au0 = 0. So u0 = 0, which contradicts ‖χu0‖H1† = 1. Thus
c(n) is indeed bounded.

Now substituting un = P∗
n dn/c(n) into the inequality above, we get

∥∥∥∥ 1

c(n)
P∗

n dn

∥∥∥∥
2

W2†

= ‖un‖2
W2† ≤ C‖χun‖2

H1† + C

c(n)
‖χun‖H1† .

Multiplying by c2(n), we find∥∥P∗
n dn

∥∥2
W2† ≤ C

∥∥χP∗
n dn

∥∥2
H1† + C

∥∥χP∗
n dn

∥∥
H1† = Cc2(n) + Cc(n) ≤ C′.

Therefore P∗
n dn is bounded in W2†, hence in V 2†. ��

Lemma 5.3. Fix 0 < λ ≤ λ3. There exists a positive integer N = N(λ)
such that for n ≥ N, the matrix operator

Mλ
n =

(
Lλ (F λ)∗ P∗

n

PnF
λ −PnA

λ
4 P∗

n

)

is self-adjoint on L2
S × Rn with domain H2† × Rn, has essential spectrum

[λ2,∞) and has at least n + 1 negative eigenvalues.
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Proof. We recall that Lλ is self-adjoint with essential spectrum [λ2,∞).
However, the symmetric operator(

0 (F λ)∗ P∗
n

PnF
λ −PnA

λ
4 P∗

n

)

has finite-dimensional range and so it is compact. The theorems of Kato–
Rellich and Weyl apply here directly to prove the first two assertions of the
lemma. It remains to consider the negative spectrum.

The last assertion is equivalent to saying that there is an (n + 1)-
dimensional subspace S ⊂ H2† × Rn such that 〈Mλ

n z, z〉 < 0 for all
z ∈ S \ {0}. For simplicity, we temporarily drop the superscript λ as it
is fixed in this proof. As above, let α be the n ×n symmetric positive matrix
with entries α jk = 〈A4σk, σj〉. Let

Jn =
(

I 0
α−1 PnF I

)
.

Then

J∗
nMnJn =

(
L + (F )∗ P∗

n α−1 PnF 0
0 −α

)

has the same number of negative eigenvalues as Mn . But −α has exactly n
negative eigenvalues, so it suffices to prove that

Nn = L + (F )∗ P∗
n α−1 PnF

has a negative eigenvalue when n is large.
By Lemma 5.1, the untruncated operator N = L + (F )∗(A4)

−1F has
a negative eigenvalue. Let η = ηλ be an eigenvector of N = N λ as in
Lemma 5.2 with eigenvalue µ < 0 and ‖η‖L2 = 1. Let ξ = A−1

4 F η. Since
η ∈ L2, we have F η ∈ H−1† and ξ ∈ V 2†. Recall that dn = α−1 PnF η. By
these definitions, we have

〈Nnη, η〉 − 〈N η, η〉
= 〈(

F ∗ P∗
n α−1 PnF − F ∗A−1

4 F
)
η, η

〉 = 〈(
P∗

n α−1 PnF − A−1
4 F

)
η,F η

〉
= 〈

P∗
n dn − ξ,A4ξ

〉 = 〈
A4(P∗

n dn − ξ), ξ
〉
.

Choose a sequence ξn such that ‖ξn − ξ‖V 2† → 0 and such that each ξn is
a linear combination of {σ1, . . . , σn}. Then ξn belongs to the range of P∗

n .
Because PnA4(P∗

n dn − ξ) = αdn − PnF η = 0, it follows that

|〈Nnη, η〉 − 〈N η, η〉| = ∣∣〈A4(P∗
n dn − ξ), ξ − ξn

〉∣∣
≤ ∥∥A4

(
P∗

n dn − ξ
)∥∥

V−2†‖ξ − ξn‖V 2†

≤ C
∥∥P∗

n dn − ξ
∥∥

V 2†‖ξ − ξn‖V 2†

≤ C ′‖ξ − ξn‖V 2† → 0

as n → ∞. Since 〈N η, η〉 < 0, it follows that 〈Nnη, η〉 < 0 for sufficiently
large n, so that Nn must have a negative eigenvalue. ��
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6. Approximate growing mode

Now we consider the behavior for large λ.

Lemma 6.1. There exists λ4 > 0 such that if λ ≥ λ4, then for each n the
operator Mλ

n has at most n negative eigenvalues.

Proof. For h ∈ H2†,

(Lλh, h) ≥ (
Aλ

2h, h
) =

((
−∆ + 1

r2
+ λ2

)
h, h

)
−

∫∫
rv̂θµpdv|h|2dx

−
∫∫

v̂θµeQ
λ(v̂θh)dvhdx.

The last term is bounded by

∣∣〈Qλ(v̂θh), v̂θh
〉
|µe|

∣∣ ≤ ‖v̂θh‖2
|µe| ≤

(
sup

x

∫
|µe|dv

)
|h|22

by Lemma 4.1 (a). Therefore (Lλh, h) ≥ (λ2 − C0)|h|22, where C0 =
supx(

∫
(|rµp| + |µe|)dv). Now for any (h, b) ∈ H2† × Rn,

〈
Mλ

n

(
h
b

)
,

(
h
b

)〉
= (Lλh, h) + 2

〈
F λh, P∗

n b
〉 − 〈

Aλ
4 P∗

n b, P∗
n b

〉

≥ (
λ2 − C0

)|h|22 − ‖F λh‖H−1†

∥∥χP∗
n b

∥∥
H1†

−C(λ)
∥∥P∗

n b
∥∥2

V 2†

≥ (
λ2 − C0

)|h|22 − 2C1|h|2
∥∥P∗

n b
∥∥

V 2† − C(λ)
∥∥P∗

n b
∥∥2

V 2†

≥ −(
C2

1 + C(λ)2)∥∥P∗
n b

∥∥2
V 2†

provided λ ≥ λ4 = √
C0 + 1. Since b ∈ Rn, it follows that Mλ

n has at
most n negative eigenvalues. ��

Now we are ready to exhibit an approximate growing mode.

Lemma 6.2. For each positive integer n ≥ N(λ3), there exists λn ∈ [λ3, λ4]
such that Mλn

n has a non-trivial kernel. Here λ3 and λ4 are in Lemmas 5.3
and 6.1.

Proof. We emphasize that λ3 and λ4 do not depend on n. We use continuity
with respect to λ. First, Mλ

n is a continuous family of operators of λ in the
sense that if σ > 0, then there exists C, δ > 0 such that∥∥Mλ

n − Mσ
n

∥∥ ≤ C|λ − σ |
for |λ − σ | < δ, λ, σ ∈ (0,∞), where ‖‖ denotes the operator norm from
L2

S × Rn to L2
S × Rn. This continuity property follows immediately from

Lemma 4.2.
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By Lemma 5.3, Mλ3
n has at least (n + 1) negative eigenvalues. By

Lemma 6.1, Mλ4
n has at most n negative eigenvalues. By [18, IV-3.5], the

eigenvalues of Mλ
n within the interval [λ3, λ4] are continuous functions of λ.

In particular, the dimension of the corresponding eigenspace is a constant.
Hence at least one eigenvalue must cross from negative to positive. So there
exists some λn ∈ [λ3, λ4] such that Mλn

n has a non-trivial kernel. ��

7. Limit as n → +∞
Lemma 7.1. There exist λ0, h0, k0 such that 0 < λ0 < ∞, h0 ∈ H2†,
k0 ∈ H2† and

Lλ0h0 + (F λ0)∗k0 = 0,(57)

F λ0h0 − Aλ0
4 k0 = 0(58)

with (h0, k0) 	= (0, 0).

Proof. By Lemma 6.2, for each n ≥ N(λ3) there exists λn ∈ [λ3, λ4] and
a non-zero solution (hn, bn) ∈ H2† × Rn such that

Lλn hn + (F λn)∗ P∗
n bn = 0,(59)

PnF
λn hn − PnA

λn
4 P∗

n bn = 0.(60)

We normalize hn, bn such that

‖hn‖L2 + ∥∥χP∗
n bn

∥∥
H1† = 1

by Lemma 4.5. We claim that hn is bounded in H2†. Indeed, ‖χP∗
n bn‖H1†

≤ 1, so that (F λn)∗ P∗
n bn is bounded in L2, and Lλn hn is bounded in L2.

Since ‖hn‖L2 ≤ 1, (Bλn)∗(Aλn
1 )−1Bλn hn is also bounded in L2, and so are

Aλn
2 hn and (−∆ + 1

r2 + λ2
n)hn. Therefore hn is bounded in H2†. By (60) we

have 〈
Aλn

4 P∗
n bn, P∗

n bn
〉 = 〈

F λn hn, P∗
n bn

〉
.

The right side of this equation is bounded. So 〈(−∆ + 1
r2 )(−∆ + 1

r2

+λ2
n)P∗

n bn, P∗
n bn〉 is also bounded. Therefore P∗

n bn is bounded in V 1†∩V 2†.
Now we take subsequences such that λn → λ0 ∈ [λ3, λ4], hn → h0 weakly
in H2†, P∗

n bn → k0 weakly in V 2†. We look at each term for (59), (60)
separately. First, for any l ∈ H2†,∣∣(Lλn hn − Lλ0h0, l

)∣∣
≤ ∣∣(Lλ0(hn − h0), l

)∣∣ + ∣∣((Lλn − Lλ0)hn, l
)∣∣

≤ ∣∣((hn − h0),L
λ0l

)∣∣ + ‖Lλn − Lλ0‖L2→L2‖hn‖L2‖l‖L2 → 0

as n → ∞, by Lemma 4.2. Thus Lλn hn → Lλ0h0 weakly in H−2†.
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Secondly, for any l ∈ L2
S,

∣∣〈(F λn)∗ P∗
n bn − (F λ0)∗k0, l

〉∣∣
≤ ∣∣〈((F λn)∗ − (F λ0)∗)k0, l

〉∣∣ + ∣∣〈(F λ0)∗(P∗
n bn − k0

)
, l

〉∣∣
≤ ‖F λn − F λ0‖L2→H−1†

C
‖χk0‖H1†‖l‖L2 + ∣∣〈(P∗

n bn − k0
)
,F λ0l

〉∣∣ → 0

as n → ∞ by Lemma 4.3. Thus (F λn)∗ P∗
n bn → (F λ0)∗k0 weakly in L2

S.
Thirdly, for any g ∈ H2†, let gn = ∑n

j=1 c j
nσj → g strongly in H2† as

n → ∞. Let γn = {c j
n}n

j=1 ∈ Rn. Then P∗
n γn = gn and 〈PnF

λn hn, γn〉 =
〈F λn hn, gn〉. Hence again using Lemma 4.3,∣∣〈PnF

λn hn, γn
〉 − 〈

F λ0h0, g
〉∣∣

≤ ∣∣〈(F λn − F λ0)hn, gn
〉∣∣ + ∣∣〈F λ0hn, gn − g

〉∣∣ + ∣∣〈F λ0(hn − h0), g
〉∣∣

≤ ‖F λn − F λ0‖L2→H−1†‖hn‖L2‖χgn‖H1†

+ ∥∥F λ0hn

∥∥
H−1†‖χ(gn − g)‖H1† + ∣∣〈(hn − h0), (F

λ0)∗g
〉∣∣

≤ C1‖F λn − F λ0‖L2→H−1†‖hn‖L2‖g‖H2† + C2‖hn‖L2‖gn − g‖H2†

+ ∣∣〈(hn − h0), (F
λ0)∗g

〉∣∣
→ 0

as n → 0. Thus 〈PnF
λn hn, γn〉 → 〈F λ0h0, g〉 for all g ∈ H2†.

Fourthly, using the same g ∈ H2† as above,
∣∣〈PnA

λn
4 P∗

n bn, γn
〉 − 〈

Aλ0
4 k0, g

〉∣∣
= ∣∣〈Aλn

4 P∗
n bn, gn

〉 − 〈
Aλ0

4 k0, g
〉∣∣

≤ ∣∣〈(Aλn
4 − Aλ0

4

)
P∗

n bn, g
〉∣∣ + ∣∣〈Aλ0

4 P∗
n bn, gn − g

〉∣∣
+ ∣∣〈Aλ0

4 (P∗
n bn − k0), g

〉∣∣
= I + II + III.

The first term on the right is estimated as

I ≤ (
λ2

n − λ2
0

)∥∥P∗
n bn

∥∥
V 1†‖g‖V 1†

+ ‖Gλn − Gλ0‖H1†→H−1†

∥∥χP∗
n bn

∥∥
H1†‖χg‖H1†

→ 0, as n → ∞,

where

Gλ = Eλ + (Dλ)∗(Aλ
1

)−1
Dλ : H1† → H−1†.
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By Lemma 4.4, ‖Aλ0
4 ‖V 2†→V−2† ≤ C, so

II ≤ C
∥∥P∗

n bn

∥∥
V 2†‖gn − g‖V 2† → 0, as n → ∞.

As for the third term, Aλ0
4 g ∈ H−2† so that

III = ∣∣〈(P∗
n bn − k0

)
,Aλ0

4 g
〉∣∣ → 0, as n → ∞.

So 〈PnA
λn
4 P∗

n bn, γn〉 → 〈Aλ0
4 k0, g〉 for all g ∈ H2†. Thus all four terms in

(59), (60) converge and the limits satisfy (57) and (58).
It remains to show that (h0, k0) 	= (0, 0). Let us write (59) explicitly,

using the definition of Lλn , as

(−∆ + λ2
n

)(
eiθhn

) = eiθ

(
−∆ + 1

r2
+ λ2

n

)
hn = fn,

where

fn = −eiθ (F λn)∗ P∗
n bn + eiθ

∫
rv̂θµpdv hn

+ eiθ
∫

v̂θµeQ
λ(v̂θh)dv − eiθ (Bλn)∗(Aλn

1

)−1
Bλn hn.

By Lemmas 4.2 and 4.3, fn is bounded in L2(R3) and has support in the fixed
bounded set Sx ⊂ R3. Therefore the inversion of the operator (−∆ + λ2

n)
with λn ≥ λ3 > 0 implies that hn decays exponentially as |x| → ∞ ,
uniformly in n. Thus {hn} is compact in L2, so that hn → h0 strongly in L2.
Since ‖P∗

n bn‖V 2† is uniformly bounded, χP∗
n bn → χk0 strongly in H1†.

Therefore, we have ‖h0‖L2 + ‖χk0‖H1† = 1 and so (h0, k0) 	= (0, 0). ��

8. Growing mode

Changing notation, Aθ = h0, π = k0, and replacing λ0 by λ, we have from
(57) and (58) the pair of equations

LλAθ = −(F λ)∗π, Aλ
4π = F λAθ(61)

where (Aθ , π) 	= (0, 0), Aθ ∈ H2†, π ∈ H2†, λ ∈ (0,+∞). We must define
f, φ and A so that (38), (39) and (40) are satisfied by eλt( f, φ, A). Indeed,
motivated by Sect. 3, we define

Ar = −∂zπ, Az = 1

r
∂r(rπ), A = (Ar , Aθ , Az),

φ = (
Aλ

1

)−1(
Bλ Aθ + Dλπ

)
,(62)

E = −∇φ − λA, B = ∇ × A,

and

f(x, v) = −µeφ + µeQ
λφ − µprAθ − µeQ

λ(v̂θ Aθ ) − µeQ
λ(Gπ).(63)
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It follows directly that ∇ · A = 0, A ∈ H1, φ ∈ V 1, E ∈ L2, B ∈ L2,
Aθ ∈ L∞ and by Lemmas 4.2, 4.3 and 4.1, f ∈ L2(R3 × R3).

Lemma 8.1. The Poisson equation −∆φ = ρ is satisfied. Moreover,
φ ∈ H2(R3) and f ∈ L∞(R3 × R3).

Proof. By (62), we have Aλ
1φ = Bλ Aθ + Dλπ, which is written explicitly

as

−∆φ = ( ∫
µedv

)
φ −

∫
µeQ

λφdv − ( ∫
v̂θµedv

)
Aθ

+
∫

µeQ
λ(v̂θ Aθ)dv +

∫
µeQ

λ(Gπ)dv.

On the other hand, by (63) and
∫
(rµp + v̂θµe)dv = 0, we get exactly the

same expression for ρ = − ∫
fdv. Now integrating (63) in v and x, we find

that the first and second terms cancel, the third and fourth terms cancel,
and the fifth term

∫∫
µeGπdvdx vanishes by the oddness of the integrand

in (vr, vz). Thus
∫

ρdx = − ∫∫
fdxdv = 0. Furthermore, ρ has compact

support. So by the proof of Lemma 3.2 of [24], φ ∈ L2. Since ρ ∈ L2, by
elliptic regularity we have φ ∈ H2 ⊂ L∞.

Moreover,(
−∆ + 1

r2

)(
−∆ + 1

r2
+ λ2

)
π = Aλ

4π + Gλπ

= F λ Aθ + Eλπ + (Dλ)∗(Aλ
1

)−1
Dλπ

∈ H−1†

so that π ∈ V 3† and Gπ ∈ L∞. Therefore from (63), f ∈ L∞(R3 × R3).
��

Lemma 8.2. The function f defined by (63) satisfies (38).

Proof. We have

f = −µeφ + µeQ
λφ − µprAθ − µeQ

λ(v̂ · A).

To show that f is a weak solution of (38), we take any g ∈ C1
c(R

3 × R3),
and compute∫∫

R3×R3
(Dg) fdxdv

=
∫∫

R3×R3
(Dg)(−µeφ)dxdv +

∫∫
R3×R3

(Dg)µeQ
λφdxdv

+
∫∫

R3×R3
(Dg)(−µprAθ )dxdv −

∫∫
R3×R3

(Dg)µeQ
λ(v̂ · A)dxdv

= I + II + III + IV.
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Since D is skew-adjoint, the first term is

I =
∫∫

R3×R3
gD(µeφ)dxdv =

∫∫
R3×R3

µegDφdxdv.

Similarly,

III =
∫∫

R3×R3
µpgD(rAθ )dxdv.

By definition of Q,

II =
∫ 0

−∞
λeλs

∫∫
R3×R3

µe Dg(x, v)φ(X(s; x, v))dxdvds

=
∫ 0

−∞
λeλs

∫∫
R3×R3

µe(Dg)(X(−s), V(−s))φ(x)dxdvds

=
∫∫

R3×R3
µe

∫ 0

−∞
λeλs

(
− d

ds
g(X(−s), V(−s))

)
dsφ(x)dxdv

=
∫∫

R3×R3
µe

{
−λg(x, v) +

∫ 0

−∞
λ2eλsg(X(−s), V(−s))ds

}
φ(x)dxdv

=
∫∫

R3×R3

{
−µeλφ(x) + µe

∫ 0

−∞
λ2eλsφ(X(s), V(s))ds

}
g(x, v)dxdv

= λ

∫∫
R3×R3

{−µeφ + µeQ
λφ

}
gdxdv.

The preceding calculations are valid since φ belongs to H2 and thus is
continuous. Similarly,

IV = −λ

∫∫
R3×R3

{−µev̂ · A + µeQ
λ(v̂ · A)

}
gdxdv.

So we have∫∫
R3×R3

(Dg) fdxdv

=
∫∫

R3×R3
λ
{−µeφ + µeQ

λφ + µeQ
λ(v̂ · A)

}
gdxdv

+
∫∫

R3×R3
{µe Dφ + µp D(rAθ ) + λµev̂ · A}gdxdv

=
∫∫

R3×R3
{λ( f + µprAθ ) + µe Dφ + µp D(rAθ) + λµev̂ · A}gdxdv.

So f weakly satisfies the equation

(λ + D) f = −µe Dφ − µp D(rAθ) − λµprAθ − λµev̂ · A

which is exactly (38). ��
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Lemma 8.3. Denoting ρ = − ∫
fdv and j = − ∫

v̂ f dv, we have the
continuity equation λρ + ∇ · j = 0.

Proof. By the last lemma, f satisfies (38) weakly, which can be written as

λ f + ∇x · (v̂ f ) − ∇v · {(E0 + Eext + v̂ × (B0 + Bext)) f }(64)

= −∇v · {(E + v̂ × B) f 0}.
The last equality follows in the same way that (38) was derived. Let
ς(v) ∈ C1

c(R
3) to be a cut-off function for the v-support of µ(e, p). Taking

any h(x) ∈ C1
c(R

3) and using ς(v)h(x) as a test function for (64), all the
terms coming from v-divergences vanish and we have

∫
λρ(x)h(x)dx −

∫
j · ∇hdx = 0.

So λρ + ∇ · j = 0 weakly. ��
Lemma 8.4. The Maxwell equation (40) is satisfied.

Proof. By (63), we have

j = −
∫

v̂ fdv = ( ∫
v̂µedv

)
φ −

∫
v̂µeQ

λφdv

+( ∫
v̂µpdv

)
rAθ +

∫
v̂µeQ

λ(v̂θ Aθ )dv +
∫

v̂µeQ
λ(Gπ)dv.

Its θ-component can be written as

jθ = −(Bλ)∗φ − Aλ
2 Aθ +

(
−∆ + 1

r2
+ λ2

)
Aθ + Cλπ.

By the definition of φ,

−(Bλ)∗φ = −(Bλ)∗(Aλ
1

)−1
Bλ Aθ − (Bλ)∗(Aλ

1

)−1
Dλπ.

By the definition of Lλ,

−Aλ
2 Aθ = −Lλ Aθ + (Bλ)∗(Aλ

1

)−1
BλAθ .

By (61),

−Lλ Aθ = (F λ)∗π = (Bλ)∗(Aλ
1

)−1
Dλπ − Cλπ.

Adding the last three equations, we obtain

−(Bλ)∗φ − Aλ
2 Aθ + Cλπ = 0,
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so that

jθ =
(

−∆ + 1

r2
+ λ2

)
Aθ

and

jθeθ = (λ2 − ∆)(Aθeθ).

Because ∇φ has no θ-component, this result is the θ-component of the
Maxwell equation (40).

It remains to derive the r and z components of (40). By (61), (62)
and (63), it follows exactly as in the proof of Lemma 3.1 that

(
−∆ + 1

r2

)(
−∆ + 1

r2
+ λ2

)
π = (Dλ)∗φ − (Cλ)∗ Aθ + Eλπ

= ∂z jr − ∂r jz.

As in that proof, we introduce K = jrer + jzez and I = (−∆)−1K. Then
(

−∆ + 1

r2

)(
−∆ + 1

r2
+ λ2

)
π =

(
−∆ + 1

r2

)
(∂z Ir − ∂r Iz)

so that (
−∆ + 1

r2
+ λ2

)
π = ∂z Ir − ∂r Iz.

This result can be rewritten as

(λ2 − ∆)(πeθ) = ∇ × I.

Taking the curl of both sides,

(λ2 − ∆)(Arer + Azez) = −∆I + ∇(∇ · I).

But

∇ · I = ∇ · (−∆)−1K = (−∆)−1∇ · j = λ∆−1ρ = −λφ,

so that

(λ2 − ∆)(Arer + Azez) = K − λ∇φ.

In components, this means

(λ2 − ∆)Ar = jr − λ∂rφ, (λ2 − ∆)Az = jz − λ∂zφ,

which are precisely the r and z components of (40). ��
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This completes the proof of Theorem 1.2(i). To prove Theorem 1.2(ii)
on the number of growing modes, we first note that for each n-truncated
problem, it follows from the continuity argument that the number of approx-
imate growing modes is bounded below by the dimension of the negative
eigenspace of L0. Since we have the uniform control of the converging pro-
cess as n → ∞ , the lower bound for the number of exact growing modes
follows. The proof of the upper bound is the same as in the 11

2 D case and
we omit it. ��
Remark 3. In this 3D case we do not have much regularity of f and the
growing mode is only shown to satisfy the linearized equation weakly. This
is mainly due to the complicated behavior of the 3D particle trajectories. To
see this difficulty more clearly, we formally differentiate f given by (63)
and look at a typical term∫ 0

−∞

∫ ∫
µeλeλs �x φ(X(s; x, v))

∂X(s; x, v)

∂v
dxdvds.

If the stretching factor ∂X(s;x,v)
∂v

grows like ea|s| with a > λ, the integral
diverges and we lose the differentiability of f . In the 11

2 D case it is possible
to prove (see [25]) some regularity of f by estimating an averaged Liapunov
exponent for the quantity

∫∫ | ∂X(s;x,v)
∂v

|dxdv. This idea was first introduced
in the 1D Vlasov–Poisson in [23] and it works for integrable trajectories.
However, the 3D trajectory in general is non-integrable so that the idea
fails. For this reason we have had to study the operators (Cλ)∗, (Dλ)∗,
Eλ, F λ and Aλ

4 with ranges in negative Sobolev spaces. We note as well
that the non-integrability of trajectories is the main reason for the difficulty
of passing from linear to non-linear instability.

9. Non-monotone equilibria

In case µe changes sign, it does not seem possible to extend the methods
of [24] to get linear stability. However, we can still get sufficient conditions
for linear instability by extending the matrix formulation of this paper. If µe
changes sign, we will reformulate the growing mode problem as a 3 × 3
matrix operator Mλ depending on a positive parameter λ > 0 and then look
for the change of the signature of Mλ as λ goes from 0 to +∞.

In the discussion below, we illustrate this idea only for a simple case,
namely a purely magnetic equilibrium of 11

2 D RVM system with two
species. Assume now that

µ+(e, p) = µ−(e,−p).(65)

Then an purely magnetic equilibrium is obtained with electric potential
φ0 ≡ 0 and magnetic potential ψ0 satisfying the ODE

∂2
xψ

0 = 2
∫

v̂2µ
−(〈v〉, v2 − ψ0(x)

)
dv.
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We use the same notation as in [24] and [25]. Define

A0
1h = −∂2

xh − ( ∫
2µ−

e dv
)
h +

∫
2µ−

e P −hdv,

A0
2h = −∂2

x h − (
2
∫

v̂2µ
−
p dv

)
h −

∫
2µ−

e v̂2P
−(v̂2h)dv,

k0 =
∫ P

0

∫
µ−

e (P −(v̂1))
2dvdx

where P − is the projection operator of L2
|µ−

e | onto ker D− and D− =
v̂1∂x − v̂2 B0∂v1 + v̂1 B0∂v2 . Denote by n(A0

1) and n(A0
2) the number of

negative eigenvalues of A0
1 and A0

2.

Theorem 9.1. Consider a periodic purely magnetic equilibrium as above.
Assume ker A0

1 = {0}. Then the equilibrium is spectrally unstable if either

(i) l0 < 0 and n(A0
1) 	= n(A0

2) or
(ii) l0 > 0 and n(A0

1) + 1 	= n(A0
2).

Proof (sketched). As we are merely sketching the extension of our results
to this case, let us take just one species and use the notation in Sect. 2.
Finding a growing mode eλt( f, E1, E2, B) with λ > 0 is equivalent to
solving (29)–(31) for (φ,ψ, b) where (φ,ψ) is the electromagnetic potential
and b ∈ R1. We define the rank-one operators Cλ, Dλ : R1 → L2

P by
Cλ(b) = bbλ and Dλ(b) = bcλ. Then (φ,ψ, b) satisfies the matrix equation⎛

⎝
−Aλ

1 Bλ Cλ

(Bλ)∗ Aλ
2 −Dλ

(Cλ)∗ −(Dλ)∗ −P(λ2 − lλ)

⎞
⎠

⎛
⎝φ

ψ

b

⎞
⎠ = Mλ

⎛
⎝φ

ψ

b

⎞
⎠ = 0.

This 3×3 matrix Mλ is different from the 2×2 one of the previous sections.
Notice that Mλ is formally self-adjoint.

Let us look at the asymptotic behavior of Mλ. As λ → +∞, we can
show that the off-diagonal terms Bλ, Cλ, Dλ → 0 and Aλ

1 → − d
dx2 > 0,

by noticing that

lim
λ→∞

∫ 0

−∞
λeλsh(X(s))ds → h(x)

strongly in L2
P , which is the analogue of Lemma 4.1(e). We also have Aλ

2 > 0
for large λ. As λ ↘ 0, we have Cλ, Dλ → 0 as shown in the proof of
Lemma 2.6. Moreover, it was shown in Lemmas 4.2 and 3.1 of [24] that for
a purely magnetic equilibrium, Bλ → 0 strongly as λ ↘ 0. So Mλ tends
to a diagonal operator as λ tends to 0 and the same as λ tends to ∞. Now
Aλ

1, Aλ
2 and lλ tend to A0

1, A0
2 and l0 as λ ↘ 0.

We want to show that Mλ has a different signature for small and large λ.
For then a continuity argument should ensure the existence of a non-trivial
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kernel for some Mλ. However since Mλ is not bounded either from below or
from above, in order to make the argument rigorous we must truncate as in
the 3D case. We truncate the φ-component (but not the other components)
to an n-dimensional subspace which does not spoil the negative space of A0

1;
that is, we project onto the lowest n modes of A0

1. We denote the resulting
truncated matrix operator by Mλ

n . Then for large λ, say λ ≥ Λ, Mλ
n has

n + 0 + 1 negative eigenvalues. In case l0 < 0 , M0
n has (n − n(A0

1)) +
n(A0

2) + 1 negative eigenvalues. In case l0 > 0, M0
n has (n − n(A0

1)) +
n(A0

2) + 0 negative eigenvalues. Therefore M0
n and MΛ

n have a different
number of negative eigenvalues in both cases (i) and (ii). By continuity, Mλ

n
has a non-trivial kernel for some λ > 0. Then we let n go to +∞ to obtain
a non-trivial kernel for Mλ. As the details are somewhat similar to the 3D
cylindrical case, we omit them. ��

For purely magnetic equilibria, in case µe < 0, we have A0
1 > 0 and

l0 < 0. In this case, it was shown in [24] that n(A0
2) 	= 0 is the sharp

condition for linear instability. So Theorem 9.1 is a generalization of that
instability result to the case of a general purely magnetic equilibrium with
non-monotone µ. Moreover, it was shown in [25] that these linear instability
results imply non-linear instability in the macroscopic sense.

For the 3D case with µe of general sign, one can also use the same idea.
The equations (45), (47) and (48) for (φ, Aθ , π) can be rewritten as

⎛
⎝

−Aλ
1 Bλ −Dλ

(Bλ)∗ Aλ
2 Cλ

−(Dλ)∗ (Cλ)∗ Aλ
3

⎞
⎠

⎛
⎝ φ

Aθ

π

⎞
⎠ = Mλ

⎛
⎝ φ

Aθ

π

⎞
⎠ = 0.

Again Mλ is formally self-adjoint. By studying the difference of the signa-
tures of Mλ at 0 and at ∞, one can obtain sufficient conditions for linear
instability of general equilibria, which will generalize the instability criter-
ion of the monotone case. However we do not pursue the details here.

10. Appendix

In this appendix, we list some common formulae in the cylindrical coordin-
ates. Assume ψ = ψ(r, θ, z) is a scalar function and A =(Ar , Aθ , Az) is
a vector function.

∇ψ = ∂ψ

∂r
er + 1

r

∂ψ

∂θ
eθ + ∂ψ

∂z
ez,

∆ψ = 1

r

∂

∂r

(
r
∂ψ

∂r

)
+ 1

r2

∂2ψ

∂θ2
+ ∂2ψ

∂z2
,

∇ · A =1

r

∂(rAr)

∂r
+ 1

r

∂Aθ

∂θ
+ ∂Az

∂z
,
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∇ × A =
(

1

r

∂Az

∂θ
− ∂Aθ

∂z

)
er +

(
∂Ar

∂z
− ∂Az

∂r

)
eθ

+
(

1

r

∂(rAθ)

∂r
− 1

r

∂Ar

∂θ

)
ez

∆A =
(

∆Ar − 1

r2
Ar − 2

r2

∂Aθ

∂θ

)
er

+
(

∆Aθ − 1

r2
Aθ + 2

r2

∂Ar

∂θ

)
eθ + ∆Azez.

We now present the derivation of (38) in detail. The linearized Vlasov
equation can be written as

∂t f + D f = (E + v̂ × B) · ∇v f 0.

Since f 0 = µ(e, p), we have

∇v f 0 = µev̂ + µpreθ .

So

E · ∇v f 0 = (−∇xφ − ∂tA) · (µev̂ + µpreθ)

= −µev̂ · ∇xφ − µev̂ · ∂tA − µpr∂t Aθ

Moreover,

v̂ × B · ∇v f 0 = {v̂ × (∇x × A)} · {µev̂ + µpreθ}
= rµp{v̂ × (∇x × A)} · eθ

= −µp(v̂r∂r(rAθ ) + v̂z∂z(rAθ )) = −µp D(rAθ ).

The last line is a consequence of the identity

v̂ × (∇x × A) · eθ

=
{
(v̂rer + v̂θeθ + v̂zez)

×
(

− ∂Aθ

∂z
er +

(
∂Ar

∂z
− ∂Az

∂r

)
eθ + 1

r

∂(rAθ )

∂r
ez

)}
· eθ

= −v̂r
1

r

∂(rAθ )

∂r
− v̂z

∂Aθ

∂z
= 1

r
D(rAθ).

Combining the above computations, we obtain (38).1

1 Our work was supported in part by NSF grants DMS-0405066 and DMS-0505460.
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