BAROTROPIC INSTABILITY OF SHEAR FLOWS

ZHIWU LIN, JINCHENG YANG, AND HAO ZHU

ABSTRACT. We consider barotropic instability of shear flows for incompressible fluids with
Coriolis effects. For a class of shear flows, we develop a new method to find the sharp
stability conditions. We study the flow with Sinus profile in details and obtain the sharp
stability boundary in the whole parameter space, which corrects previous results in the
fluid literature. Our new results are confirmed by more accurate numerical computation.
The addition of the Coriolis force is found to bring fundamental changes to the stability of
shear flows. Moreover, we study dynamical behaviors near the shear flows, including the
bifurcation of nontrivial traveling wave solutions and the linear inviscid damping. The first
ingredient of our proof is a careful classification of the neutral modes. The second one is to
write the linearized fluid equation in a Hamiltonian form and then use an instability index
theory for general Hamiltonian PDEs. The last one is to study the singular and non-resonant
neutral modes using Sturm-Liouville theory and hypergeometric functions.
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1. INTRODUCTION

When studying the large-scale motion of ocean and atmosphere, the rotation of the earth
may affect the dynamics of the fluids significantly and therefore, Coriolis effects must be
taken into account ([38]). In this paper, we study stability and instability of shear flows
under Coriolis forces. We consider the fluids in a strip or channel denoted by

D = {(:L’,y) | Y€ [y17y2]}a
where z is periodic. The fluid motion is modeled by the two-dimensional inviscid incompress-
ible Euler equation with rotation
(1.1) o+ (u-V)u=-VP — pyJi t €0,400), (z,y) € D,

where @ = (u1, ug) is the fluid velocity, P is the pressure,

=G v)

is the rotation matrix, and 3 is the Rossby number. Here, the term —pyJu denotes the
Coriolis force under the beta-plane approximation. We assume the incompressible condition
V -4 = 0 and the non-permeable boundary condition

(1.2) up =0  ondD={y=uy1,y2}.

The vorticity w is defined as w := curld = Jyus — dyu1, and the stream function v is
introduced such that @ = V11 = (9,9, —9,¢). The vorticity form of (1.1) is

(1.3) Ow + (4 - V)w + fuz =0,
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which is also called the quasi-geostrophic equation in geophysical fluids ([38]). Consider a
shear flow iy = (U(y),0), U € C%([y1,¥2]), which is a steady solution of (1.3). The linearized
equation of (1.3) around the shear flow @ is

(1.4) 0w + Udpw — (B —U")0p1p = 0.

To study the linear instability, it suffices to consider the normal mode solution ¥ (z,y,t) =
d(y)e! @<t where a > 0 is the wave number in the z-direction and ¢ = ¢, + ic¢; is the
complex wave speed. Then (1.4) is reduced to the Rayleigh-Kuo equation

B_UI/
U-c

(1.5) —¢" +a’¢ — ¢ =0,

with the boundary conditions

(1.6) (y1) = ¢(y2) = 0.

When 5 = 0, (1.5) becomes the classical Rayleigh Equation ([44]), which has been studied
extensively (cf. [12, 16, 25, 26, 27, 42]).

The shear flow U is linear unstable if there exists a nontrivial solution to (1.5)—(1.6) with
Imc > 0. This so called barotropic instability is important for the dynamics of atmosphere
and oceans. It has been a classical problem in geophysical fluid dynamics ([23, 24, 38]) since
1940s. Rossby first recognized the nature of barotropic instability and derived the linearized
vorticity equation in [45]. Later, Kuo formulated the equation (1.5)—(1.6), and did some early
studies in [23]. In particular, he gave a necessary condition for instability that 8 — U” must
change sign in the domain [y1, y2], which generalized the classical Rayleigh criterion ([44]) for
B = 0. In [36], Pedlosky showed that any unstable wave speed ¢ = ¢, + ic¢; (¢; > 0) must lie
in the following semicircle

(Cr - (Umin + Umax)/2)2 + CZZ < ((Umax - Uvmin)/2 + |ﬂ|/20¢2)2 ’

which is a generalization of Howard’s semicircle theorem [15] for 8 = 0. Here, Ui, = min U
and Upax = max U. Additionally, the following characterization for the unstable wave speeds
is given in [23, 35, 37].

Lemma 1.1. If 8 > 0, then there are no nontrivial solutions of (1.5)—(1.6) for ¢, > Umax;
if B <0, then there are no nontrivial solutions of (1.5)—(1.6) for ¢, < Upin.

Although there are several necessary conditions as indicated above, there has been very
few sufficient conditions for the barotropic instability of shear flows. In the fluid literature,
the linear instability was studied for some special shear flows. The barotropic instability of
Bickley jet (U (y) = sech? y) was studied by numerical computations and asymptotic analysis
(cf. [2, 4, 13, 17, 33, 24, 34]). Parts of the stability boundary are given analytically or
numerically by Lipps ([33]) and Maslowe ([34]) for the unbounded Bickley jet. Engevik in [13]
confirmed and sometimes corrected the results in earlier work. Moreover, he found analytic
neutral modes and corresponding neutral curves not known previously, both for the bounded
and the unbounded Bickley jet in [13]. He made use of associated Legendre functions, which
are related to hypergeometric functions as we use in the Appendix B. The stability boundary
of hyperbolic-tangent shear flow was studied in [9, 17, 24]. Other references on the barotropic
instability include [10, 11, 31, 32, 41]. In this paper, we consider the barotropic instability of
the following class of shear flows.
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Definition 1.1. The flow U is in class K if U € C3([y1,y2]), U is not a constant function
on [y1,y2], and for each € Ran(U"), there exists Ug € Ran (U) such that

B—=U"(y)
Kp(y) ==
Uly) — Us
is non-negative and bounded on [y1,y2]. Here Ran means the range of a function. Further-
more, U is said to be in class KT if U is in class K and Kpg is positive on [y1,ys] for each

B € Ran (U").

Flows in class KT include U (y) = siny, tanhy, and more generally any U (y) satisfying the
ODE U” = g (U) with g € C'(Ran (U)) and ¢’ < 0 on Ran (U). One important property for
flows in class K is that there is a uniform H? bound for the unstable solutions of (1.5)—(1.6),
see Lemma 2.4. Neutral modes are the solutions of (1.5)—(1.6) with ¢ € R. In the study of
stability of a shear flow U (y), it is often important to locate the neutral modes which are
limits of a sequence of unstable modes. These so called neutral limiting modes determine
the boundary from instability to stability. In Theorems 2.1-2.2, all H? neutral modes for a
general shear flow, and consequently, all neutral limiting modes for a flow in class KT, are
classified into four types by their phase speed ¢: (i) ¢ = U (z) such that 8 = U” (2); (ii)
c=U (y1) or U (y2); (iii) ¢ is a critical value of U; (iv) ¢ is outside the range of U. Here, the
neutral modes of types (ii) and (iii) might be singular, and type (iv) is called non-resonant
since the phase speed ¢ causes no interaction with the basic flow U(y). This contrasts greatly
with the non-rotating case 8 = 0, where it was shown in [28] that for neutral modes in H?,
¢ must be an inflection value of U.

In the literature, it is common to look for unstable modes near neutral modes. A useful
approach to determine the stability boundary is to study the local bifurcation of unstable
modes near all possible neutral limiting wave numbers and then combine these information
to detect the stability/instability at any wave number. In [26], this approach was used to

show that when 3 = 0, any flow U (y) in class KT is linearly stable if and only if & > quax,

2
max

B # 0, there are several difficulties in this approach. First, we need to deal with the subtle
perturbation problem near singular neutral modes. Second, for non-resonant neutral modes,
the phase speed c is to be determined. Moreover, near these non-resonant neutral modes, the
bifurcation of unstable modes is usually non-smooth (see Remark 2.1). In some literature
(e.g. [43]), it was believed that these non-resonant neutral modes are not adjacent to unstable
modes. This turns out to be not true from our study of the Sinus flow in Section 4.

In this paper, we develop a new approach to study the barotropic instability of shear flows.
First, we write the linearized equation in a Hamiltonian form 0w = JLw, where J is anti-
self-adjoint and L is self-adjoint as defined in (3.4). For a fixed wave number «, by taking
the ansatz w = wq (y,t) €%, the linearized equation can be written in a Hamiltonian form
Owo = JoLawes, where J, and L, are defined in (3.7). Then by the instability index theorem
recently developed in [30] for general Hamiltonian PDEs, we get the index formula (3.12).
Similar index formulae have been studied for Hamiltonian systems in the literature, but often
J is assumed to have a bounded inverse (e.g. [5, 7, 18, 21]). In [19, 39], the index formulae
were studied for KAV type equations in the whole line, where J = 3, does not have bounded
inverse. Lin and Zeng generalized these results in [30], where they allowed J to be any
anti-self-dual operator. In our case, J, indeed has no bounded inverse, so the results of Lin
and Zeng apply here. This formula implies that to determine the instability at any a > 0, it
suffices to count the number of neutral modes with a non-positive signature (i.e. (Lowq,was) <
0). The four types of neutral modes in H? are counted separately. In particular, the counting

where —a is the principal eigenvalue of the operator —%;2 — Ko(y). However, when
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of non-resonant neutral modes can be reduced to study A, (5, c), the n-th eigenvalue of the

Sturm-Liouville operator —% — 6(;5]! for ¢ ¢ Ran (U). An important observation is that
for a non-resonant neutral mode (¢, «, 3, ¢), the sign (Lawq,wq) is determined by 9.\, (53, ¢),
where o2 = —\, (B,¢) > 0 and w, = —¢" + a?¢. Therefore, by studying the shape of the
graph of A\, (53, ¢), we are able to count the non-resonant neutral modes with a non-positive
signature. Combining with the index count for the other three types of neutral modes, we
can find the stability boundary in the whole parameter space (o, 3). See Subsection 3.3 for
more detailed discussions about this approach. In this approach, we avoid the study of the
bifurcation of unstable modes near neutral modes, which is particularly tricky for singular
and non-resonant neutral modes.

In Section 4, we study in details the classical Sinus flow

Uy) = (14 cos(my)) /2, y € [-1,1].

For the Sinus flow, L, has at most one negative eigenvalue. Moreover, the singular neutral
wave speeds exist only at the endpoints of Ran (U) = [0,1]. The set of all the eigenvalues
of corresponding singular Sturm-Liouville operator —j—; - U‘YC"
can be computed by using hypergeometric functions. The spectral continuity of the operators
—% — 5[]_5]0” can be shown at the end points ¢ = 0,1 by studying the singular limits when
¢ — 17 and ¢ — 07. Based on these properties and the above approach, we obtain a simple
characterization of the stability boundary in the parameter space. By the index formula and
the relation of 9.1 (5, ¢) with the (L,-, -) sign for a fixed 3, the graph of A; (3, ¢) has at most
one hump, more precisely, monotone or single humped respectively for negative or positive
sign of (Lq-,-) at singular neutral modes. Here ] is the negative part of A\;. The lower
part of the stability boundary is given exactly by sup.c(_oojup,+00) A1 (85¢). In [24] and
[38], it was concluded from numerical computations that the lower stability boundary is the
curve of singular neutral modes (5 > 0) and the modes with zero wave number (5 < 0). Our
results give a correction to this commonly accepted picture. In fact, only part of the lower
stability boundary consists of singular neutral modes with negative (L, ) and the modes
with zero wave number, while the other part consists of non-resonant neutral modes. The
new stability boundary is confirmed by more accurate numerical results. Same results on the
stability boundary can be obtained for more general flows similar to Sinus flow. Moreover,
we count the exact number of non-resonant neutral modes in each stability region. As we
discuss below, this has important implication on the nonlinear dynamics near shear flows.

Lastly, we study some dynamical behaviors near the shear flows. First, the existence
of nontrivial traveling wave solutions is shown near shear flows with non-resonant neutral
modes. These traveling waves, which have fluid trajectories moving in one direction, do not
exist when there is no rotation (i.e. 5 = 0) and therefore are purely due to rotating effects.
We expect the nonlinear dynamics to be much richer due to the existence of these traveling
waves. Second, the Hamiltonian structure of the linearized equation is used to prove the
linear inviscid damping for stable shears with no neutral modes (Theorem 6.1) and in the
center space for the unstable shears (Theorem 6.2). These results are useful for the further
study of nonlinear dynamics near the shear flows, such as nonlinear inviscid damping (for
stable flows without neutral modes) and the construction of invariant manifolds (for unstable
flows).

This paper is organized as follows. In Section 2, we classify all the neutral modes in H? for
general shear flows. For shear flows in class K, by proving a uniform H? bound for unstable
modes, we obtain a classification of neutral limiting modes. In Section 3, for flows in class KT,

is bounded from below and
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we derive an instability index formula by using the Hamiltonian structure of the linearized
fluid equation. Then a general approach is developed to find the stability boundary for flows
in class K. In Section 4, we find the stability boundary for the Sinus flow in details. In
Sections 5 and 6, the bifurcation of nontrivial traveling waves and the linear inviscid damping
are studied, respectively. Section 7 contains the summary and discussion of the numerical
results for Sinus flow.

2. NEUTRAL MODES IN H?
In this section, we classify neutral modes in H? for general shear flows and neutral limiting

modes for flows in class K.

2.1. Classification of neutral modes in H?. First, we give the definition of neutral modes.

Definition 2.1. (cs, as, Bs, ¢s) is said to be a neutral mode if cs € R, as > 0, fs € R, and
¢s s a nontrivial solution to

Bs _ UI/
U — cg
If ¢s € H%(y1,12), (cs, s, Bs, ¢s) is said to be a neutral mode in H>.

(2.1) - ,s/+ aggbs - ¢s =0 on (y1,y2), and ¢s(y1) = ¢s(y2) = 0.

If the equation (2.1) is singular, by a solution ¢ we mean it solves (2.1) on (y1, y2)\{U = ¢s}.
For convenience, we make the following assumption:

Hypothesis 2.1. Let U € C%([y1,32]), and {U — ¢ = 0} be a finite set for ¢ € (Unin, Umax)-

Hypothesis 2.1 is true for generic C? flows. Suppose there exists co € (Umin, Umax) such
that {U — c¢p = 0} is an infinite set. Then for any accumulation point z¢ of {U — ¢y = 0}, we
have U™ (xq) = 0 for all 1 < n < k if U € C*. This implies that Hypothesis 2.1 is satisfied
for analytic flows and for flows in class K*. In fact, it is true for any flow U (y) satisfying
the 2nd order ODE U” = k (y) g (U), where k > 0 is bounded and g € C! by the uniqueness
of ODE solutions.

Assume that U satisfies Hypothesis 2.1. Then for any ¢ € (Unin, Unax), the set {U — ¢ =
0} N (y1,y2) is non-empty, which we denote by

(2.2) {zi | 1 <1<k, z1<22<---<zkc}.
Set zp :=y1 and 241 == Y.

Lemma 2.1. Let U satisfy Hypothesis 2.1 and ¢ solve (1.5)-(1.6) with « > 0, B € R
and ¢ € (Umin,Unax). If there exists 1 < iy < k. such that ¢ € Hl(zio_l, Zig+1), and
(Uly) —c)(U(z) —¢c) <0 for all y € (ziy—1, #i,) and all z € (ziy, Ziy+1), then ¢ can not
vanish at zj,—1, zi, and zj,4+1 simultaneously unless it vanishes identically on at least one of
the intervals (ziy—1, zi,) and (zi, Zig+1)-

Note that (U(y) —c¢)(U(z) —c) < 0 for all y € (ziy—1, zi,) and all z € (z;,, 2i,+1) holds true
unless U'(z;,) = 0. We refer the readers to Lemma 2.7 for the cases ¢ = Upin or ¢ = Upax.
The following lemma will be used to classify neutral modes.

Lemma 2.2. Let ¢ be a solution of (1.5) with a > 0, B € R and ¢ € Ran (U). Assume
that y1 < xo < 21 < 29 < Y9 satisfy U(z1) —c =0 and U — ¢ # 0 on (xg,x1) U (21, 22).
If U'(z1) # 0 and ¢ € C(zo,x2) satisfies the initial conditions ¢(x1) = a1, ¢'(v1) = a for
some ay,az € R, then ¢ is unique on the interval (xg,x2).
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We leave the proofs of Lemmas 2.1-2.2 in the Appendix A. Now we classify all the wave
speeds of neutral modes in H? for a general shear flow.

Theorem 2.1. Assume that U satisfies Hypothesis 2.1. Let (¢s, as, B, cs) be a neutral mode
in H?. Then the wave speed c, must be one of the following:

(i) there exists z € (y1,y2) such that cs = U(z) and B =U"(2);

(ii) Cs = U(yl) or Cs = U(yQ);

(iii) ¢s is a critical value of U;

(iv) cs ¢ Ran (U).

Proof. It suffices to show that if ¢, € Ran (U), then one of cases (i)-(iii) is true. Suppose
that ¢ € Ran (U) and {U — ¢; = 0} N {y1,y2} # @. Then ¢5 = U(y1) or ¢s = U(yz), that is,
case (ii) is true. Otherwise, ¢s # U(y;),7 = 1,2. We consider two cases below.

Case 1. There exists z; € {U — ¢; = 0} such that 5 = U”(z,). Then (i) is true.

Case 2. f # U"(z) for all z € {U — ¢; = 0}. We divide it into two subcases.

Case 2.1. U'(z) #0 for all z € {U — ¢ = 0}. Then ¢s € (Unin, Unmax)-

In this subcase, {U — ¢s = 0} is non-empty and finite, so we use the notation in (2.2). We
claim that there exists 1 < i; < k., such that ¢s(z;,) # 0. Suppose otherwise, ¢s(z;) = 0 for
any 1 <i < k.,. For any fixed 1 < iy < k,, by the fact that U'(z;,) # 0 and by Lemma 2.1,
#s = 0 on at least one of the intervals [z;,_1, 2;,] and [z, 2ig+1]. Since ¢s € H2(y1,y2), it
follows that ¢5 € C*([y1,y2]) and by Lemma 2.2, ¢ = 0 on [2;,_1, 2i,+1] and hence on [y1, y2].
Thus, there exists 1 < i; < k., such that ¢(z;,) # 0. Then near z;,,

U//
o = a2~ 220 0. & L),

which contradicts ¢s € H?(y1, y2)-
Case 2.2. There is 29 € {U = ¢} such that U'(zp) = 0. Then c¢; is a critical value of U. O

For the neutral modes in Theorem 2.1, we call (i) to be regular, (ii)—(iii) to be singular,
and (iv) to be non-resonant. For § = 0, it is shown in [28] that only (i) is true, that is, for
all neutral modes in H?, the phase speed must be an inflection value of U.

2.2. Neutral limiting modes for flows in class K*. First, we obtain the uniform H? bound
of unstable solutions for flows in class K.

Lemma 2.3. Let ¢ be a solution of (1.5)~(1.6) with ¢ = ¢, +ic; (¢; > 0). Then
v2 (3 U

(2.3 [ oy =
Y1

U —cf?
" v (8- U")(U - q)
2
- —4q 2
&1 + o] 97| d
/yl |: |U - C|2
for any q € R.
Proof. The proof is similar as that of Lemma 3.4 and (25) in [26]. O

(2.3) was used in [23] to show Rayleigh’s criterion.
Lemma 2.4. Let U be in class KT and 8 € (min U”, maxU"). If ¢ is a solution of (1.5)—(1.6)
with ¢ = ¢, + ic; (¢; > 0), then

yz /12 2 2 Y2 2
(2.4) / (6P + 2oy < [ Ksloldy,

Y1 Y1
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Y2 Y2
[P+ 20210 o)y < Kl [ KslofPdy.

1 yi
Proof. The proof is similar as that of Lemma 3.7 in [26]. O

Next, we consider neutral limiting modes defined below.

Definition 2.2. Let 8 € (minU”, maxU"). We call (cs,as, 8, ¢s) to be a neutral limiting
mode if cs € R, as > 0 and there exists a sequence of unstable modes {(cy, ax, 5, x)} (with
Im(cg) = ¢, > 0 and ||¢g|l2 = 1) to (1.5)~(1.6) such that cx — cs, a — g, ) converges
uniformly to ¢s on any compact subset of Sy as k — oo, ¢ exists on Sy, and ¢s satisfies

(2.5) (U —cs)(—¢7 + aigs) — (B—U")ps =0
on Sp, where Sy = [y1,y2] \ {U = ¢s}. Here ¢ is called the neutral limiting phase speed and
as 18 called the neutral limiting wave number.

Then we prove that any neutral limiting mode is in H? for flows in class 7.

Lemma 2.5. Let U be in class KT and B € (minU”, maxU"). Suppose that (¢s, as, B3, cs) is
a neutral limiting mode. Then ¢s € H?(y1,y2).

Proof. Let {(¢, o, B,cr)} be a sequence of unstable modes converging to (¢s, as, 5, ¢s) in
the sense of Definition 2.2. Note that ||¢g|/;2 = 1. Since U is in class Kt, by Lemma 2.4,
there exists C' > 0 such that ||¢x|| g2 < C for all k > 1. Thus there exists ¢g € H?(y1,y2) such
that, up to a subsequence, ¢ — do in H2(y1, 1), ¢ — do in C'([y1,2]) and | doll 2 < C.
Let So = [y1,y2] \ {U = ¢s}. For any compact subset S1 C Sy, ¢g solves (2.5) on S; and thus
by Definition 2.2, ¢g = ¢s € H?(y1,92). a

Recall that flows in class KT satisfy Hypothesis 2.1. Combining Theorem 2.1 and Lemma
2.5, we get the classification of neutral limiting modes for flows in class K.

Theorem 2.2. Assume that U is in class K*. Let (¢s, as, B,cs) be a neutral limiting mode.
Then the neutral limiting phase speed cs must be one of the following (recall that Ug is defined
in Definition 1.1):

(i) ¢s = Ug;

(i) es =U(y1) orcs = U(y2);

(iii) ¢s is a critical value of U;

(iv) ¢s ¢ Ran (U).

Remark 2.1. In Theorem IV of [43], Tung showed that for a general C? shear flow U (y), the
phase speed cs of any neutral limiting mode (cs, s, B, ¢s) must lie in Ran (U). His proof is
under the assumption that for fized (3, the dispersion relation ¢ () is an analytic function of «
near as when c(as) = cs ¢ Ran (U). However, as suggested in [34], the analytic assumption
might not always hold and it is possible that cs ¢ Ran (U). In Theorem 4.2, we give the sharp
stability boundary for the Sinus flow, part of which consists of non-resonant neutral modes.
Thus, the phase speed of neutral limiting modes can indeed lie outside the range of U.

Below we give some explanation why the analytic assumption of ¢ («) could fail. Assume
that (¢s, as, B, ¢s) is a neutral mode and cs ¢ Ran (U). From the Rayleigh-Kuo equation
(1.5)~(1.6), the perturbation of the eigenvalue ¢ near cs appears to be analytic in o when cg is
not in the range of U. However, we should consider the operator associated with the linearized
equation (1.4) with the wave number o (B is fized):

d2 -
Bow :=Uw — (B-U") <_dy2 + a2> w.
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Then cs is an isolated eigenvalue of B,,. Define the Riesz projection operator

Po, = _i (Bay — C)_l dg,
I

211

where T is a circle in p(B,,) enclosing c¢s and no other spectral points of B,,. Note that
Ran (P,,) is the generalized eigenspace of the eigenvalue cs and dim(Ran (P,,)) is the al-
gebraic multiplicity of cs (see P. 181 in [20]). Although the geometric multiplicity of cs is
1, the algebraic multiplicity of cs may be larger than 1. In such case, there might be more
than one branches of eigenvalues emanating from cs when we perturb the parameter o in a
neighborhood of as. The expansion of ¢ (a) —c () near a = g could be given by the Puiseux
series (see P. 65 in [20]) instead of the power series in the analytic case. This suggests that
we can not exclude the possibility that for a neutral limiting mode, cs is outside Ran (U).

Similar to the proof of Theorem 4.1 in [26], we get the existence of unstable modes when
the wave number is slightly to the left of a regular neutral wave number.

Lemma 2.6. Let U be in class K+, f € (minU”, maxU"), and (cs,as, 8, ¢s) be a reqular
neutral mode with cs = Ug. Then there exists eg < 0 such that if eg < € < 0, there is a
nontrivial solution ¢. to the equation

(U = Us = e())(9 — ale)*e) + (8= U")p = 0
with ¢:(y1) = ¢<(y2) = 0. Here ae) = \/e + a2 is the perturbed wave number and Ug + c(¢)
is an unstable wave speed with Im(c(g)) > 0.

The next lemma comes from [23, 43].

Lemma 2.7. Let U € C%([y1,v2]). When B >0 and cs > Upax (or B <0 and cs < Upin),
for any a > 0 there exist no neutral modes in H?.

3. HAMILTONIAN FORMULATION, INDEX FORMULA AND INSTABILITY CRITERIA

In this section, we first write the linearized fluid equation for flows in class KT in a Hamil-
tonian form and derive an instability index formula. Then we provide a new approach to
study the instability of flows in class K.

3.1. Hamiltonian formulation and instability index formula. Since a necessary con-
dition for instability is that f — U” must change sign in the domain [y, y2] ([23]), let us fix
B € (minU” maxU”). In the traveling frame (x — Ugt,y,t), the linearized equation (1.4)
becomes

(3.1) Ow + (U = Up)dyw — (B —U")01p = 0.
Recall that for flows in class K*, Kg = 51%; > 0. Let the z period be 27/« for some o > 0.

Define the non-shear space on the periodic channel Sy /o X [y1,%2] by

| 1
(3.2) X=quw= Y ™ u(y), |olk = l—=wli: <oo

kCZ, k40 \/75
Clearly, X = L?. The equation (3.1) can be written in a Hamiltonian form
(3.3) wi = —(8—U"d, (w/Ks — ) = JLw,
where

(3.4) J=—(B-U"0,: X* =X, L=1/Ks—(-A)":X = X*,
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are anti-self-adjoint and self-adjoint, respectively. Denote n~ (L) (n° (L)) to be the number
of negative (zero) directions of L on X. Define the operator

Ap=—-A—-Kg:H>— I?
and
- d?
(3.5) Lo= —d—yz—Kg t H* N Hy (y1,92) = L? (y1,92) -
Then by Lemma 11.3 in [30], we have
n® (L) = n® (Ag) = ZZnO (Eo + l2a2> , n (L)=n" (Ay) = QZn_ (Eo + l2a2> :
>1 1>1

If Tf(lzo) # 0, let —a2 . be the principal eigenvalue of Lo and ¢o be the eigenfunction.
When Ly > 0, let apax = 0. Then L is non-negative and the stability holds when a > ayyax.
Let o < aypax and Y = Li (y1,y2). The space X has an invariant decomposition X =

Kp
@lez, 1£0 X!, where
(3.6) X! = {eio‘lmwl (y), wi € Y} .
On the subspace X, := {emzw (y), we Y} , the operator JL is reduced to the ODE operator
JoLq acting on Y, where
. " 1 d2 2 -

(3.7) Jo=—ia(f-U"), Lao=-—|—55ta .
By the same proof of Lemma 11.3 in [30], we have

0™ (La) =~ (Lo+a?), 0 (La) =n° (Lo +a?).
Since J, is not a real operator on Y, we define the invariant subspace

X =X,® X_o ={cos(ax)w; (y) +sin(az)ws (y), wi,ws € Y},

which is isomorphic to the real space Y xY. For any w = cos (ax) wy (y)+sin (ax) ws (y) € X,

JLw = (cos (ax), sin (ax)) JOLY ( Z; > :

a 0 —OZ(B—U”) o La 0
J_(a(B—U”) 0 >’L—<o La>’

and L, is defined in (3.7). Thus, to study the spectra of JL on X%, we study the spectra of
JYLY on Y x Y. We note that

(38) o (JaLa|YXy) =0 (JaLa’y) Uo (J—aL—Oc|Y) ,

and o (J4La|y) is the complex conjugate of o (J_oL_4|y)-
By the instability index Theorem 2.3 in [30] for linear Hamiltonian PDEs, we have

250 4 2k, + k5 + K = n (L) = 207 (La),

where

where n~ (L) denotes the sum of multiplicities of negative eigenvalues of L%, k, is the
sum of algebraic multiplicities of positive eigenvalues of JO‘La k. is the sum of algebraic
multiplicities of eigenvalues of J*L® in the first quadrant, k:* is the total number of non-
positive dimensions of (L%, -) restricted to the generalized eigenspaces of purely imaginary
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eigenvalues of J*L® with positive imaginary parts, and 12:030 is the number of non-positive
dimensions of (L%:,-) restricted to the generalized kernel of J*L® modulo ker L*. By the
next lemma, we have kogo = 0, from which it follows that

(3.9) k=0 4 2k, + ky = 207 (La).
Lemma 3.1. Let Ey be the generalized zero eigenspace of J*L®. Then Ey = ker L¢.

Proof. 1t suffices to show that the generalized zero eigenspace of J, L, on Y coincides with
ker L. Suppose there exists w € Y such that

(3.10) JoLow = —ia(U — Ug) (w — Kgp) = @ € ker L.

Let ¢ = <—% +a2>_ &. Then —¢" + o — Kgyp = 0. Since § € (min U”, maxU"), we
get by Lemma 2.1 that ¢ is not all zero on {U = Ug}, which implies the same for & = K 51;.
Thus, (3.10) gives

_ w 2
W= Kep = — 05 ¢ L7 (y1,02) -

This contradiction shows that the generalized kernel of J, L, on Y is the same as ker L,. [

Now we derive the index formula for J, L, on Y. Let k, be the sum of algebraic multiplici-
ties of positive eigenvalues of J, Ly, k. be the sum of algebraic multiplicities of eigenvalues of
JaLq in the first and the forth quadrants, k;o be the total number of non-positive dimensions
of (L, ) restricted to the generalized eigenspaces of nonzero purely imaginary eigenvalues
of JoLs. By (3.8), we have the following relation

(3.11) k=0 = 2k=0) 2k, = 2k, 2k, = k.
Combining (3.9) and (3.11), we get the following index formula for J, L.

Theorem 3.1. Let U be in class Kt and 8 € (minU”,maxU"). Then the following index
formula holds for the operator JoLo on'Y :

(3.12) ke +kp + k=0 = n7(La).

)

Remark 3.1. When 8 =0, k?o = 0 and the index formula (3.12) reduces to kc+k, = n~ (Lq,)
(see [28]). When B # 0, in general we have k;o # 0 as seen from Sinus flow in Section 4.

From the index formula (3.12), the stability of shear flows is reduced to determine k;o.
This corresponds to consider neutral modes in H? with the wave speed ¢, # Us.

3.2. Computation of the quadratic form (L,-,-). First, we compute the quadratic form
(Lq-, -) for unstable modes and neutral limiting modes.

Lemma 3.2. Let (c,a, 3, ¢) solve (1.5)~(1.6) with ¢ € H?, and w = —¢" + a®¢. Then

(i)
Y2 /B _ Ul/
(3.13) (o) = (e~ Us) [ T oay
Y1 ’U - C‘
, @) is an unstable mode, then (Low,w) = 0.
, @) is a reqular or non-resonant neutral limiting mode, then (Low,w) = 0. If
) is a singular neutral limiting mode, then (Low,w) < 0.

==
:6\/\
w2 e
S D™
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Proof. We first show (3.13). From (1.5), we get (U — ¢)w = (8 — U")¢. Therefore

w U -Up)w (U-cw (c—Ugw
Fﬁ_¢_ B—U" - B—U" - B—U" )

and
2w _ v (c—=Ug), 1 B-=U")
(Lw,w—/ <—¢>wdy—/ wldy = (¢ - U, / |p|?dy.
« > - KIB - B U// ‘ ’ ( B) - ’U ’2 ’
The conclusion (ii) follows from (i) and Lemma 2.3.
Next, we prove (iii). If (¢, a, 5, ¢) is regular, then ¢ = Ug and (Low,w) = 0 by (i).
Let {(c, ax, B, ¢1)} be a sequence of unstable modes converging to a neutral limiting mode

(c,a, B, ¢) in the sense of Definition 2.2. By Lemma 2.4, ||¢g| g2z < C for k > 1, and up to a
subsequence, ¢ — ¢ in C1([y1,y2]). When (¢, a, 3, ¢) is non-resonant, ¢ ¢ Ran (U) and thus

U// U//
(Lo = (e~ Uy) [ G=E 0Py = tim (e~ ) [ 5= tonPay =0

When (c, a, 3, ¢) is singular, using the uniform bound of |Jwy|| ;> with wy = —¢} + aidk, we
have, up to a subsequence, w; — w in L?, and thus

(L) = [ /5~ 0y@ dy= [ [l 1165 = (o + a?lop)] a

. Yz 2 .
< lim [ /K = (|64 + oflon)| dy = Tim (Laywp,w) = 0.
k—o00 1 k—o0
]

Next, we consider non-resonant neutral modes, which naturally correspond to the following
regular Sturm-Liouville operators:
d2 B —_y”
4 U-—c’
D(Lse) = {0 € L*(y1,42) : 6,¢' € AC([y1,2]), Lp.cd € L*(y1,92), ¢(11) = (ya2) = 0},
where 8 € R, ¢ ¢ Ran (U) and AC([y1,y2]) is the space of absolutely continuous functions
n [y1,y2). For ¢ = Unin Or Unax, L3, is defined as (3.14) with AC([y1,y2]) replaced by

ACioe([y1, 2] \ U™ (c)). The next lemma is to compute the derivative of the n-th eigenvalue
of Lg . with respect to § and c separately.

(3.14) Lp,=—

Lemma 3.3. For 5 € R and ¢ € (—00, Unin) U (Unax, +00), let A\p(B, ) (n > 1) be the n-th
eigenvalue of Lg ., and gbn ) be the correspondmg eigenfunction with H(bn <) |2 =1. Then

Y2
7” - _ (B,¢)
(3.15) 5550 =— | e ay
Da oy [P B=U" o
(3.16) S0 = [ et d

Proof. We first prove (3.15). By Theorem 2.1 in [22], for a fixed ¢, A\, is continuous as a
function of 8 € R. For any 3,8 € R, ¢ = gbn ) and o= qb(ﬂ ©) satisfy

—¢" — ﬂ U ¢ )\ (576)¢7 _~//_ IBU_U ) n(6~7c>(57
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with ¢(y1) = ¢(y2) = d(y1) = d(y2) = 0. Thus
)‘n(ﬁvc)_)jn(gvc) Y2

~ Y2 ~
sidy =~ [ o ody

B-8 v v
Taking the limit 5 — 8 in the above, we prove (3.15).
The formula (3.16) can be proved in a similar way and we skip the details. O

The following is a straightforward consequence of Lemma 3.3.

Corollary 3.1. (i) For fized co € (—00, Umin), An(B,co) is strictly decreasing for B € R.
(ii) For fized co € (Umax, +00), An (B, co) is strictly increasing for B € R.
(iii) For fized Bo € (—o0,Uli], An(Bo,c) is strictly increasing for ¢ € (—00,Umin) and
¢ € (Upax, +00), respectively.
(iv) For fized By € (Ul .x,+20), A\u(Bo,c) is strictly decreasing for ¢ € (—00,Umpin) and

¢ € (Umax, +00), respectively.

Now we can determine the sign of (L,-,-) for a non-resonant neutral mode by combining
(3.13) and (3.16).

Theorem 3.2. Let (c,a, 3,$) be a non-resonant neutral mode and wy = —¢" + a*¢. Then
a? = —X\p(B,¢) > 0 for some ng > 1 and

Mg
de (67 C).

3.3. Stability criteria. In this subsection, we give a new method to study the instability
of a flow U in class K*. Fix 8 € (min U”, maxU"”) and « > 0. We determine the barotropic
instability of the flow U in the following steps.

Index formula (3.12) indicates that linear stability at the wave number « is equivalent to

(317) <Lawa7wa> = _(C - U,B)

the condition n~ (Ly) = k?o. To determine k:igo, we need to study the neutral modes in H2.
By Theorem 2.1, the neutral wave speed ¢ must be one of the following four types: (i) Ug; (ii)
U (y1) or U (y2); (iii) critical values of U; (iv) outside Ran (U). Since ¢ = Ug corresponds to
the zero eigenvalue of .J, L, (defined in (3.7)), it has no contribution to k?o. To find neutral
modes of types (ii) and (iii), we need to solve a (possibly) singular eigenvalue problem for
the operator Lg. defined in (3.14) with ¢ to be U (y1),U (y2) or a critical value of U. For
such ¢, if —a? is a negative eigenvalue of Lz, with the eigenfunction ¢ € H?(y,y2), then
A = —ia(c—Upg) is a nonzero and purely imaginary eigenvalue of J, L, with the eigenfunction
w=—¢" +a’p € L*(y1,y2). Denote k; () (kigo()\)) to be the number of negative (non-
positive) dimensions of (Lq-,-) restricted to the generalized eigenspace of A for JyL,. If
(Low,w) # 0, then X\ € iR is a simple eigenvalue of J, L, and

<0 - i 1 if (Law,w> <0,
R (A) =k (V) = { 0 if (Low,w) > 0.

If (Low,w) = 0, then k‘?o (A) > 1 and X might be a multiple eigenvalue of J, L.

For case (iv), L. is a regular Sturm-Liouville operator but ¢ ¢ Ran (U) is not given
explicitly. For a given a > 0, the number of non-resonant neutral modes is exactly the
number of solutions of A, (3,c) = —a? for all n > 1, where A, (8, ¢) is given in Lemma 3.3.
Let ¢* be a solution of \,, (8,¢) = —a? for some ng > 1. Then \,, (8,¢*) < 0 is the no-th
eigenvalue of Lg .~ with the eigenfunction ¢*, and correspondingly, \* = —ia(c* — Up) is a
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nonzero and purely imaginary eigenvalue of J, L, with the eigenfunction w* = —¢*” + a2¢*.
If OcAny (B, ¢*) # 0, then by (3.17),

(Law®,w*) = —(c* — Ug)OcAny (B, ) # 0,
which implies that A\* is a simple eigenvalue of J, L, with

k= ()\*) _ 1 if (C* — UB)&CAnO(ﬁ,C*) > 0,
¢ 0 if (¢" — Ug)OcAn, (B, c*) < 0.

If OcAn, (B, c*) = 0, then (Low*,w*) = 0 and A\* might be a multiple eigenvalue of J,L,. In
this case, we have k?o (A*) > 1. Note that by Lemma 3.2, only points with d.\,, (5, ¢*) =0
could be a neutral limiting mode, i.e., possibly be the boundary for stability /instability.

Remark 3.2. For fixed 3, suppose the operator Lo has at least one negative eigenvalue and
recall that the lowest one is denoted by —a2,,. < 0. By (2.4) and Lemma 2.6, aumax > 0 gives
the upper bound for the unstable wave numbers in the sense that linear stability holds when
@ > amax and there exist unstable modes for a slightly less than amax. When 8 = 0, it was
shown in [26] that (0, amax) is exactly the interval of unstable wave numbers. When 8 # 0,
the situation becomes more subtle as seen from the study of Sinus flow in the next section. In

particular, when B > 0 there is always a set of stable wave numbers in (0, pax)-

4. SHARP STABILITY CRITERIA FOR THE SINUS FLOW
In this section, we consider the barotropic instability of the Sinus flow
Uly) = (1 +cos(my))/2, ye[-11].

We will use the approach outlined in Subsection 3.3 to determine the sharp stability boundary
for the Sinus flow in the parameter space (o, ). Our results correct the stability boundary
given in the classical references [24, 38]. Moreover, the new stability boundary is confirmed
by more accurate numerical results.

To begin with, we confirm that U € K with Ug = 1/2 — 3/7?, because for any 3 € R,

_ U//
8 H

T U-(1/2-8/m%)

Fix a > 0, the linearized equation around the Sinus flow is written in the Hamiltonian form

Ow = JoLow, w € L2([_17 1])7

Kjp

where
. " 1 d2 2 -
JOC:_ZO‘(B_U)a Loc_ﬂ_2_(_dy2+0£> .
Clearly,
1 k22 9 -~
U@@:{ﬂ‘(44+“>
k=1

The number of negative eigenvalues of L, is

_ )1 0<a<@,
n (Ly) = 0 o> Vr
- 9 -

By Theorem 3.1, we get the following instability index formula for the Sinus flow.
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Theorem 4.1. For any o € [\/37/2,+00), Ly is non-negative and the flow is linearly stable
for perturbations of period 27 /a.. For any a € (0,+/37/2), the index formula

(4.1) ke + kr + k20 =
18 satisfied for the eigenvalues of Jo L.

Rayleigh-Kuo criterion ensures that a necessary condition for instability is 8 € (—m2/2,72/2).
Therefore, from now on we should restrict our attention to

(aa ﬁ) < (0, \f37/2) X (_772/27 772/2)

for instability. In this case, the index formula (4.1) implies that k;o < 1, and linear stability
holds if and only if k?o = 1. Thus the study of linear stability is reduced to the existence of
H? neutral modes with non-positive signature.

4.1. H?> Neutral Modes. We start to search for H? neutral modes. By Theorem 2.1, the
possible wave speeds of H? neutral modes are

(i) ¢=Ug =1/2— 3/m%. This corresponds to the zero eigenvalue of J, L, and thus it has
no contribution to k:<0
(ii) e=U(£l1) =0. This case is solved explicitly in the Appendix B.1.
(iii) ¢ = U(O) =1, where U’(0) = 0. This case is also solved explicitly in the Appendix B.2.
(iv) ¢ € (—00,0) U (1,00). In this case, the non-resonant neutral modes are solutions of the
eigenvalue problem

B—
(4.2) Lacp=—¢ — i #(£1) =0
with A = —a? < 0. Therefore, only negative eigenvalues of L3, can give rise to non-
resonant neutral modes.
Denote Lg o = —j—; for ¢ = £00. We use two propositions to compute the spectrum of Lg .

at ¢ = Ug, 0,1 or oo, and show spectral continuity at the boundary. Recall that \,(53,c) is
the n-th eigenvalue of Lz, for n > 1. We only consider H! eigenfunctions if the equation is
singular. Because the proof is rather technical, we leave them in the Appendix B.

Proposition 4.1 (Spectrum at ¢ = Ug,0,1,400). The eigenvalues of La . for these special
c values are given as follows:

(i) For B € R, A(B,Us) = (% 1)7T 877 (y) = sin(ZE(y + 1)).
(ii) For B € R, )\ (8, +00) = 272, ¢l ioo>( ) = sin(%E (y + 1)).
(ili) For 8 < 22, X\,(5,0) = [( —§+§) —1] 2, o0 (y) = cos? (3y) Po—1 (sin (3y)),

where v = Z + \/—ﬁ + 1% and P,_1 is a polynomial with order n — 1.

. 2
(iv) For B> 5, B# -5, \(8,1) = |[(F— 3 +131)° - 1] =2
(ﬁ('@’l)(y) _ sign(y)| sin(%y)\ﬁPn_l(cos(gy)) n is even,
" | sin(5y)[*7 Py (cos(5y)) n is odd,
where 7 =+ + \/7% + 2. Note that the case 3 = 7%2 is included in (i).
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Here gbgLB’C) is the corresponding eigenfunction of A\n(B,c). Consequently, the set of all the
eigenvalues of Lg . is bounded from below, and have finite multiplicity. For the essential

spectrum, we have o.(Lgo) = @ if B € (—o0, %}, and 0.(Lg1) =@ if B € [—%, +00).

Proposition 4.2 (Spectral continuity at Boundary). Lg . is reqular for ¢ € (—o0,0)U(1, 00),
s0 A (B, ¢) is continuous in these cases. Moreover, we have continuity up to the boundary:
(i) For B € R, lim¢ 400 An(B,¢) = A\ (B, £00).
(i) For B € (0,%), limeg- M(B,¢) = Au(5,0).
(iii) For 8 € (—%,0], lime_,1+ An(B,¢) = An(B, 1).

We put the proof of Proposition 4.2 in the Appendix C. First, we make the following
observation.

Lemma 4.1. Let 8 € (—n?/2,7%/2) and ¢ € [~00,0] U [1,00]. Then A\, (B,c) > (n?/4—1)m?
forn > 1. In particular, A\,(B,¢) > 0 for n > 2.

Proof. The case for ¢ = 0,1, +o00 are discussed in Proposition 4.1. If ¢ € (—o00,0), then
(1/2—c)n? > 3, and by Corollary 3.1 (i) we have A\, (8,¢) > A ((1/2—¢)72,¢) = (n?/4—1)72.
If ¢ € (1,+00), then (1/2 — ¢)7? < 8, and by Corollary 3.1 (ii) we have A\, (8,¢) > A\n((1/2 —
c)r?,c) = (n?/4 — 1)r% O

Since for Sinus flow, there are no neutral modes for ¢ € (0,1), so to count the index
k?o we only need to study the principal eigenvalue A\ (53,c¢) for ¢ € (—o0,0] U [1,+00). For
convenience, we denote Ag(c) := A(f,¢). Combining this with index formula and Theorem

3.2, we have the following simple criterion.
Corollary 4.1. Let (o, 8) € (0,v/37/2) x (—72/2,7%/2). If —a® = \z(c) < 0 and
(c—Ug)N3(c) >0

for some ¢ € (—o0,0]U[1, 00), then k;o =1 and the flow is linearly stable for perturbations of

period 27 /c. Otherwise, k‘?o = 0 and the flow is linearly unstable for perturbations of period
21 /av.

To see how the principal eigenvalue Ag(c) = Ai(f,c) behaves as a function of # and c,
we first present the numerical contour plot of —A; in Figure 1. The slant I' represents the
line ¢ = Up (regular neutral wave speed). The dotted lines I'y and I'y represent ¢ = 0 and
1 (singular neutral wave speeds). We denote the open region above I' and I'y by K, and
denote the open region below I' and I'g by Ky. We add two dotted lines ', at infinite far
away for ¢ = £o0o. By Proposition 4.2 and Corollary 3.1, we have

Proposition 4.3. A\ is analytic in K1 and Ko as a function of g and c. For a fixed S,
Ag = Ai(B,-) is continuous in ¢ up to the boundary. For a fized ¢, M\ (-,c) is increasing in
K1, decreasing in Ko, and continuous up to I'.

4.2. Sharp Stability Boundary. As can be seen from Corollary 4.1, it is important to
determine the sign of /\’B(c). We first observe the following property of continuous functions.

Lemma 4.2. Let f € C([a,b]) be nonnegative, f(a) =0 and f' exists on {f > 0} N (a,b).
Let M = max(qy f and z* € [a,b] such that M = f(x*). Assume that f satisfies

(H) for each y € (0, M], there is at most one x € [a,b] with f(z) =y and f'(x) >0,

where f'(b) means the left derivative of f atb. Then x* is unique, f is increasing on |a, x|
and decreasing on [z*,b]. Consequently, if f(b) > 0 and f'(b) > 0, then z* = b and M = f(b).
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F1GURE 1. Contour plot for —A; (8, ¢)

Proof. Assume that M > 0, otherwise f = 0. Let y € (0, M] and z1 be the smallest solution
to f(z) =y. Then 0 = f(a) < f(x) < f(x1) =y for a <z < 1, and therefore f'(z1) > 0.

If hypothesis (H) is satisfied, then z* is unique. To see that z; is the only solution
to f(z) = y in [a,x*], let xo < x* be the biggest solution of f(z) = y in [a,x*], then
flza) =y < f(z) < f(z*) = M for 29 < x < z*. Thus f'(z2) > 0. By hypotheses (H),
x1 = x9, and there are no other solutions in [a,z*] for f(x) = y. This shows that each
y € (0, M] has a unique pre-image of f in [a,x*], and therefore f is increasing in [a, z*] due
to continuity.

To see that f is decreasing in [x*, b], we claim that f'(z) < 0 for x € (2*,b) with f(z) > 0.
Indeed, let y = f(z), then there exists a unique 1 € [a,2*] with f(z1) =y and f'(z1) > 0.
So by hypothesis (H), f’(z) cannot also be nonnegative. O

Proposition 4.4. Let 3 € (—72/2,72/2). Then the lower bound of unstable wave numbers
for the Sinus flow is given by Ag = sup.g1)As, where Ag(c) = max{—Ag(c),0} is the
negative part of Ag(c). More precisely, we have Ag < 372 /4 and

(i) for a? € (Ag,3m2/4), iSO =0 (linear instability);

(ii) for o® € (0,Ag], k=0 =1 (linear stability).

7

Proof. Ag < 3w%/4 is due to Lemma 4.1. For any o? € (Ag, 372/4), we have A\g(c) > —Ag >
—a? for ¢ ¢ (0,1), and thus there are no H? neutral modes with the wave number a. This
implies that k=" = 0, and the linear instability follows from the index formula (4.1).

To prove (ii), we assume that Ag > 0, since otherwise the conclusion is trivial. Here we
only prove the case 8 > 0, as the case 8 < 0 can be proven by a similar argument. By Lemma
2.7, Ag(c¢) = 0 for ¢ > 1 (otherwise there exist H? neutral modes), and thus Ag = sup.<q Ag-
For a fixed 8 € (0,72/2), A satisfies the conditions of Lemma 4.2 in [—o0, 0]. Therefore, for

any a? € (0,Ag], there exists ¢; € (—o0, 0] with Agla) = a? and )\E’(cl) > 0, which means
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that Ns(c1) < 0. In addition, we have ¢; — Ug < 0 since Ug € (0,1). By Corollary 4.1, we
obtain that k= = 1 and linear stability holds. 0

By the index formula (4.1), A5 satisfies hypothesis (H) of Lemma 4.2. So the lower bound
of unstable wave numbers Ag = sup.¢ (g 1) Ag is achieved at exactly one point ¢* € (=00, 0]
for B € (0,72/2); and ¢* € [1,4o0) for 3 € (—72/2,0). Moreover, whether c* is in the interior
(—00,0) U (1,00) or on the boundary ¢* € {0,1} depends only on the value and derivative at
boundary. In particular, Lemma 4.2 gives

Proposition 4.5. Assume that Ag > 0. For 3 € (—n%/2,0),
(i) if Ag(1) <0 and N3(1) >0, then c* =1, Ag = —Ag(1), and A5 is decreasing on [1, +0oc].
(ii) if otherwise, then c* € (1,+00), and Aj is increasing in [1,c*] and decreasing on
[c*, +00], respectively.
Similarly for 8 € (0,7%/2),
(ili) if Ag(0) <0 and X\ <0, then ¢* =0, Ag = —Ag(0), and A5 is increasing in [—oo, 0].
(iv) if otherwise, then c* € (—00,0), and A is increasing in [—o00,c*] and decreasing [c*, 0],
respectively.
By Proposition 4.1, Ag(1) > 0 and thus A (1) = 0 for 3 € (—m2/2,0), which means that

we are in the case (ii) of Proposition 4.5. However, for 3 € (0,72/2), A\3(0) < 0, so we need
to compute XB (0). We put this computation in the Appendix D and put the result here.

<o pe (0%,
(4.3) )‘Iﬂ(o) >0 B € %7‘(2, %7@) ,
— oo fe[Ba2ln?).
Now we are in the position to give the sharp stability boundary.

Theorem 4.2. Let o > 0 and 3 € (—n%/2,72/2). Then the Sinus flow is linearly unstable if
and only if o € (Ag, 3m2/4). The lower bound Ag for unstable wave numbers is described as

follows: there exist f_ € (—72/2,0) and By = (V3 —1)7%/4 € (0,72/2) such that
(i) for B € (—m?/2,B8-), Ag = Ag(c*) >0 for some c* € (1,00), and Ag decreases in f;
(i) for B € [B-,0], Ag=0;

(i) for 5 € (0,34

2
9 1

(iv) for B € (B4, m2/2), Ag = Ag(c*) > A5(0) for some c* € (—o0,0).

Proof. The upper bound 372 /4 for unstable wave numbers is given in Theorem 4.1. Now, we
2

consider the lower bound Ag for 5 € [0, %-):

e for 3 =0, Ag = 0 since the interval of unstable wave numbers is (0, \/§7r/2) (see [26]);

e for 3 € (0, 84], since Ag(0) < 0 and A\(0) < 0, by Proposition 4.5 we have ¢* = 0 and
Ap = —Ap(0);

o for 8 € (B4, m%/2), since Ag(0) < 0 and X\(0) > 0, by Proposition 4.5 we obtain that
c* <0 and Alg > —)\,3(0).
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For B € (—n?/2,0), we know that either Az = 0 and the whole a? € (0,372 /4) is linearly
unstable, or Ag > 0 and o € (0, Ag| is linearly stable. We now show that these two scenarios
are separated by some S_ < 0.

First, we claim that Ag is decreasing as a continuous function of 8 € (—72/2,0). Indeed, by
Lemma 2.7, Ag(c) > 0 for ¢ <0, 50 Ag = max g(o,1) Az (€) = (—infee(1,00) Ag(c)) ™ because of
the continuity of Ag up to the boundary. Since Ag(c) is strictly increasing and continuous in 3

in region K1, inf (1 o) Ag(c) is continuous and increasing in 3. Furthermore, at 8 = —72/2,
3
A 7,2(1):—*7['2<)\ 7(2(0) Vex>1
7 4 3

by Corollary 3.1. Thus infec(j o) A2 (c) = —372 < 0. At B =0,

2
inf A > 0,

cel(lll,oo) O(C)
because A\o(c) > 0 for any ¢ € [1,00] by (4.8) in [43] and Proposition 4.1, and )\ is continuous
on ¢ € [1,00] by Proposition 4.3. Hence by continuity and monotonicity of inf.c (i o) Ag(c),
there exists B_ € (—m%/2,0) such that 0 < Ag < 37%/4 for 8 € (—72/2,-), and Ag = 0 for
pelb-0). O
Remark 4.1. (i) By numerical calculation, B_ ~ —0.41224712 ~ —4.06867.

(ii) The lower bound Ag is strictly decreasing to B € (—%Q,ﬁ,). In fact, for any —%2 <

B2 < B1 < B, there exists ¢ € (1,00) such that Ag, = —Ag,(c1) > 0, and by Corollary 3.1,
we have Ag,(c1) < Ag,(c1). This gives Ag, > Ag, .

Remark 4.2. (4.3) may seem to be counter-intuitive, as Figure 1 indicates that the derivative
XB(O_) should be negative for all B > 0, different from what we claimed in . However, as
we zoom in near the B-axis, numerical results are consistent with (4.3). Near ¢ = 0 and
B =0.172, 0.2572 and 0.472, we have the following contour plots.

0.
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FIGURE 2. Contour plot for —A; (3, ¢) near ¢ = 0

It can be seen that for B near 0.257% € (%7‘(2, %71’2>, /\b(c) changes sign when c is very

close to 0. For B near 0.472 € (%W2, %W2), contours are tangent to 5 axis, which indicates

Xﬁ(c) = o0 as ¢ — 07. Therefore, for 8 > %7@, )\E does not attain its supremum at
¢ =0, but at some ¢* < 0 which is really close to 0 (with about a distance smaller than 0.001
based on the observation from these plots). This may be the reason why Kuo’s lower stability

boundary in [24] is inaccurate for f > @WQ.
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Remark 4.3. One should identify I'o with I'_o to have a better understanding about the
change of eigenvalues since they correspond to the same reqular Sturm-Liouville problem. For
instance, one can take inversion ¢ = ﬁ so that the domain ¢ ¢ (0,1) becomes ¢ € [—2,2].

The contour plot will look like the following.

/
Y

F1GURE 3. Contour plot for —A; as a function of (3, ¢)

Remark 4.4. Consider a general class Kt flow U (y). For 8 € (minU”, maxU"), we de-
fine \/Ag > 0 to be the supremum of wave numbers for neutral modes with non-positive

Lq signature. Equivalently, Ag is the mazimum of SUpcgran () As (c) (defined as in the Sinus

flow) and the negative part of eigenvalues of —% - 'BJEJC" (c = U (y1),U (y2) or a criti-
cal value of U) with non-positive signature. Then \/Ag < cmax (defined in Subsection 3.1)
and there is linear instability for o € (\/A>5, amax). Indeed, \/E > Qmax would imply that

?0 >1 fora= \/JTg which is a contradiction to the index formula (3.12) and the fact that
n~ (La) = 0 for a > apmax. The linear instability again follows from the index formula since
when a € (\/Ag, max), we have kfo =0 and n™ (Ly) > 0.

Moreover, the interval ( Ag, amax) gives the sharp range of unstable wave numbers if the
flow shares the properties of Sinus flow. More precisely, this is true for flows satisfying: (i)
n~(Lo) =1 (Lo defined by (3.5)) so (H) is satisfied; (ii) the singular neutral modes only exist
with ¢ to be the endpoints of Ran (U); (iii) E(Lg v,...) and E(Lsy,,,) are bounded from below,
where E(Lgy,...) denotes the set of all the eigenvalues of Lgy, .. ; (iv) the weak continuity
of the principal eigenvalues holds in the sense that lim_ - Ag(c) = inf E(Lgy,,.) and
+ Ag(c) = inf E(Lu,.,). The last condition is nozgm;equired if inf E(Lgu,,,,) > 0

c—Un
and liminf__ - Ag(c) > 0, and similarly for Umax.

lim

4.3. Existence of unstable mode with zero wave number. In this subsection, we show
the existence of an unstable mode with zero wave number for any 5 € (5_,0).

Proposition 4.6. For any 5 € (0—,0), there exists an unstable mode with o = 0.

Proof. By Theorem 4.2, there exists a sequence of unstable modes {(ck,ak, S, ¢r)} with
k]l 2 =1, ¢, = Imep > 0 and af — 0F. We claim that {c}} has a lower bound ¢ > 0.
Suppose otherwise, there exists a subsequence {(ckj,akj,ﬁ , (;Sk].)} such that oy, — 0r, czj =

Re cg; — cs, c};j — 07 for some ¢, € R U {£o0}. By Proposition 4.1 (ii), {c,} is bounded
and thus ¢, € R. By Lemma 2.4, there is a uniform H? bound for the unstable solutions
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{¢x,}. Thus, there exists ¢g € H?(—1,1) such that ¢y, — ¢o in C*([—1,1]) and ||gol| ;> = 1.
Since 3 € (f—,0), the only choice for ¢ is ¢, = Ug. Similar to the proof of (50)—(53) in [26],
we have

1
. Oéij J21 dr;00 dy
1
w2 f_l U%ij(;skj(bo dy

for sufficiently large k. (4.5) contradicts that c};j > 0. Thus, {c}} has a lower bound § > 0.
Now we show the existence of an unstable mode with @ = 0, by taking the limit of the
sequence of unstable modes {(c, g, 3, ¢r)}. Since {cx} is bounded, there exists ¢p € C with
Imcy > § such that, up to a subsequence, ¢ — co. Since {|U(y) —cx| : y € [-1,1],k > 1}
has a uniform lower bound ¢ > 0, we therefore get a uniform bound of |[¢x|gs(_y 1)- Up to

(4.5) ¢, =1

a subsequence, let ¢y, — ¢p in C2 ([-1,1]). Then do solves the equation

L B—U"-
7¢8+ U—CO ¢0:Oa on (7151)
with ¢o(£1) = 0. Thus (co, 0, 8, ¢o) is an unstable mode. O

5. BIFURCATION OF NONTRIVIAL STEADY SOLUTIONS

In this section, we prove the bifurcation of non-parallel steady flows near the shear flow
(U (y),0) if there exists a non-resonant neutral mode.

Proposition 5.1. Consider a shear flow U € C3([-1,1]) and fix B € R. Suppose there
is a non-resonant neutral mode (co, g, 8, ¢o) satisfying (1.5)—(1.6) with co > Upax or co <
Umin, and ag > 0. Then there exists eg > 0 such that for each 0 < € < gg, there exists a
traveling wave solution i, (x — cot,y) = (ue (x — cot,y) ,ve (x — cot,y)) to (1.1)—~(1.2) which
has minimal period T, in x,

||w5 (ﬂf,y) — wo (y)”H2(O7TE)><(—171) =&, We= Curlﬁ&v wo = _U/ (y) )
and T, — 27 /oy when € — 0. Moreover, u. (x,y) # 0 and v, is not identically zero.

Proof. We assume cy > Upax and the case ¢y < Uiy is similar. From the vorticity equation
(1.3), it can be seen that u (z — cot,y) is a solution of (1.1) if and only if

0 (w + By7¢ — COy)
9 (z,y)
and 1) takes constant values on {y = £1}, where w and 1 are the vorticity and stream function
corresponding to i, respectively. Let 1y be a stream function associated with the shear flow
(U — ¢,0), i.e., ¥ (y) = U (y) — co. Since U — ¢y < 0, 1y is decreasing on (—1,1). Therefore
we can define a function fy € C?(Ran (1)) such that

Jo (tho (y)) = wo (y) + By = =g (y) + By.

=0

Thus " )
B-U"(y
| = =K, .
fO (’QZ}O (y)) U (y) — ¢ 0 (y)
Then we extend fo to f € C2 (R) such that f = fy on Ran (¢)y). Using the existence of the
non-resonant neutral mode (¢, ag, B3, ¢o), we can construct steady solutions near (U — ¢, 0)

by solving the elliptic equation
—Ay+ By = f (),
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where v (x,y) is the stream function and (u,v) = (¢, —1,) is the steady velocity. The
construction of steady solutions near (U — ¢, 0) is similar to that near (U, 0) in the proof of
Lemma 1 in [29], and thus we omit its details. O

By adjusting the traveling speed, we can construct traveling waves near the Sinus flow
with the period 27 /ayp.

Theorem 5.1. Consider the Sinus flow. Then there exists at least one non-resonant neutral
mode (co, g, B, Po) in the following stable cases:

(i) |B8] > 7%/2 and 0 < ap < V/37/2.

(i) B e (—72/2,8-) U (0,7%/2) and 0 < ag < /Ag.
In these two cases, there exists €9 > 0 such that for each 0 < € < gq, there exists a trav-
eling wave solution e (v — cet,y) = (ue (¥ — cet,y) ,ve (¥ — cet,y)) to (1.1)—~(1.2) which has
minimal period Ty = 377(: nx,

st ($7y) — Wo (y)HH2(O,TO)><(—1,1) =¢, w;=curlu;, wy= -U’ (y) )
with c. — co when € — 0. Moreover, uc (x,y) # 0 and ve is not identically zero.

Proof. First, we show the existence of non-resonant neutral modes in the two cases. For case
(i), recall that Ag(c) = A1(f, ¢) is the principal eigenvalue of (4.2). Note that A\g(Us) = —%
and Ag(+oo0) = %2. By continuity of Ag, we have if § > %2, then [0, %} C {=2g(c) : c €
(—o0,Ugl}, and if g < —%2, then [0, %] C {—Xg(c) : ¢ € [Ug,+00)}. Therefore, there
exists at least one non-resonant neutral mode for case (i). For case (ii), the existence of
non-resonant neutral modes follows from Theorem 4.2.

Let (cg, g, B, ¢0) be a non-resonant neutral mode. We consider the case ¢y > 1 and the
case ¢g < 0 is similar. Let I C (1,00) be a small interval centered at co. For ¢ € I, Ag(c) is
the negative eigenvalue of (4.2) near A\g (cg) = —ad. Let a(c) = \/—As(c). By Corollary 3.1
and Theorem 4.2, we can choose |I| small enough such that « (c) is strictly monotone on I.
Assume that « (c) is increasing on I. Let ¢1,co € I such that ¢; < ¢g < c2. Then

(5.1) a(e) < ap < afce).

By Proposition 5.1, for any ¢ € (c1, ¢2), there exists local bifurcation of non-parallel traveling
wave solutions of (1.1)—(1.2) near the shear flow (U,0). More precisely, we can find rg > 0
(independent of ¢ € (c1,¢2)) such that for any 0 < r < rg, there exists a nontrivial traveling
wave solution ., (z — ct,y) = (uc, (x — ct,y),ve,r (x — ct,y)) with vorticity we, which has
minimum z-period Te, and ||we, — woll g2 7., )% (—1,1) = 7- Moreover, 27 /T — o (c) as 7 —
0. By (5.1), when r¢ is chosen to be small enough, T, , < 27/ag < T, for any r € (0,79).
Since T¢, is continuous to ¢, for each r € (0,79), there exists ¢* (r) € (c1,c2) such that
Tpe(r),r = 27 /ap. Then the traveling wave solution

ﬁr (.Z' —c* (T) t, y) = (uc*(r‘),r (.%' —c (T) ta y) 71}0*(r),7“ (.Z' —c (T) tv y))
with the vorticity w;, := we (), is a nontrivial steady solution of (1.1)-(1.2) with minimal
z-period 2m/ag and [|wr — woll g2(0.27 /) x(—1,1) = T O

Remark 5.1. The non-resonant neutral mode does not exist when there is no Coriolis effects
(i.e. B =0). The traveling waves constructed above are thus purely due to the Coriolis forces,
with traveling speeds beyond the range of the basic flow. Their existence suggests that the long
time dynamics near the shear flows is much richer. This indicates that the addition of Coriolis
effects can significantly change the dynamics of fluids.
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6. LINEAR INVISCID DAMPING

In this section, we prove the linear inviscid damping using the Hamiltonian structures of
the linearized equation (3.3). First, we show that for the Sinus flow, when a? > 37%/4 and
|3] < 72/2, there are no neutral modes in H?2.

Lemma 6.1. Consider the Sinus flow and fix any B € [~7%/2,7%/2).
(i) For a® > 3mw2/4, there exist no neutral modes in H?.
(ii) For o = 3n?/4, (c = Ug, «a, B, po(y) = cos(my/2)) is the only neutral mode in HZ.

Proof. If ¢ = Up, then it follows from Proposition Proposition 4.1 (1) that there are no neutral
modes in H? for o > 37%/4 and exactly one neutral solution ¢y € H? for o? = 3rx%/4. If
c € [0,1] and ¢ # Upg, then the only neutral mode lies in the SNM curve (4.4), with wave
number o? < 37%/4. If ¢ ¢ [0,1], then by Lemma 4.1, there are no neutral modes for
a? > 372 /4. O

The above lemma implies that there are no purely imaginary eigenvalues of the linearized
Euler operator JL defined in (3.3) when a? > 372/4. This implies the following inviscid
damping of the velocity fields.

Theorem 6.1. Consider the linearized equation (3.1) with U to be the Sinus flow.
(i) For any o? € (372 /4,+0) and B € [-72/2,72/2], we have

/ (t)]|22 dt — 0, when T — oo,

for any solution w(t) = curli(t) of (3.1) with w(0) in the non-shear space X defined
n (3.2).
(ii) For a® = 3n2%/4 and B € [-72/2,72/2], we have

1 T
T/ @1 (t)||32 dt — 0, when T — oo,
0

where @y (t) is the velocity corresponding to the vorticity (I — P)w (t) with w (0) € X.
Here, Py is the projection of X to

ker L = Span {eii@zﬁ cos (7ry/2)} .

Proof. The solution of the linearized equation (3.1) is written as w (t) = ¢!/*w (0), where

(6.1) J=—(B-U"y, L=1/7%—(-A)""

as in (3.4). First, we note that when a? > 372/4, L is positive on X. Thus, [,-] = (L-,-)

defines an equivalent inner product on X with the L? inner product. For any wy,ws € X,
(LJLw,we) = (JLwy, Lwy) = — (Lwy, J Lws) ,

and thus JL is anti-self-adjoint on (X, [-,-]). Then the spectrum of JL on (X, [-,-]) is on the
imaginary axis. Since JL is a compact perturbation of —(U—Ug)d,, whose spectrum is clearly
the whole imaginary axis, it follows from Weyl’s Theorem that the continuous spectrum of JL
is also the whole imaginary axis. Moreover, by Lemma 6.1, JL has no embedded eigenvalues
on the imaginary axis. Applying the RAGE theorem ([8]) to ¢!/, we have

1 T
T/O || Bw (75)||%2 dt — 0, when T' — oo
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for any compact operator B on L? (Sgﬁ/a X [y1, yg]) and for any solution w (t) of (3.1) with
w(0) € X. The conclusion (i) follows by choosing Bw = V+ (=A)'w = @, that is, the
mapping operator from vorticity to velocity.

To prove (ii), we define X7 = (I — P;) X. Then L|x, > 0 and A; = (I — P1) JL|x, is
anti-self-adjoint on (X1, [, ]). The operator A; has no nonzero purely imaginary eigenvalues.
Moreover, the proof of Lemma 3.1 implies that ker A; = {0}. Therefore, A; has purely
continuous spectrum in the imaginary axis. The conclusion again follows from the RAGE
theorem to et4! on Xj. O

Next, we consider the inviscid damping for the unstable case. By Theorem 4.2, there
exist exactly one unstable mode and no neutral modes in H? when 8 € (—7n2/2,7%/2) and
a? € (Ag,37?/4). As in the stable case, we consider the linearized equation (3.1) written as
Hamiltonian form d;w = JLw in the non-shear space X, where J and L are defined in (6.1).
The space X is defined in (3.2) with a to be an unstable wave number in this case.

Denote E® (E") C X to be the stable (unstable) eigenspace of JL. Then by Corollary 6.1
in [30], L|gsg v is non-degenerate and

(6.2) n~ (L|gsg¢p) = dim E¥ = dim E*“.

Define the center space E° to be the orthogonal (in the inner product [-,]) complement of
E* @ E* in X, that is,

(6.3) Ef={we X | (Lw,w1) =0, Yw; € E°® E“}.

Then we get the following results.

Lemma 6.2. Consider the Sinus flow and let o be an unstable wave number. Then the
decomposition X = E° @ E°® E" is invariant under JL. Moreover, we have

(i)
(6.4) dim F° =dim E" =n" (L).

(ii) n~ (L|ge) =0 and as a consequence, L|ge/wer > 0.
(iii) The operator JL|ge has no nonzero purely imaginary eigenvalues.

Proof. The invariance of the decomposition follows from the invariance of (L-,-) under JL.
To prove (6.4), we note that JL can be decomposed as the operators Jj, L, on the spaces
X! (defined in (3.6)) with the wave number la, where 0 # 1 € Z. Then

dim F® = dim E" = Z kL,
l

where k!, is the number of unstable modes for .J;,Ljo. For each I, when |al| is an unstable
wave number, there is exactly one unstable mode, and thus we have k!, = 1 = n™ (L;,). If

lal| > %, then we also have k!, = 0 = n™ (L;o). Therefore
dimB* = dimE* = > "k, => n" (Lw) =n" (L)
! !
and (6.4) is proved.
To show (ii), noting that by the definition of E€, (6.2) and (6.4), we have
0" (Llge) =0~ (L) — 0~ (Lisaps) = 0.
and thus L’Ec/kerL > 0.
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Finally, we prove (iii). For each [, by Theorem 4.2 and Lemma 6.1, J;,Lj, has no neutral

modes except for ¢ = Us when |la| = /37 /2, which corresponds to nontrivial ker L;, and
ker L. O

Since E*¢ is invariant under JL, we can restrict the linearized equation (3.1) on E€. The
linear inviscid damping still holds true for initial data in E°. By the same proof of Theorem
6.1, we have the following result.

Theorem 6.2. Consider the linearized equation (3.1) with U to be the Sinus flow. Let o be
an unstable wave number.

(i) If |od| # /37 /2 for any | € Z, then
1 T
2 @l 0, when T o,

for any solution w (t) of (3.1) with w(0) € E°. E° is the center space defined in (6.3).
(ii) If |od| = V/37/2 for some | € Z, then

1 (T
T/ uy (8)||32 dt — 0, when T — oo,
0

where uy (t) is the velocity corresponding to the vorticity (I — Py)w (t) with w (0) € E°.

Remark 6.1. For general flows in class K+, when there are no nonzero imaginary eigen-
values for the linearized operator JL (defined in (3.3)), linear damping can be shown as in
Theorems 6.1-6.2 for w (0) € L2.

For 8 = 0, nonexistence of nonzero imaginary eigenvalues and linear damping is true for
flows in class KT [28]. Explicit decay estimates of the velocity were obtained for monotone
and symmetric flows in [46, 47, 52] with more regular initial data (e.g. w(0) € H' or H?).

For B # 0, linear damping was shown for a class of flows, and explicit decay estimates of
the velocity were obtained for monotone flows in [48] under certain conditions.

7. CONCLUSIONS FOR THE SINUS FLOW

In this section, we summarize our results for the Sinus flow and compare them with the
previous work in [24, 38]. The stability picture obtained in Theorem 4.2 is shown in Figure
4 for the parameters («, 3) below.

Vil

o

-

1 . 3 2 5
—37 B- (0] e 67

FIGURE 4. Stability picture for Sinus flow U(y) = H%S(”y), y € [—1,1]
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In Figure 4, the right boundary of region IV is given by the curve

= {(8.VAs) : e (-n*/2,8)}.

Recall that B_ ~ —0.4122472. The upper boundary of region III and VI is given by the curve

Dy ={(7(—* +/2+1/2),m/T=72) sy € (1/2,1)}.

This corresponds to the SNM curve with ¢ = 0 (see (4.4)). Here, III and VI are divided by
B = m2/2. The upper boundary of region II (orange area) is given by

F3={(5 \/7> B € (B+, 2/2)}

Recall that B8, = (v/3 — 1)72/4. This curve has been exaggerated in Figure 4 because it is
too close to I'y (See Table 2).

TABLE 1. Stability Regions

Region Color Stability Neutral Modes Wave Speed ¢

I Green Unstable 0 Im(c) >0
11 Orange  Stable 2 c<0
111 Purple  Stable 1 c<0
v Yellow  Stable 2 c>1
A\ Pink Stable >1 c>1
VI Purple  Stable >1 c<O0
VII Blue Stable 0

Only region I (green area) is the unstable domain, as indicated in Theorem 4.2. In region
I, there exist exactly one unstable mode. Information on neutral modes in different regions is
given in Table 1. More discussion on the number of non-resonant neutral modes in regions V
and VI is under investigation. Dynamics near the Sinus flow is quite different in these regions.
In region VII, linear inviscid damping is shown for non-shear perturbations. In regions III,
VI and V, nontrivial traveling waves are constructed using the non-resonant neutral mode.
In particular, two traveling waves with different speeds exists near the Sinus flow for («, )
in regions II and IV. Moreover, for region I, linear inviscid damping is true in the finite
codimensional center space. These different behavior indicates that with the addition of
Coriolis effects, the dynamics near the Sinus flow is very rich.

In the work of [24] (see Section A of Chapter VII), based on numerical results, Kuo claimed
that the stability boundary in the rectangular domain (8, a?) € (—7r2/2, 7r2/2) X (0, 37r2/4)
is given by the curve 'y of SNMs, that is, the instability domain in [24] consists of regions I,
II, and IV. See (b) in Figure 6 of [24]. The same stability picture can be also found in [38].
The reason of incorrectness using the SNM curve 'y as the stability boundary can be seen
in Remark 4.2. Our results in Theorem 4.2 correct the stability picture. More precisely, the
stability boundary in the rectangular domain is \/Ag with 3 € (—7?/2,7%/2), and regions II
and IV actually lie in the stability domain. The stability boundary I'y for g € (—7r2 /2, B_)
was not detected in [24]. Moreover, two curves of stability boundary in our results, the
right boundary I'y of region IV and upper boundary I's of region II, are not SNM curves.
Instead, they correspond to non-resonant neutral modes with ¢ > 1 or ¢ < 0. As pointed
out in Remark 2.1, this seemingly contradiction with Theorem IV of Tung ([43]) is due to
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the failure of analytic assumption. The phenomenon that non-resonant neutral curves serve
as stability boundary also happens in the study of sinuous modes of the unbounded Bickley
jet. In fact, based on perturbation methods, Engevik proved that ¢, > 1 for the curve (b) of
Figure 3 in [13] and therefore it lies outside the range of U (y) = sech?(y).

To confirm our theoretical results in Theorem 4.2, we run the numerical simulations with
more accuracy for 3 € ((v/3 — 1)n2/4,72/2). We find that the difference between the a
values in the stability boundary \/jTﬁ and those in the SNM curve (4.4) is actually very
small. More precisely, as shown in the following Table 2, for a fixed [, the difference between
\/A>5 and 74/1 —~2 is as small as 107 to 1073, and the phase speed ¢* € (—oc,0) such
that Ag = A5 (c") is as small as 1073, Such small differences partly explained why the true
stability boundary was not found by the numerical results in [24].

Table 2: Difference between /Ag and 74/1 —~?

B VA m/1-~2  difference c*
1.80626 1.57080 1.57080 0 0
2.60650 1.90050 1.90050  0.000004894 —0.00003
2.85444 1.99395 1.99394  0.000014579 —0.00006
3.05645 2.06795 2.06792 0.000029048 —0.00009
3.24603 2.13593  2.13588  0.000049360 —0.00012
3.44449 2.20585 2.20577  0.000078511 —0.00015
3.69853 2.29388  2.29376  0.000126720 —0.00018
4.18261 2.45904  2.45882 0.000222321 —0.00018
4.37126 2.52328  2.52304  0.000233368 —0.00015
4.49531 2.56575 2.56554  0.000219151 —0.00012
4.59739 2.60097  2.60078  0.000188895 —0.00009
4.69034 2.63332  2.63318  0.000144032 —0.00006
4.78396 2.66631  2.66623  0.000083277 —0.00003
4.93480 2.72070  2.72070 0 0

APPENDIX A. PROOF OF LEMMAS 2.1-2.2

Proof of Lemma 2.1. Suppose ¢(z;) = 0 for j = ig — 1,ip,i0+ 1. If > 0and U —c < 0
on (zj,—1, %), or B < 0and U — ¢ > 0 on (2,1, %), we define z1 = z;,—1 and x9 = z;,. If
B>0and U—c<0on (z,,zy+1),or B <0and U—c >0 on (z,, zi,+1), we define z1 = z;,
and xg = 2;,+1. Then we get

/2(|¢>'|2 2lg — B UW)

(y—2z1) and U(y) —c = U' (&) (y—x1), we have L@@ _,

Noting that [¢(y)[* < [|¢'||72(, ) Uly)—c
((>|<)z>

0 as y — xf, where &, € (z1,y). Similarly,
by parts, we obtain

A [ (=g wrar=o

Note that a? — 3/(U — ¢) > 0 on (1, 22) in all cases. Thus, ¢ =0 on (x1,z3). O

VoWl _, ), y — x5 . Thus by integration
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Proof of Lemma 2.2. It suffices to show that ¢(z1) = ¢'(x1) = 0 implies ¢ = 0 on (x1, z2),
and similarly ¢ = 0 on (z9,z1). Let v := ¢ € C([x1,22)) and u := ¢’ € C%([z1,72)). Then
(1.5) becomes

Al i
( ) dfu_QQU_,BfU”U
dt — U—c

with the initial data v(z1) = u(x1) = 0. For a fixed z € [x1,22) and any s € [z, 2],
(A.2) v(s)| < / u(T)ldT < (2 — z1)ulLe= (2),
Z1

where |u|r_ (2) := sup |u(s)|. Thus |v|p=(2) < (2 — 21)|u|g~(2). Since U'(z1) # 0,
x1<s<z

there exist dg,d1 > 0 such that |U'(s)| > 01 for s € [x1, 21 + dp]. Choose Cy > 0 such that
|8 —U"(s)] < Cp for s € [y1,y2]. Then for z € [z1,21 + o],

(A3) [CELAEC
and thus by (A.1)—(A.3),

Colu[r=(2)
01 ’

— ‘(6 _ U//)(Z) U(Z) — U(l‘l)

U(z) = U(z1)
oo (2) < /m (ya%(r)\ + ’W ) dr < <a2(x2 — )+ ?f) / ] oo (7) -

Therefore by Gronwall inequality, we have v = 0 and thus v = ¢ = 0 on [z1, 21 + Jdp]. This
implies that ¢ =0 on (21, z2), since the ODE (1.5) is regular in (z1,x2). O

APPENDIX B. PROOF OF PROPOSITION 4.1

Proof. The computation of eigenvalues in (i) and (ii) is straightforward. (4.2) is singular when
¢ =0 or ¢c=1. We solve all the eigenvalues by transforming (4.2) into two hypergeometric
equations as follows.

B.1. Case ¢ = 0. The equation (4.2) becomes

2
"o B+ % cos(my)

B.1 — = +1) =0.
(B.1) o= =20, o
We make a change of variable for y € (0,1). Set z = cos? (5£) € (0,1) so y = M
Define
2arccosy/z
w(e) im0 () — o)

Then the equation for 1 is

2 ?

+ 5 (22-1

(B.2) % [(—2z + 222) V' (2) + (=1 + 22)¢(2)] — b+5 i )@Z)(z) = \(2).
Suppose 9(z) = 27G(z) for some G(z) where 7 is a constant to be determined. Then the

equation for G(z) is
(1= 2)C"(2) + B + 2y — (14 2) z} @(2)

—Zti-7(-3)

A
+’Y2—(1+2)
z s

(B.3) - G(z) = 0.
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Set’y:i—kw f2+16,sofor6< 16,’y>4 Denoter:\/1+%,whichcouldbepurely

imaginary, but non-negative. (B.3) is simplified to

1
(B.4) 2(1—=2)G"(2) + [2 + 2y — (1+2y) z} G'(z)—(vy+r)(y—r)G(2) =0.
It is the Euler’s hypergeometric differential equation
2(1—-2)G"(2) +[c— (a+ b+ 1)2] G'(2) —ab G(z) =
fora=y—r,b=v+rc= % + 27. A nontrivial solution of (B.4) is

1
(B.5) Gl(z):F<’y—r,’y+r;2+2v;z>.
Here F' is the hypergeometric function (e.g. [1 ]) defined by
o (@)n(b)n 2
(B.6) Fla,b;c;2) = nz; 0.l
(B.7) (@)n=1ifn=0, (¢)n=9q(g+1)---(¢g+n—1)ifn>0.

F is analytic in z € (0,1) if we choose the branch cut to be {z > 1}. The corresponding
solution of (B.2) is

(B.8) P1(z) = 2TF (’y—r,’y—i—r;;—i—Q*y;z) .
The other linearly independent solution to v is
=11 (2 / sr2(s)e H ety
If 8 < ”—22, v > %, direct computation deduces Zl_i)r(r)lﬁ |t2(2)| = oo, while Zl_i}rgli P1(z) = 0.

Boundary condition in (B.1) converts to ¢(0) = 0, so the only possible solution to (B.1) is

_ c1n (cos2 (%)) y € (0,1),
) {cyﬂl (cos2 (”23’)) y € (—1,0).

Series expansion of 11 near y = 0 gives

Ty 72T (27 + 1) w20 (29 + §) 2
¢1(cos< )) F(fy—r—i—%)l”(fw—r—k%)_F(’Y—T)F(’Y+T)’y‘+0(y).

Since (B.1) is regular and ¢ is smooth at y = 0, we infer that the constant term and |y
1

term cannot be non-zero simultaneously. Note that v > 7 is real, and r is non-negative

or purely imaginary. Since I'(z) only has poles at non-positive integers, either v — r + %

2

or v — r equals to a non-positive integer, so r = v + "T_l > % for a positive integer mn.
Therefore, \,(3,0) = 72(r> — 1) = 72 ((fy—l— ”7_1)2 - 1). Inserting (B.6)—(B.7) into (B.5),

direct computation gives ¢7(1 0 = cos2“f(gy)Pn_1(sin(gy)) for some polynomial P, 1 of degree
n — 1.

The case 5 = ”72 is included in (i) because Ug = 0, and the results agree. If ’T <fB< 16 )
then i <y < % and % + 27 is not an integer. So the other linearly mdependent solution to
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(B.4) is

1 1 3
G2(2)225_27F<2—’Y—T,2—7+r;2—27;z>.

This corresponds to

1 1 3
¢2(2)=Zé_7F<2—7—T,2—7+r;2—2%z).

So lim,,0%2(z) = 0, and both ; and 19 satisfy the boundary condition. However, the
leading order term of ¢(cos?(%)) as y — +1 will be |5 (y F 1)| ~*7. Hence this solution
cannot belong to H'.

B.2. Case c=1. (4.2) is
B+ 5 cos( Y)
i ()

We make a change of variable for y € (0,1). Set z = sin? (%) € (0,1) so y = M
Define

(B.9) —¢" — 6=\, B(E1)=0.

2 arcsin \/z

™

v = )=o)

Then the equation for 1 is

(B.10) 7;2 [(—22 + 2z2) LZJ”(Z) +(—1+ 22)1[}/(2)] B+ 5 (22’ -1)

U(z) = A(2).

z
This is almost the same as equation (B.2), only with —f in the position of 5. For —f < 16 )

Weset’?:i+\/%+%>iandagaindenoter:\/l—kﬁ.

If 3 > —Z-, then the only bounded solution to (B.9) is

by = 1 (sin® (%)) e (0,1),
ety (sin® () y € (-1,0),
where 11 (2) is defined as (B.8) with v replaced by 7.
To satisfy the boundary condition, ¢(1) = c¢19(1) = 0, plugging in y = 1 we have

R B N /20 (27 + 1)
o (s (5)) = n) = 2 (3 42001 ) = e O

Therefore non—trivial eigenfunction exists if and only if 3—r+ % 5 equals to a non-positive integer

—m, so 1T = 7 —|— +m > 3 for a non-negative integer m. However, since i (sm2 (Ey)) =

O(y?7) = o(y2) as y — 0, there are two linearly independent eigenfunctions in H', that is,
o(y) = 1/11 (sm2 ( )) and ¢(y) = sign(y)yy (sm2 ( Qy)). Therefore, \,(3,1) = 72(r? — 1) =
2 ((-3+181)° - 1).

The case 8 = —%2 is again included in (i) because Ug = 1. If — 92 8 < —7, % <F < %,
% + 2% is not an integer, so the other linearly independent solutlon to (B.10) is

- 1 1 3
7F<2—’~Y—7’72—’~7+T;2—2”7;Z>-

N[

Pa(z) = 2
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Similar ?s in the case of ¢ = 0, by looking at the expansion near y = 0, 1o (sinQ(%)) cannot
be in H".

(—o0, 16} Since the

€
) are

B.3. Essential Spectrum. Finally, we show that ae(ﬁﬁ 0) =0 if B
two linearly independent solutions of (B.1) with A;(3,0) = % (7

do(y) = 60 (y) = cos? (my/2), G1(y) = cos® (my/2) /0 " cos™(ms/2)ds

Then ¢g € L?(—1,1), and ¢1 ¢ L?(—1,1). The eigenvalue problem (B.1) is in the limit point
cases at +1. In the limit point cases, we get by Remark 10.8.1 in [51] that the starting point
of the essential spectrum, i.e. o9 = info.(Ls), is exactly the oscillation point of (B.1).
More precisely, (B.1) is non-oscillatory for A\ < o¢ and (B.1) is oscillatory for A > 0. Since

An(B,0) — oo as n — oo and @(1670) = cos?7(5y) P 1(sin(gy)) has finite zeros on (—1,1),
we get 09 = oo and thus o.(Ls) = 0 for § € (—o0, 16] The proof of o.(Lg1) = 0 When
B e [—%, +00) is similar by considering the half interval y € (0, 1). O

APPENDIX C. PROOF OF PROPOSITION 4.2

Proof. We discuss these three cases separately. The case ¢ — +oo is relatively straightfor-
ward. By Theorem 2.1 in [22] and Proposition 4.1 (ii), the conclusion follows from

H U” — 0 as ¢ — +oo.

C)HLl(fl,l)
Next, we consider the finite endpomts ¢ = 0,1. Our method is based on regular approxi-
mations of singular Sturm-Liouville problems.
Let T be a self-adjoint operator in a Hilbert space H. Recall that for any closable operator
S such that S = T, its domain D(S) is called a core of T. The sequence of self-adjoint
operators {T;}52, is said to be spectral included for 7', if for any A € o(T), there exists a
sequence {\(7})}72; with A(T}) € o(T}) (j > 1) such that jlggo ATj) = A

C.1. Case ¢ — 0. Fix 3 € (0,7%/2) and n > 1. We shall show that

(C.1) An(B,¢) = A (5,0) asc— 0.
We begin to show that the limit (C.1) holds for 3 € (0,572/16]. Define

E/'&mind) = L300, D(ﬁ/’g’min) ={¢ € D(Lpyp) : ¢ has compact support in (—1,1)}.

We denote the closure of E’@min by £ min. Since (B.1) is in the limit point cases at £1, we infer
from Theorem 10.4.1 and Remark 10.4.2 that Lz min = £3,0 and it is a self-adjoint operator
on L?(—1,1). Then D(E'ﬁ min) 18 @ core of Lgg. It is obvious that D(L} mm) C D(Lg,) for
any ¢ < 0, where L3 is defined in (3.14). Furthermore, for any ¢ € D(L; . ), by setting

supp(¢) = [a,b] C (—1,1) we get

£,min

_Ul/ _U// U//
16526 - Lootliaan = | ro - 250d| = [GmTae
L2(a,b) U-c) L2(a,b)
"
—/mqbd — 0 asc— 0.
a

Thus, by Theorem VIII 25 (a) in [40] or Theorem 9.16 (i) in [49] we have {L3.,c < 0} is
strongly resolvent convergent to Lgg in L?(—1,1). Then it follows from Theorem VIII 24
(a) in [40] that {Lg., ¢ < 0} is spectral included for L£gy. We then show that (C.1) holds
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by induction. Note that \,(3,0) € ((n?/4 — 1)x%, ((n + 1)%/4 — 1)72). Since A\1(5,0) < 0
and A2(B,c¢) > 0 for all ¢ < 0 by Lemma 4.1, we have lim,_,o- A\1(8,¢) = A\1(5,0). Sup-
pose lim, o~ M\ (B,¢) = A\(B,0). Since A\, (B,0) € ((n?/4 — )72, ((n + 1)2/4 — 1)7?) and
Ant2(B,¢) > ((n+2)%/4 — 1)7? for all ¢ < 0 by Lemma 4.1, we have lim,_,o- A\p11(8,¢) =
)‘n-‘rl(/Bu 0)

Next, we show that (C.1) holds for 8 € (572/16,72/2). The above conclusion, Corollary
3.1 (i) and Lemma 4.1 ensure that for any given n > 1, there exists § > 0 such that A\, (8, c¢) €
((n?/4 — )72, ((n +1)?/4 — 1)7?) for any ¢ € (—6,0).

Let c € (—6,0), ¢nc := gb,(l ) and recall that ||pn.cllr2 = 1. We get by integration by parts
that

1 1 —_u”"
co 16l dy = / 1 [5 +An<5,c>] (Gnel2dy

U-c
U - -U n 1)%72
:7r2/ c+ec 5+A (B,¢) Gnal? dy < (n+1)*7m ,
U-c 2 ’ 4

since U —¢>0onye€ (—1,1) and ¢ — Ug = c— (1/2 — B/7%) < 0. Hence we get ||¢nc||3 <
(n 4 1)?72/4 4+ 1. Therefore, up to a subsequence, we have ¢, . — ¢no in H' and ¢, . —
QNSH,O in C°([~1,1]) for some gz;n,o € H'. Moreover, gZ)n,o ’LQ =1 and gZ)n,o (1) =0. Up to a

subsequence, let
lim A, (B3, ¢) = M(B,0) € [(n?/4 — )72, (n+1)%/4 — 1)x?].

c—0~

-1

We claim that ¢y, o solves
ﬁ _ U//

(C?)) _¢H - U ¢ = 5‘”(/3’ 0>¢ on (_17 l)a

with ¢(£1) = 0. Assuming this is true, then A,(3,0) = A\,(8,0), which is the unique
eigenvalue in [(n?/4 — 1)72, ((n + 1)2/4 — 1)7?]. This proves (C.1).

It remains to show that ¢, o satisfies (C.3). Take any closed interval [a,b] € (—1,1). There
exists 09 > 0 such that |[U — ¢| > 6y on [a, b] for any ¢ € (—0,0). Since ¢, . solves the regular
equation (B.1) on [a, b], we get a uniform bound for ||¢n ¢ g3[q,4)- Thus, up to a subsequence,
Gnc = dno in C%([a,b]). Taking the limit ¢ — 0~ in the equation (4.2), we deduce that ¢y
solves the equation (C.3) on [a,b] and also on (—1,1) since [a,b] C (—1,1) is arbitrary. This
finishes the proof of (C.1).

C.2. Case ¢ — 17. Fix § € (—72/2,0] and n > 1. We want to show
(B, ¢) = An(B,1) asc— 1.

For any ¢ > 1, we obverse that the n-th eigenvalue u, (S, c) of
,8 _ U//
0" = Pt = (B0, $(0) = (1) = 0

with eigenfunction 1y, . is exactly the 2n-th eigenvalue Xo, (3, c) of (4.2) with eigenfunction
®n,c, which is defined by ¢n,c(y) = wn,c(y) when y € [O, 1) and (z)n,c(y) = _1/}n,c(_y) when
y € (—1,0). Noticing that u,(3,1) € (((2n)?/4 — )72, ((2n + 1)2/4 — 1)7?] and p,(B3,c) >
((2n)?/4 — 1)x? for all ¢ > 1, and similar to the proof of (C.1), we get pun(3,¢) — un(B,1) as
¢ — 17, which gives Ao (8, ¢) — Aon(B,1) as ¢ — 1. This, together with Lemma 4.1, yields
that for any given n > 1, there exist x,v > 0 such that ((2n — 1)2/4 — 1)7% < Agn_1(B,¢) <
((2n +1)2/4 — 1)7% + &k for all ¢ € (1,1 +v). Using this bound for Ag,_1(8,¢) and similar
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to the proof of (C.2), we get a uniform bound for |[¢2n—1.clp,, ¢ € (1,1 +v). Thus there
exists qggn_l’l € H'(—1,1) such that, up to a subsequence, Gon—1,c = égn_Ll in C°([-1,1]),
lp2n—11llz2 =1 and ¢2,—1,1 (£1) = 0. Up to a subsequence, let

xm4wJ)zigihm4wm)eK@n—n%4—1w%«mp+nW4—nw?+@.

Then as in the proof that <;~5n o solves (C.3), we get (52”_171 solves
o 6 u”

qb )\Qn 1(5, )¢ on (*1,0)U(0, 1)

with ¢(£1) = 0 and gb(O) to be finite. We observe A2,—1(8,1) = A2,(83,1) are the only
eigenvalues in the interval [((2n —1)2/4—1)7%, ((2n+2)%/4 —1)7?]. Therefore, Ao, _1(3,1) =
Aon-1(8,1). O

APPENDIX D. COMPUTATION OF Aj(0)

The eigenfunction for A\g(0) is ¢(y) = \/(1]; cos?? (%), where
4y
1 2 I(*3)
202 5>,
Cs —/ cos® <7T—y> dy = { VTI(5+1) i
-1 2 +00 S g _17

by Beta function B(p,q) = Fr(fzf;(qq)) =2 fog sin??~1(x) cos??~1(x)dx, p,q > 0. Therefore

[ Bty [ (5w (o () - 3) oot () a

1 2
047 [( B+ > Cay—a — 7T204«,—2] :

If £ <~ <3, then Cyy—q = +00 and A5(0) = +oo. If v > %, then

if(2v+%)_iF(27—%)2v—%_2v
VT (2y+1) 1 T(29) 2y 2y

Cyy =

Therefore

MO = - v—iﬂv—é

This finishes the proof of (4.3).

2y~ 1)) 72 (’72 ! 2y - g) _ (v =1 (- 3)
) :
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