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Abstract

Consider 1D Vlasov-poisson system with a �xed ion background and
periodic condition on the space variable. First, we show that for general
homogeneous equilibria, within any small neighborhood in the Sobolev

space W s;p
�
p > 1; s < 1 + 1

p

�
of the steady distribution function, there

exist nontrivial travelling wave solutions (BGK waves) with arbitrary min-
imal period and traveling speed. This implies that nonlinear Landau

damping is not true inW s;p
�
s < 1 + 1

p

�
space for any homogeneous equi-

libria and any spatial period. Indeed, in W s;p
�
s < 1 + 1

p

�
neighborhood

of any homogeneous state, the long time dynamics is very rich, including
travelling BGK waves, unstable homogeneous states and their possible
invariant manifolds. Second, it is shown that for homogeneous equilib-
ria satisfying Penrose�s linear stability condition, there exist no nontrivial
travelling BGK waves and unstable homogeneous states in some W s;p�
p > 1; s > 1 + 1

p

�
neighborhood. Furthermore, when p = 2;we prove

that there exist no nontrivial invariant structures in the Hs
�
s > 3

2

�
neighborhood of stable homogeneous states. These results suggest the

long time dynamics in the W s;p
�
s > 1 + 1

p

�
and particularly, in the Hs�

s > 3
2

�
neighborhoods of a stable homogeneous state might be relatively

simple. We also demonstrate that linear damping holds for initial pertur-
bations in very rough spaces, for linearly stable homogeneous state. This
suggests that the contrasting dynamics in W s;p spaces with the critical
power s = 1+ 1

p
is a trully nonlinear phenomena which can not be traced

back to the linear level.

1 Introduction

Consider a one-dimensional collisionless electron plasma with a �xed homoge-
neous neutralizing ion background. The �xed ion background is a good physical
approximation since the motion of ions is much slower than electrons. But we
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consider �xed ion mainly to simplify notations and the main results in this pa-
per are also true for electrostatic plasmas with two or more species. The time
evolution of such electron plasmas can be modeled by the Vlasov-Poisson system

@f

@t
+ v

@f

@x
� E@f

@v
= 0; (1a)

@E

@x
= �

Z +1

�1
fdv + 1; (1b)

where f(x; v; t) is the electron distribution function, E (x; t) the electric �eld,
and 1 is the ion density. The one-dimensional assumption is proper for a high
temperature and dilute plasma immersed in a constant magnetic �eld oriented
in the x-direction. For example, recent discovery by satellites of electrostatic
structures near geomagnetic �elds can be justi�ed by using such Vlasov-Poisson
models ([27], [39]). We assume: 1) f (x; v; t) � 0 and E (x; t) are T�periodic
in x. 2) Neutral condition:

R T
0

R
R
f (x; v; 0) dxdv = T . 3)

R T
0
E (x; t) dx = 0; so

E (x; t) = �@x� (x; t), where the electric potential � (x; t) is T�periodic in x.
Since

R R
f (x; v; t) dxdv is an invariant, the neutral condition 2) is preserved

for all time. The condition 3) ensures that E (t) is determined uniquely by f (t)
from (1b) and the system (1) can be considered to be an evolution equation of
f only. It is shown in [21] that with condition 3), the system (1) is equivalent
to the following one-dimensional Vlasov-Maxwell system

@f

@t
+ v

@f

@x
� E@f

@v
= 0;

@E

@x
= �

Z +1

�1
fdv + 1;

@E

@t
=

Z
R

vf (x; v; t) dv � U;

where U is the bulk velocity of the ion background. The system (1) is non-
dissipative and time-reversible. It has in�nitely many equilibria, including the
homogeneous states (f0 (v) ; 0) where f0 (v) is any nonnegative function satisfy-
ing

R
R
f0 (v) dv = 1.

In 1946, Landau [29], looking for analytical solutions of the linearized Vlasov-

Poisson system around Maxwellian
�
e�

1
2v

2

; 0
�
, pointed out that the electric

�eld is subject to time decay even in the absence of collisions. The e¤ect of
this Landau damping, as it is subsequently called, plays a fundamental role
in the study of plasma physics. However, Landau�s treatment is in the linear
regime; that is, only for in�nitesimally small initial perturbations. Despite
many numerical, theoretical and experimental e¤orts, no rigorous justi�cation
of the Landau damping has been given in a nonlinear dynamical sense. In
the past decade, there has been renewed interest [26] [37] [28] [18] [19] [50]
[13] [25] [38] [47] as well as controversy about the Landau damping. In [13]
[25], it was shown that there exist certain analytical perturbations for which
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electric �elds decay exponentially in the nonlinear level. More recently, in [38]
nonlinear Landau damping was shown for general analytical perturbations of
stable equilibria with linear exponential decay. For non-analytic perturbations,
the linear decay rate of electric �elds is known to be only algebraic (i.e. [48]) and
the nonlinear damping is more di¢ cult to justify if it is true. Moreover, in the
nonlinear regime, it has been known ([42]) that the damping can be prevented by
particles trapped in the potential well of the wave. Such particle trapping e¤ect
is ignored in Landau�s linearized analysis as well as other physically equivalent
linear theories ([12], [49]), which assume that the small amplitude of waves
have a negligible e¤ect on the evolution of distribution functions. As early as
in 1949, Bohm and Gross ([8]) already recognized the importance of particle
trapping e¤ects and the possibility of nonlinear travelling waves of small but
constant amplitude. In 1957, Bernstein, Greene and Kruskal ([6]) formalized
the ideas of Bohm and Gross and found a general class of exact nonlinear steady
imhomogeneous solutions of the Vlasov-Poisson system. Since then, such steady
solutions have been known as BGK modes, BGK waves or BGK equilibria.
The nontrivial steady waves of this type are made possible by the existence of
particles trapped forever within the electrostatic potential wells of the wave. The
existence of such undamped waves in any small neighborhood of an equilibrium
will certainly imply that nonlinear damping is not true.
Furthermore, numerical simulations [37] [16] [36] [14] [9] indicate that for cer-

tain small initial data near a stable homogeneous state including Maxwellian,
there is no decay of electric �elds and the asymptotic state is a BGK wave or
superposition of BGK waves which were formally constructed in [11]. More-
over, BGK waves also appear as the asymptotic states for the saturation of an
unstable homogeneous state ([3]). These suggest that small BGK waves play im-
portant role in understanding the long time behaviors of Vlasov-Poisson system,
near homogeneous equilibria. In this paper, we provide a sharp characterization
of the Sobolev spaces in which small BGK waves exist in any small neigh-
borhood of a homogeneous equilibrium. Denote the fractional order Sobolev
spaces by W s;p (R) or W s;p

x;v ((0; T )�R) with p � 1; s � 0. These spaces are
the interpolation spaces (see [1], [46]) of Lp space and Sobolev space Wm;p

(m positive integer).

Theorem 1 Assume the homogeneous distribution function f0 (v) 2 W s;p (R)�
p > 1; s 2 [0; 1 + 1

p )
�
satis�es

f0 (v) � 0;
Z
f0 (v) dv = 1;

Z
v2f0 (v) < +1:

Fix T > 0 and c 2 R. Then for any " > 0, there exist travelling BGK wave solu-
tions of the form (f" (x� ct; v) ; E" (x� ct)) to (1), such that (f" (x; v) ; E" (x))
has minimal period T in x, f" (x; v) � 0; E" (x) is not identically zero, and

kf" � f0kL1x;v +
Z T

0

Z
R

v2 jf" (x; v)� f0 (v)j dxdv + kf" � f0kW s;p
x;v
< ": (2)
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The �rst two terms in (2) imply that the BGK wave is close to the homoge-
neous state (f0; 0) in the norms of total mass and energy. When p > 1; s = 1;
the fractional Sobolev space is equivalent to the usual Sobolev space W 1;p. The
conclusions in Theorem 1 are also true for the Sobolev space W 1;1

x;v by the same
proof. Above theorem immediately implies that nonlinear Landau damping is

not true for perturbations in anyW s;p
�
s < 1 + 1

p

�
space, for any homogeneous

equilibrium in W s;p and any spatial period.
As a corollary of the proof, we show that there exist unstable homogeneous

states in W s;p (R)
�
s < 1 + 1

p

�
neighborhood of any homogeneous equilibrium.

Corollary 1 Under the assumption of Theorem 1, for any �xed T > 0, 9
"0 > 0, such that for any 0 < " < "0, there exists a homogeneous state
(f" (v) ; 0) which is linearly unstable under perturbations of x�period T ,

f" (v) � 0;
Z
R

f" (v) dv = 1;

and

kf" (v)� f0 (v)kL1(R)+
Z
R

v2 jf" (v)� f0 (v)j dv+kf" (v)� f0 (v)kW s;p(R) < ":

By above Corollary and Remark 1 following the proof of Theorem 1, in

W s;p
x;v

�
s < 1 + 1

p

�
neighborhood of any homogeneous state there exist lots of

unstable homogeneous states and unstable nontrivial BGK waves. In a work in
progress, we are constructing stable and unstable manifolds near an unstable
equilibrium of Vlasov-Poisson system by extending our work ([33]) on invariant
manifolds of Euler equations. Such (possible) invariant manifolds might reveal
more complicated global invariant structures such as heteroclinic or homoclinic
orbits. Moreover, in some physical reference ([11]), small BGK waves are for-
mally shown to follow a nonlinear superposition principle to form time-periodic
or quasi-periodic orbits. We note that Maxwellian or any homogeneous equilib-
ria f0 (v) = �

�
1
2v
2
�
with � monotonically decreasing, were shown by Newcomb

in 1950s (see Appendix I, pp. 20-21 of [7]) to be nonlinearly stable in the norm
kfkL2 . So our result suggests, in particular, that in any invariant small L2
neighborhood of Maxwellian, the long time dynamical behaviors are very rich.
The following Theorem shows that there exist no nontrivial BGK waves near

a stable homogeneous state in W s;p
x;v space when p > 1; s > 1 +

1
p :

Theorem 2 Assume f0 (v) 2W s;p (R)
�
p > 1; s > 1 + 1

p

�
: Let S = fvigli=1 be

the set of all extrema points of f0: Let 0 < T0 � +1 be de�ned by�
2�

T0

�2
= max

�
0;max
vi2S

Z
f 00 (v)

v � vi
dv

�
: (3)

Then for any T < T0, 9 "0 (T ) > 0, such that there exist no nontrivial trav-
elling wave solutions (f (x� ct; v) ; E (x� ct)) to (1) for any c 2 R, satisfying
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that (f (x; v) ; E (x)) has period T in x, E (x) not identically 0,Z T

0

Z
R

v2f (x; v) dvdx <1; (assumption of �nite energy)

and kf � f0kW s;p
x;v
< "0:

By Penrose�s stability criterion ([41] or Lemma 7) the homogeneous equilib-
rium (f0 (v) ; 0) is linearly stable to perturbations of x�period T < T0. More-
over, in Proposition 3, the linear damping of electrical �eld is shown for such
stable states in a rough function space. Theorems 1 and 2 imply that for any
p > 1; s = 1 + 1

p is the critical index for existence or non-existence of small
BGK waves in W s;p neighborhood of a stable homogeneous state. In Lemma 5,
we show that the stability condition 0 < T < T0 is in some sense also necessary

for the above non-existence result in W s;p
�
s > 1 + 1

p

�
.

The following corollary shows that all homogeneous equilibria in a su¢ ciently

smallW s;p (R)
�
s > 1 + 1

p

�
neighborhood of a stable homogeneous state remain

linearly stable. With Corollary 1, it implies that s = 1+ 1
p is also the critical in-

dex for persistence of linear stability of homogeneous states under perturbations
in W s;p (R) space.

Corollary 2 Assume f0 (v) 2 W s;p (R)
�
p > 1; s > 1 + 1

p

�
: Let S = fvigli=1

be the set of all extrema points of f0 and T0 be de�ned in (3). Then for any
T < T0, 9 "0 (T ) > 0 such that any homogeneous state (f (v) ; 0) satisfying

kf (v)� f0 (v)kW s;p(R) < "0

is linearly stable under perturbations of x�period T .

Theorem 2 and the above Corollary suggest that the dynamical structures

in small W s;p
�
s > 1 + 1

p

�
neighborhood of a stable homogeneous equilibrium

might be relatively simple, since the only nearby steady structures, including
travelling waves, are stable homogeneous states. The physical implication of

Theorem 2 is that when the initial perturbation is small in W s;p
�
s > 1 + 1

p

�
,

the potential well of the wave is unable to trap particles forever to form BGK
waves. So the particles will get out of the potential well sooner or later and
perform free �ights, then the linear damping e¤ect might manifest itself at the
nonlinear level.
Furthermore, when p = 2; we get a much stronger result that any invariant

structure near a stable homogeneous state in Hs space
�
s > 3

2

�
must be trivial,

that is, the electric �eld is identically zero.

Theorem 3 Assume the homogeneous pro�le f0 (v) 2 Hs (R)
�
s > 3

2

�
: For

any T < T0 (de�ned by (3)), there exists "0 > 0, such that if (f (t) ; E (t)) is a
solution to the nonlinear VP equation (1a)-(1b) and

kf (t)� f0kL2xHs
v
< "0; for all t 2 R; (4)
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then E (t) � 0 for all t 2 R:

The space L2xH
s
v is contained in the Sobolev space H

s
x;v. The above theorem

excludes any nontrivial invariant structure, such as almost periodic solutions
and heteroclinic (homoclinic) orbits, in the Hs

�
s > 3

2

�
neighborhood of a stable

homogeneous state. In Theorem 4, we also show that nonlinear decay of electric
�eld is true for any positive or negative invariant structure (see Section 5 for
de�nition) in theHs

�
s > 3

2

�
neighborhood of stable homogeneous states. These

results reveal that in contrary to the Hs
�
s < 3

2

�
case, there are no obstacles in

the Hs
�
s > 3

2

�
neighborhood of stable homogeneous states to prevent nonlinear

Landau damping:
We note that Theorems 1, 2 and 3 about the contrasting nonlinear dynamics

in W s;p spaces with s < 1 + 1
p or s > 1 +

1
p (particularly when p = 2), have no

any analogue at the linear level. Indeed, under Penrose�s stability condition, it
is shown in Section 4 that the linear decay of electrical �elds holds true for very
rough initial data, particularly, no derivatives of f (t = 0) is required for linear
damping. We refer to Propositions 4 and 3, as well as Remark 5 in Section 4 for
more details. This shows once again the importance of particle trapping e¤ects
on nonlinear dynamics, which are completely ignored at the linear level.
Finally, we brie�y describe main ideas in the proof of Theorems 1, 2 and

3. For simplicity, we look at steady BGK waves. The �rst attempt would
be to construct BGK waves near (f0 (v) ; 0) directly by the bifurcation theory.
However, this requires a bifurcation condition: for bifurcation period T > 0;�

2�

T

�2
=

Z
R

f 00 (v)

v
dv: (5)

For general homogeneous equilibria and period T , the bifurcation condition (5)
is not satis�ed. For example, for Maxwellian, this condition fails for any T > 0.
Our strategy is to modify f0 (v) to get a nearby homogeneous state satisfying (5)
and then do bifurcation near this modi�ed state. In the modi�cation step, we
introduce two parameters, one is to to obtain (5) and the other one is to ensure

that the modi�cation results in a smallW s;p
�
s < 1 + 1

p

�
norm change. For the

proof of non-existence of travelling waves in W s;p
�
s > 1 + 1

p

�
, our idea is to

get an second order equation for the electrical �eld E (x) from steady Vlasov-
Poisson equations and show the integral form of this equation is not compatible

when T < T0 and the perturbation is small in W s;p
�
s > 1 + 1

p

�
. Interestingly,

T0 (de�ned by (3)) is exactly the critical period for linear stability by Penrose�s
criterion, which is also used in the proof of Corollaries 1 and 2. To prove
Theorem 3, we use the integral form of the linear decay estimate (Proposition
4) and the Hs

�
s > 3

2

�
invariant assumption to obtain similar nonlinear decay

estimates in the integral form. From such integral estimates, we can show the
homogeneous nature of the invariant structures and the decay of electric �eld
for semi-invariant solutions.
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Here we are in a position to o¤er a conceptual explanation why s = 1+ 1
p ap-

pears as the critical Sobolev exponent for the existence of small BKG waves and
possibly also in the nonlinear Landau damping. By Penrose�stability criterion,
the critical spatial period T0 for linear stability of (f0 (v) ; 0) is determined in (3)

by integrals
R f 00
v�ci dv, where ci are critical points of f0. These integrals are con-

trolled by jjf0jjW s;p if s > 1+ 1
p , but not if s < 1+

1
p . In the latter case, a small

homogeneous perturbation to f0 inW s;p space may dramatically change its sta-
bility for any �xed spatial period T . Due to this change of stability, bifurcations
occur and produce small BKG waves and possibly other complicated structures.
In the opposite case when s > 1+ 1

p , small homogeneous perturbations does not
change the stability of (f0 (v) ; 0), therefore the bifurcation of nontrivial waves
cannot occur and the nonlinear Landau damping may be expected.
The result of this paper has also been extended to a related problem of

inviscid decay of Couette �ow ~v0 = (y; 0) of 2D Euler equations. The linear
decay of vertical velocity near Couette �ow was already known by Orr ([40])
in 1907. This inviscid decay problem is important to understand the formation
of coherent structures in 2D turbulence. In [34], we are able to obtain similar
results near the Couette �ow.
This paper is organized as follows. In Section 2, we prove the existence

result in W s;p
�
s < 1 + 1

p

�
. In Section 3, non-existence of BGK waves in

W s;p
�
s > 1 + 1

p

�
is shown. In Section 4, we study the linear damping problem

in Sobolev spaces. In Section 5, we use the linear decay estimate in Section 4
to show that all invariant structures in Hs

�
s > 3

2

�
are trivial. The appendix is

to reformulate Penrose�s linear stability criterion used in this paper. Through-
out this paper, we use C to denote a generic constant in the estimates and the
dependence of C is indicated only when it matters in the proof.

2 Existence of BGK waves in W s;p
�
s < 1 + 1

p

�
In this Section, we construct small BGK waves near any homogeneous state in

the space W s;p
�
s < 1 + 1

p

�
. Our strategy is to �rst construct BGK waves near

proper smooth homogeneous states. Then we show that any homogeneous state
can be approximated by such smooth states in W s;p.

Lemma 1 Assume u (x) 2 C1 (R), supp u � [�b; b], and u (x) is even, then
there exists g 2 C1 (R), supp g �

h
�
p
b;
p
b
i
; such that u (x) = g

�
x2
�
.

Proof. The proof is essentially given in [24, P. 394]. We repeat it here
for completeness. When k is odd, since u(k) (x) is odd we have u(k) (0) =

0. By Theorem 1.2.6 in [24], we can choose g0 2 C10

�
�
p
b;
p
b
�
with the

Taylor expansion
P
u(2k) (0)xk= (2k)!: Then all derivatives of u1 (x) = u (x) �
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g0
�
x2
�
vanish at 0. De�ne

g (x) =

�
g0 (x) + u1 (

p
x) if x > 0

g0 (x) if x � 0 :

Then g (x) satis�es all the required properties. In particular, g (x) is C1 at
x = 0 because all derivatives of u1 (x) vanish there.

Proposition 1 Assume

f0 (v) 2 C1 (R) \W 2;p (R) (p > 1) ;

f0 is even near v = 0, and

f0 > 0;

Z
R

f0 (v) dv = 1;

Z
R

v2f0 (v) dv <1:

Then for any �xed s < 1 + 1
p ; T > 0; and any " > 0, there exist steady BGK

solutions of the form (f" (x; v) ; E" (x)) to (1), such that (f" (x; v) ; E" (x)) has
period T in x, f" (x; v) > 0; E" (x) is not identically zero, and

kf" � f0kL1x;v +
Z T

0

Z
R

v2 jf0 � f"j dxdv + kf" � f0kW s;p
x;v
< ": (6)

Proof. Assume f0 (v) is even in [�2a; 2a] (a > 0). Let � (x) = � (jxj) to be
the cut-o¤ function such that � (x) 2 C10 (R) ;

0 � � (x) � 1; � (x) = 1 when jxj � 1; � (x) = 0 when jxj � 2. (7)

By Lemma 1, there exists g0 (x) 2 C1 (R), supp g0 �
�
�
p
2a;
p
2a
�
; such that

f0 (v)�
�v
a

�
= g0

�
v2
�
:

De�ne g+ (x) ; g� (x) 2 C1 (R) by

g� (x) =

8><>:
f0 (�

p
x)
�
1� �

�p
x
a

��
+ g0 (x) if x >

p
a

g0 (x) if �
p
2a < x �

p
a

0 if x � �
p
2a

:

Then

f0 (v) =

�
g+
�
v2
�
if v > 0

g�
�
v2
�
if v � 0 :

Since f 00 (0) = 0, f0 2W 2;p (R) \ C1 (R), we have
���RR f 00(v)

v dv
��� <1. Indeed,����Z

R

f 00 (v)

v
dv

���� � Z
jvj�1

����f 00 (v)v
���� dv + Z

jvj�1

����f 00 (v)v
���� dv

� 2max
jvj�1

jf 000 (v)j+
 Z

jvj�1

1

jvjp0
dv

! 1
p0

kf 00kLp

= 2max
jvj�1

jf 000 (v)j+
�

1

p0 � 1

� 1
p0

kf 00kLp <1:
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We consider three cases.
Case 1:

R
R
f 00(v)
v dv <

�
2�
T

�2
. Choose a function F (v) 2 C1 (R) ; such that

F 2W 2;p (R) ; F (v) is even,

F (v) > 0;

Z
R

F (v) dv <1;
Z
R

v2F (v) dv <1;
Z
R

F 0 (v)

v
dv > 0: (8)

An example of such functions is given by

F (v) = exp

 
� (v � v0)

2

2

!
+ exp

 
� (v + v0)

2

2

!
;

where v0 is a large positive constant. Indeed,Z
R

F 0 (v)

v
dv =

Z
F (v)� F (0)

v2
dv > 0; when v0 is large enough,

and other properties in (8) are easy to check. Since F (v) is even, by Lemma
1, there exists G (x) 2 C1 (R) such that F (v) = G

�
v2
�
. Let 
; � > 0 be two

small parameters to be �xed, de�ne

f
;� (v) =
1

1 + C0
2

�
f0 (v) +




�
F

�
v


�

��
; (9)

where C0 =
R
F (v) dv > 0. Note that f
;� 2 C1 (R)\W 2;p (R) ;

R
R
f
;� (v) dv =

1; and Z
R

f 0
;� (v)

v
dv =

1

1 + C0
2

�Z
R

f 00 (v)

v
dv +

1

�2

Z
R

F 0 (v)

v
dv

�
:

Since
R
R
f 00(v)
v dv <

�
2�
T

�2
, there exists 0 < �1 < �2 such that

0 <

Z
R

f 00 (v)

v
dv +

1

�22

Z
R

F 0 (v)

v
dv <

�
2�

T

�2
<

Z
R

f 00 (v)

v
dv +

1

�21

Z
R

F 0 (v)

v
dv:

Thus there exists 
0 > 0 small enough, such that

0 <

Z
R

f 0
;�2 (v)

v
dv <

�
2�

T

�2
<

Z
R

f 0
;�1 (v)

v
dv; when 0 < 
 < 
0. (10)

We look for steady BGK waves near the homogeneous states (f
;� (v) ; 0). Con-
sider a steady BGK solution

�
f0 (x; v) ; E0 (x) = ��x (x)

�
to (1). Denote e =

1
2v
2�� (x) to be the particle energy. From the steady Vlasov equation, f0 (x; v)

is constant along each particle trajectory. So for trapped particles with�max� <
e < �min�, f0 depends only on e, and for free particles with e > �min�, f0
depends on e and the sign of the initial velocity v. We look for BGK waves near
(f
;�; 0) of the form

f�
;� (x; v) =

8<:
1

1+C0
2

h
g+ (2e) +



�G
�

2e
(
�)2

�i
if v > 0

1
1+C0
2

h
g� (2e) +



�G
�

2e
(
�)2

�i
if v � 0

: (11)
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For k�kL1 su¢ ciently small, f�
;� (x; v) > 0 and it satis�es the steady Vlasov

equation, since in particular for trapped particles f�
;� (x; v) = f
�

;� (x;�v). To

satisfy Poisson�s equation, we solve the ODE

�xx =

Z
R

f�
;� (x; v) dv � 1

=
1

1 + C0
2

"Z
v>0

g+ (2e) dv +

Z
v�0

g� (2e) dv +

Z
R




�
G

 
2e

(
�)
2

!
dv

#
� 1

:= h
;� (�) :

Then h
;� 2 C1 (R). Since f�=0
;� (x; v) = f
;� (v), so

h
;� (0) =

Z
R

f
;� (v) dv � 1 = 0

and

h0
;� (0) =
�2

1 + C0
2

(Z
v>0

g0+
�
v2
�
dv +

Z
v�0

g0�
�
v2
�
dv +

Z
R




�

1

(
�)
2G

0

 
v2

(
�)
2

!
dv

)

= �
Z
R

f 0
;� (v)

v
dv:

Thus when 0 < 
 < 
0; �1 < � < �2; we have h0
;� (0) < 0, which implies that
� = 0 is a center of the second order ODE

�xx = h
;� (�) : (12)

So by the standard bifurcation theory of periodic solutions near a center, for
any �xed 
 2 (0; 
0) ; there exists r0 > 0 (independent of � 2 (�1; �2)) , such
that for each 0 < r < r0 , there exists a T (
; �; r)�periodic solution �
;�;r to
the ODE (12) with k�
;�;rkH2(0;T (
;�;r)) = r. Moreover,�

2�

T (
; �; r)

�2
!
Z
R

f 0
;� (v)

v
dv, when r ! 0:

By (10), when r is small enough,

T (
; �1; r) < T < T (
; �2; r) :

Since T (
; �; r) is continuous in �; for each 
; r > 0 small enough, there exists
�T (
; r) 2 (�1; �2) , such that T (
; �T ; r) = T . De�ne fT
;r (x; v) = f�
;�T (x; v)

from (11) by setting � = �
;�T ;r and let E
;r (x) = ��0
;�T ;r (x). Then
�
fT
;r (x; v) ; E
;r (x)

�
is a nontrivial BGK solution to (1) with x�period T . For any �xed 
 > 0, let

� (
) = lim
r!0

�T (
; r) 2 [�1; �2] :

10



By the dominant convergence theorem, it is easy to show that



fT
;r (x; v)� f
;�(
) (v)

L1x;v +
Z T

0

Z
R

v2
��fT
;r (x; v)� f
;�(
) (v)�� dxdv

+


fT
;r (x; v)� f
;�(
) (v)

W 2;p

x;v
! 0;

when r = j�
;�T ;rjH2(0;T ) ! 0: Since s < 1 + 1
p < 2; for any 
 > 0 small, there

exists r = r (
; ") > 0 such that



fT
;r (x; v)� f
;�(
) (v)

L1x;v +
Z T

0

Z
R

v2
��fT
;r (x; v)� f
;�(
) (v)�� dxdv

+


fT
;r (x; v)� f
;�(
) (v)

W s;p

x;v
<
"

2
;

Next, we show that the modi�ed homogeneous state f
;�(
) (v) is arbitrarily
close to f0 (v) in the sense that

f0 (v)� f
;�(
) (v)

L1+ T Z

R

v2
��f0 (v)� f
;�(
) (v)�� dv+

f0 (v)� f
;�(
) (v)

W s;p

x;v
! 0;

when 
 ! 0: Note that the deviation is

f0 (v)� f
;�(
) (v) =
1

1 + C0
2

�
�C0
2f0 (v)�




�
F

�
v


�

��
:

Since � (
) 2 [�1; �2], when 
 ! 0,Z
R




� (
)
F

�
v


� (
)

�
dv = 
2

Z
R

F (v) dv ! 0;

Z
R

v2



� (
)
F

�
v


� (
)

�
dv = 
4� (
)

2
Z
R

v2F (v) dv ! 0;



 


� (
)
F

�
v


� (
)

�




Lp
= 
1+

1
p � (
)

1
p�1 kF (v)kLp ! 0;



 ddv

�



� (
)
F

�
v


� (
)

��




Lp
= 


1
p � (
)

1
p�2 kF 0 (v)kLp ! 0;

and thus

f0 (v)� f
;�(
) (v)

L1+ T Z
R

v2
��f0 (v)� f
;�(
) (v)�� dv+

f0 (v)� f
;�(
) (v)

W 1;p

x;v
! 0:

It remains to check



jDjs�1 ddv �f0 (v)� f
;�(
) (v)�





Lp
! 0; when 
 ! 0;
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where jDj� (� > 0) is the fractional di¤erentiation operator with the Fourier
symbol j�j� : By using the scaling equality�

jDj� �d
�
(v) =

1

d�

�
jDj� �

��v
d

�
;

where �d (v) = � (v=d), we have



jDjs ddv
�




� (
)
F

�
v


� (
)

��




Lp
= 
1�s+

1
p � (
)

�1�s+ 1
p k(jDjs F 0) (v)kLp ! 0;

when 
 ! 0, since s < 1 + 1
p . So we can choose 
 = 
 (") > 0 small such that

f0 � f
;�(
)

L1(R)+ T Z

R

v2
��f0 (v)� f
;�(
) (v)�� dv+

f0 � f
;�(
)

W s;p(R)

<
"

2
:

Then
(f"; E") =

�
fT
(");r(
(");") (x; v) ; E
(");r(
(");") (x)

�
is a steady BGK wave solution satisfying (6).

Case 2:
R
R
f 00(v)
v dv >

�
2�
T

�2
. Choose F (v) = exp

�
�v2

2

�
; then

R
R
F 0(v)
v dv <

0. De�ne f
;� (v) as in Case 1 (see (9)). Then there exists 0 < �1 < �2 such that

0 <

Z
R

f 00 (v)

v
dv +

1

�21

Z
R

F 0 (v)

v
dv <

�
2�

T

�2
<

Z
R

f 00 (v)

v
dv +

1

�22

Z
R

F 0 (v)

v
dv:

The rest of the proof is the same as in Case 1.
Case 3:

R
R
f 00(v)
v dv =

�
2�
T

�2
. For � > 0; de�ne

f� (v) =
1

�
f0

�v
�

�
:

Then f� 2 C1 (R) \W 2;p (R) ; f� (v) > 0;
R
R
f� (v) dv = 1; andZ

R

f 0� (v)

v
dv =

1

�2

Z
R

f 00 (v)

v
dv:

For any " > 0 small, there exist 0 < �1 (") < 1 < �2 (") such that

0 <
1

�22

Z
R

f 00 (v)

v
dv <

�
2�

T

�2
<
1

�21

Z
R

f 00 (v)

v
dv

and when � 2 (�1 (") ; �2 (")) ;

kf0 (v)� f� (v)kL1(R)+ T
Z
R

v2 jf0 (v)� f� (v)j dv+kf0 (v)� f� (v)kW 2;p(R) <
"

2
:

For � 2 (�1 (") ; �2 (")) ; we consider bifurcation of steady BGK waves near
(f� (v) ; 0), which are of the form

f�� (x; v) =

�
1
� g+

�
2e
�2

�
if v > 0

1
� g�

�
2e
�2

�
if v � 0 ; e =

1

2
v2 � � (x) ; E = ��x. (13)

12



The existence of BGK waves is then reduced to solve the ODE

�xx =

Z
R

f�� (x; v) dv � 1 := h� (�) (14)

As in Case 1, for any � 2 (�1 (") ; �2 (")) ; 9 r0 (") > 0 (independent of �) such
that for each 0 < r < r0 , there exists a T (�; r)�periodic solution ��;r to the
ODE (14) with k��;rkH2(0;T (�;r)) = r. Moreover,�

2�

T (�; r)

�2
!
Z
R

f 0� (v)

v
dv, when r ! 0:

So when r is small enough, T (�1; r) < T < T (�2; r) and there exists �T (r; ") 2
(�1 (") ; �2 (")) such that T (�T ; r) = T . De�ne fTr;" (x; v) = f��T (r;") (x; v) with

� = ��T (r;");r in (13) and Er;" (x) = ��0�T (r;");r (x). Then
�
fTr;" (x; v) ; Er;" (x)

�
is a nontrivial BGK solution to (1) with x�period T . Let

� (") = lim
r!0

�T (r; ") 2 [�1 (") ; �2 (")]

As in Case 1, by dominance convergence theorem, we can choose r = r (") > 0
small enough, such that


fTr(");" (x; v)� f�(") (v)




L1x;v

+

Z T

0

Z
R

v2
���fTr(");" (x; v)� f�(") (v)��� dxdv

+



fTr(");" (x; v)� f�(") (v)




W 2;p
x;v

<
"

2
:

Then
(f"; E") =

�
fTr(");" (x; v) ; Er(");" (x)

�
is a steady BGK wave solution satisfying

kf" � f0kL1x;v +
Z T

0

Z
R

v2 jf0 � f"j dxdv + kf" � f0kW 2;p
x;v
< ";

which certainly implies (6). This �nishes the proof of the Proposition.
To �nish the proof of Theorem 1, we need the following approximation result.

Lemma 2 Fixed p > 1, 0 � s < 1+ 1
p and c 2 R. Assume f0 2W

s;p (R) ; f0 >

0,
R
R
f0 (v) dv = 1, and

R
R
v2f0 (v) dv < 1. Then for any " > 0, there exists

f" (v) 2 C1 (R) \W 2;p (R), such that f" is even near v = c; and

kf" � f0kL1(R) +
Z
R

v2 jf" � f0j dxdv + kf" � f0kW s;p(R) � ":
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Proof. Let � (x) be the standard molli�er function, that is,

� (x) =

(
C exp

�
1

x2�1

�
if jxj < 1

0 if jxj � 1
;

and ��1 (x) =
1
�1
�
�
x
�1

�
. De�ne f�1 (v) := ��1 (v)�f0 (v) : Then by the properties

of molli�ers, we have

f�1 2 C1 (R) ; f�1 (v) > 0;
Z
R

f�1 (v) dv = 1;

and when �1 is small enough

kf�1 � f0kL1(R) +
Z
R

v2 jf�1 � f0j dxdv + kf�1 � f0kW s;p(R) �
"

2
: (15)

We can assume f�1 (v) 2 W 2;p. Since otherwise, we can modify f�1 (v) near
in�nity by cut-o¤ to get ~f�1 (v) such that ~f�1 (v) 2W 2;p and


f�1 � ~f�1





L1(R)

+

Z
R

v2
���f�1 � ~f�1

��� dxdv + 


f�1 � ~f�1





W s;p(R)

� "

2
:

Solely to simplify notations, we set c = 0 below: Let � (x) = � (jxj) to be the
cut-o¤ function de�ned by (7). Let �2 > 0 be a small number, and de�ne

f�1;�2 (v) = f�1 (v)

�
1� �

�
v

�2

��
+

�
f�1 (v) + f�1 (�v)

2

�
�

�
v

�2

�
= f�1 (v)�

�
f�1 (v)� f�1 (�v)

2

�
�

�
v

�2

�
Then obviously,

f�1;�2 2 C1 (R) ; f�1;�2 (v) > 0;
Z
R

f�1;�2 (v) dv =

Z
R

f�1 (v) dv = 1;

and f�1;�2 (v) is even on the interval [��2; �2]. Below, we prove that: when �2 is
small enough

kf�1 � f0kL1(R) +
Z
R

v2 jf�1 � f0j dv + kf�1 � f0kW s;p(R) �
"

2
: (16)

Since

kf�1 � f�1;�2kL1 �
Z
jvj�2�2

f�1 (v) dvZ
R

v2 jf�1 � f�1;�2 j dv � (2�2)
2
Z
jvj�2�2

f�1 (v) dv;

kf�1 � f�1;�2kLp � kf�1kLp[�2�2;2�2] ;

14



and

@v (f�1 � f�1;�2) =
�
f 0�1 (v) + f

0
�1
(�v)

2

�
�

�
v

�2

�
+ �0

�
v

�2

�
f�1 (v)� f�1 (�v)

2�2
;

k@v (f�1 � f�1;�2)kLp �


f 0�1

Lp[�2�2;2�2] +max j�0j





f�1 (v)� f�1 (�v)2�2






Lpf�2�jvj�2�2g

�


f 0�1

Lp[�2�2;2�2] + 1

2�2
max j�0j







Z 2�2

�2�2

��f 0�1�� dv






Lpf�2�jvj�2�2g

�


f 0�1

Lp[�2�2;2�2] + 1

2�2
max j�0j (4�2)

1
p0


f 0�1

Lp[�2�2;2�2] (2�2) 1p

� (1 + 2max j�0j)


f 0�1

Lp[�2�2;2�2] ;

so when �2 ! 0,

kf�1 � f�1;�2kL1 +
Z
R

v2 jf�1 � f�1;�2 j dv + kf�1 � f�1;�2kW 1;p ! 0:

Next, we show

k@v (f�1 � f�1;�2)kW s�1;p(R) ! 0, when �2 ! 0.

This follows from Lemma 3 below, since s� 1 < 1
p and



f�1 (v)� f�1 (�v)2v






W s�1;p(R)

=





Z 1

0

f 0�1 ((2� � 1) v) d�





W s�1;p(R)

�
Z 1

0



f 0�1 ((2� � 1) v)

W s�1;p(R)
d�

� C
Z 1

0

�
j2� � 1j�

1
p


f 0�1

Lp + j2� � 1j�( 1p�s+1) 


jDjs�1 f 0�1


Lp� d� � C kf�1kW s;p(R) :

So when �2 ! 0,

kf�1 � f�1;�2kL1v +
Z
R

v2 jf�1 � f�1;�2 j dv + kf�1 � f�1;�2kW s;p ! 0:

Thus by choosing �2 small enough, (16) is satis�ed. By setting f" = f�1;�2 , the
conclusion of the lemma follows from (15) and (16).

Lemma 3 Given f 2 W
1
p ;p (R) \ L1; g 2 W s;p (R)

�
p > 1; 0 � s < 1

p

�
, then

for any � > 0; f
�
x
�

�
g (x) 2W s;p (R) and


f �x

�

�
g




W s;p

! 0, when � ! 0. (17)
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Proof. First, we cite a result of Strichartz ([44]): Given h1 2 W
1
p ;p (R) \

L1; h2 2W s;p (R) ; then h1h2 2W s;p (R) and

kh1h2kW s;p � C
�
kh1k

W
1
p
;p ; kh1kL1

�
kh2kW s;p .

Above result immediately implies that f
�
x
�

�
g (x) 2 W s;p (R). To show (17),

for any " > 0; we pick g1 2 C10 (R) such that kg � g1kW s;p < ". Since


f �x
�

�



Lp
+



jDj 1p �f �x

�

��



Lp
= �

1
p kf (x)kLp +




jDj 1p f



Lp
;

so when � � 1,


f �x
�

�



W

1
p
;p
� C kfk

W
1
p
;p ; for some C independent of �.

Thus


f �x
�

�
g




W s;p

�



f �x

�

�
(g � g1)





W s;p

+



f �x

�

�
g1





W s;p

� C
�
kfk

W
1
p
;p ; kfkL1

�
kg � g1kW s;p +




f �x
�

�



W s;p

C
�
kg1k

W
1
p
;p ; kg1kL1

�
� C

�
kfk

W
1
p
;p ; kfkL1

�
"+

�
�
1
p kf (x)kLp + �

1
p�s




jDj 1p f



Lp

�
C
�
kg1k

W
1
p
;p ; kg1kL1

�
:

Letting � ! 0, we get

lim
�!0




f �x
�

�
g




W s;p

� C
�
kfk

W
1
p
;p ; kfkL1

�
":

Since " is arbitrarily small, (17) is proved:
Proof of Theorem 1. Fixed the period T > 0 and the travel speed c 2

R:Then by Lemma 2, for any " small enough, there exists f1 (v) 2 C1 (R) \
W 2;p (R), such that f1 (v) is even near v = c and

kf1 � f0kL1(R) + T
Z
R

v2 jf1 � f0j dv + kf1 � f0kW s;p(R) � "=2:

Our goal is to construct travelling BGK wave solutions of the form

(f" (x� ct; v) ; E" (x� ct))

near (f1 (v) ; 0), such that

kf" (x; v)� f1 (v)kL1x;v+
Z
R

v2 jf" (x; v)� f1 (v)j dxdv+kf" (x; v)� f1 (v)kW s;p
x;v
<
"

2
:

It is equivalent to �nd steady BGK solutions (f" (x; v + c) ; E" (x)) near (f1 (v + c) ; 0).
By Proposition 1, there exists steady BGK solution (f2 (x; v) ; E2 (x)) near
(f1 (v + c) ; 0) such that E2 (x) not identically 0;

kf2 (x; v)� f1 (v + c)kL1x;v +
Z
R

v2 jf2 (x; v)� f1 (v + c)j dxdv

16



+ kf2 (x; v)� f1 (v + c)kW s;p
x;v
<

"

2 (5 + 4c2)
:

Setting
f" (x; v) = f2 (x; v � c) ; E" (x) = E2 (x) ;

then (f" (x� ct; v) ; E" (x� ct)) is a travelling BGK solution and

kf" � f1 (v)kL1x;v +
Z
R

(v � c)2 jf" � f1 (v)j dxdv

+ kf" � f1 (v)kW s;p
x;v
<

"

2 (5 + 4c2)
:

Since jv � cj � jvj =2 when jvj � 2 jcj ;soZ
R

v2 jf" (x; v)� f1 (v)j dxdv

�
Z
jvj�2jcj

v2 jf" (x; v)� f1 (v)j dxdv +
Z
jvj�2jcj

v2 jf" (x; v)� f1 (v)j dxdv

� 4
Z
(v � c)2 jf" (x; v)� f1 (v)j dxdv + 4c2 kf" � f1kL1x;v

<

�
4 + 4c2

�
"

2 (5 + 4c2)
;

and thus

kf" � f1 (v)kL1x;v +
Z
R

v2 jf" (x; v)� f1 (v)j dxdv + kf" (x; v)� f1 (v)kW s;p
x;v

<
"

2 (5 + 4c2)
+

�
4 + 4c2

�
"

2 (5 + 4c2)
=
"

2
;

So

kf" � f0 (v)kL1x;v +
Z
R

v2 jf" (x; v)� f0 (v)j dxdv + kf" (x; v)� f0 (v)kW s;p
x;v
< ":

and the proof of Theorem 1 is �nished.

Remark 1 For steady BGK waves (f (x; v) ; E (x)) of the form E (x) = ��x
and

f (x; v) =

�
�+ (e) if v � 0
�� (e) if v < 0

�
; e =

1

2
v2 � � (x) ; (18)

with �+; �� 2 C1 (R) ; such as constructed in the proof of Theorem 1, E (x) has
only two zeros in one minimal period. This is because the electric potential �
satisfying the 2nd order autonomous ODE

�xx =

Z
v�0

�+
�
1

2
v2 � �

�
dv +

Z
v<0

��
�
1

2
v2 � �

�
dv � 1 = h (�) (19)
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with h 2 C1 (R) : Any periodic solution of minimal period to the ODE (19)
has only one minimum and maximum, and therefore E = ��x vanishes at only
two points. By Theorem 1, for T > 0, near any homogeneous equilibria we can
construct small BGK waves such that multiple of its minimal period equal T . By
[31] and [32], any of such multi-BGK waves are linearly and nonlinearly unstable
under perturbations of period T . So far, the existence of stable BGK wave of
minimal period remains open, although some numerical evidences suggest the
existence of such stable BGK wave. For example, in [5] starting near a unstable
multi-BGK wave, numerical simulations shows that the long time asymptotics
is to tend to a seemingly stable BGK wave of minimal period.

Remark 2 In ([22] [23]), Dorning and Holloway (see also [10], [17]) studied
the bifurcation of small travelling BGK waves with speed vp near homogeneous
equilibria (f0 (v) ; 0) under the bifurcation condition

� (vp) = P

Z
f 00 (v)

v � vp
dv > 0; (20)

where P denotes the principal value integral. It is equivalent to �nd steady BGK
waves near (f0 (v + vp) ; 0). The approach in ([22] [23]) is as follows. De�ne

fe;vp (v) =
1

2
(f0 (v + vp) + f0 (�v + vp)) ;

fo;vp (v) =
1

2
(f0 (v + vp)� f0 (�v + vp)) :

Then Z d
dvf

e;vp (v)

v
dv = P

Z
f 00 (v)

v � vp
dv = � (vp) > 0:

So by the bifurcation theory, there exist small BGK waves (fe (x; v) ;��x) near
(fe;vp (v) ; 0) with periods close to 2�p

�(vp)
, and fe (x; v) is even in v. Next, the

odd part fo;vp (x; v) is de�ned by

fo;vp (x; v) =

�
1� �

�
e

�2min�

���
Go (e) if v � 0
�Go (e) if v < 0

;

where � (x) is the cut-o¤ function as de�ned in (7) and Go (e) = fo;vp
�p
2e
�

when e > 0. De�ne

f (x; v) = fe;vp (x; v) + fo;vp (x; v) ;

then (f (x; v) ;��x) is a steady BGK wave, since for trapped particles with
e < �min�, fo;vp (x; v) = 0 and f (x; v) only depends on e. It can be shown that
(f (x; v) ;��x) is close to (f0 (v + vp) ; 0) in Lpx;v norm. The periods of the BGK
waves constructed above are only near 2�p

�(vp)
. In [22] [23], [17], it was suggested

that BGK waves with exact period 2�p
�(vp)

and "�close to (f0 (v + vp) ; 0) in Lpx;v
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norm can be constructed by performing above bifurcation from ((1 + � (")) f0 (v + vp) ; 0)
for proper small parameter �. It should be pointed out that this strategy actually
does not work to get exact period 2�p

�(vp)
. Since to ensure that ((1 + � (")) fe;vp (v) ; 0)

is a bifurcation point, it is required thatZ
R

(1 + � (")) fe;vp (v) dv = 1;

and thus � (") = 0, i,e, � is not adjustable at all.
Second, by Lemma 4 below,

j� (vp)j =
�����
Z d

dvf
e;vp (v)

v
dv

����� � kfe;vp (v)kW 2;p = kf0 (v)kW 2;p .

So by the method in [22] [23], one can not get small BGK waves with spatial
periods less than 2�=

p
kf0 (v)kW 2;p . By comparison, we construct BGK waves

with any minimal period near any homogeneous equilibrium (f0 (v) ; 0) in any

W s;p
�
s < 1 + 1

p

�
neighborhood.

It is also claimed in [22] [23] that for vp such that � (vp) < 0, there exist
no travelling BGK waves with travel speed vp, arbitrarily near (f0 (v) ; 0). For
Maxwellian f0 (v) = e�

1
2v

2

, the critical speed is about vp = 1:35 since � (vp) <
0 when vp < 1:35: However, by our Theorem 1, BGK waves with arbitrary
travel speed exist near (in W s;p space, s < 1 + 1

p) any homogeneous equilibrium
including Maxwellian. So the claim of the critical travel speed based on (20) is
not true.

Proof of Corollary 1. From the proof of Theorem 1 and Proposition 1,
it follows that: Fixed T > 0; for any " > 0, there exists a homogeneous pro�le
f" (v) 2 C1 (R) \W 2;p (R) ; such that f" (v) � 0;

R
R
f" (v) dv = 1;�

2�

T

�2
= k20 =

Z
R

f 0" (v)

v � v"
dv with f 0" (v") = 0;

and

kf" (v)� f0 (v)kL1(R)+ T
Z
R

v2 jf" (v)� f0 (v)j dv+kf" (v)� f0 (v)kW s;p(R) <
"

2
:

(21)
De�ne f� (v) 2 C1 (R) \W 2;p (R) by

f� (v) =
1

�
f"

�
v" +

v � v"
�

�
;

Then f� (v) � 0;
R
R
f� (v) dv = 1 and

k0 (�)
2
=

Z
f 0� (v)

v � v"
dv =

1

�2

�
2�

T

�2
:
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We consider two cases below.
Case 1: f 00" (v") > 0. By Lemma 7 and Remark 6 thereafter, there exist un-

stable modes of the linearized VP equation around (f" (v) ; 0) ; for wave numbers
k in the internal (k1; k0). Here k1 is de�ned by

k21 =

Z
R

f 0" (v)

v � c1
dv;

and c1 is a maximum point f" (v). If there is no maximum point c1 of f" such
that Z

R

f 0" (v)

v � c1
dv < k20;

then k1 = 0. Choose � < 1 such that

kf" (v)� f� (v)kL1(R) + T

Z
R

v2 jf" � f�j dv + kf" � f�kW s;p(R) <
"

2
: (22)

Then again by Lemma 7 and Remark 6, there exist unstable modes of the
linearized VP equation around (f� (v) ; 0) ; for wave numbers k in the internal
(k1 (�) ; k0 (�)). Since k0 (�) > k0 and k0 (�) � k1 (�) ! k0 � k1 > 0 when
� ! 1�, we have k0 2 (k1 (�) ; k0 (�)) when � is close enough to 1. This implies
that (f� (v) ; 0) is linearly unstable under perturbations of period T . Moreover,
the inequalities (21) and (22) imply that

kf� (v)� f0 (v)kL1(R)+ T
Z
R

v2 jf� (v)� f0 (v)j dv+kf� (v)� f0 (v)kW s;p(R) < ":

Case 2: f 00" (v") < 0. Choose � > 1 su¢ ciently close to 1, then by the same
argument as in Case 1, (f� (v) ; 0) is linearly unstable under perturbations of
period T and

kf� (v)� f0 (v)kL1(R)+ T
Z
R

v2 jf� (v)� f0 (v)j dv+kf� (v)� f0 (v)kW s;p(R) < ":

This �nishes the proof of Corollary 1.

3 Nonexistence of BGKwaves inW s;p
�
s > 1 + 1

p

�
In this Section, we prove Theorem 2. The next lemma is a Hardy type inequality.

Lemma 4 If u (v) 2W s;p (R)
�
p > 1; s > 1

p

�
; and u (0) = 0; thenZ

R

����u (v)v
���� dv � C kukW s;p(R) ;

for some constant C.
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Proof. Since s > 1
p , the space W

s;p (R) is embedded to the Hölder space

C0;� with � 2
�
0; s� 1

p

�
. So

ju (v)j = ju (v)� u (0)j � jvj� kukC0;� � C kukW s;p jvj�

and thusZ
R

����u (v)v
���� dv � Z 1

�1

����u (v)v
���� dv + Z

jvj�1

����u (v)v
���� dv

� C kukW s;p

Z 1

�1
jvj�1+� dv +

 Z
jvj�1

1

jvjp0
dv

! 1
p0

kukLp

� C kukW s;p(R) .

Proof of Theorem 2. Suppose otherwise, then there exist a sequence
"n ! 0, and nontrivial travelling wave solutions

(fn (x� cnt; v) ; En (x� cnt))

to (1) such that En (x) is not identically zero;
R T
0
En (x) dx = 0; fn (x; v) and

�n (x) are T�periodic in x,Z T

0

Z
R

v2fn (x; v) dvdx <1 and kfn (x; v)� f0 (v)kW s;p
x;v
< "n:

The travelling BGK waves satisfy

(v � cn) @xfn � En@vfn = 0; (23)

and
@En
@x

= �
Z +1

�1
fndv + 1: (24)

Because fn 2W s;p
x;v with s > 1 +

1
p >

2
p ; so by Sobolev embedding

kfnkL1x;v � C kfnkW s;p
x;v
<1:

By a standard estimate in kinetic theory,

�n =

Z
fndv � kfnk

2
3

L1x;v

�Z
v2fndv

� 1
3

(25)

and thus �n 2 L3 (0; T ). So En (x) 2 W 1;3 (0; T ) which implies that En (x) 2
H1 (0; T ) and En (x) is absolutely continuous. De�ne two sets Pn = fEn 6= 0g
and Qn = fEn = 0g. Then Pn is of non-zero measure and E0n = 0 a.e. on Qn:
Thus we haveZ T

0

jE0n (x)j
2
dx = �

Z T

0

�n (x)E
0
n (x) dx = �

Z
Pn

�n (x)E
0
n (x) dx: (26)
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Since s� 1 > 1
p , by the trace theorem for fractional Sobolev Space,

@xfnjv=cn ; @vfnjv=cn 2 Lp (0; T ) :

So from equation (23), @vfnjv=cn = 0 for a.e. x 2 Pn. By Lemma 4, for a.e.
x 2 Pn; ����Z @vfn

v � cn
dv

���� (x) � C kfn (x; v)kW s;p
v
2 Lp (Pn) :

From (23), when x 2 Pn;

�0n (x) =

Z
@vfn
v � cn

dvEn (x) 2 Lp (Pn)

and it follows from (26) thatZ T

0

jE0n (x)j
2
dx�

Z
Pn

Z
@vfn
v � cn

dvEn (x)
2
dx = 0: (27)

Denote jPnj to be the measure of the set Pn. We consider two cases.
Case 1: jPnj ! 0 when n!1. Since

kEnkL1(0;T ) � kE
0
nkL1(0;T ) �

p
T kE0nkL2(0;T ) ;

so from (27),

kE0nk
2
L2(0;T ) � T kE

0
nk
2
L2(0;T )

Z
Pn

Z ���� @vfnv � cn

���� dvdx
� T kE0nk

2
L2(0;T )

Z
Pn

kfn (x; v)kW s;p
v
dx

� T kE0nk
2
L2(0;T )

�Z
Pn

kfn (x; v)� f0kW s;p
v
dx+ jPnj kf0kW s;p

�
� T kE0nk

2
L2(0;T )

�
C kfn (x; v)� f0kW s;p

x;v
+ jPnj kf0kW s;p

�
< kE0nk

2
L2(0;T ) ;

when n is large enough. Thus for large n; kE0nkL2(0;T ) = 0 and thus En (x) �
0; which is a contradiction.
Case 2: jPnj ! d > 0 when n ! 1. When n is large enough, we have

jPnj � d
2 . By the trace Theorem,

k@vfn (x; cn)� @vf0 (cn)kLp(Pn)
� k@vfn (x; cn)� @vf0 (cn)kLp(0;T )
� C kfn � f0kW s;p � C"n:

Since @vfn (x; cn) = 0 for a.e. x 2 Pn, so k@vf0 (cn)kLp(Pn)
� C"n which

implies that

j@vf0 (cn)j �
C"n�
d
2

� 1
p

.
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Thus @vf0 (cn)! 0 when n! +1. Therefore there exist a subsequence of fcng,
such that either it converges to one of the critical points of f0, say vi 2 S or it
diverges. We discuss these two cases separately below. To simplify notations,
we still denote the subsequence by fcng.

Case 2.1: cn ! vi 2 S. Rewrite (27) asZ T

0

jE0n (x)j
2
dx =

Z
R

@vf0
v � vi

dv

Z
Pn

En (x)
2
dx+

Z
Pn

Vn (x)En (x)
2
dx; (28)

where

Vn (x) =

Z
R

@vfn
v � cn

dv �
Z
R

@vf0
v � vi

dv =

Z
R

@v (fn (x; v + cn)� f0 (v + vi))
v

dv:

Note that @v (fn (x; v + cn)� f0 (v + vi)) jv=0 = 0 for x 2 Pn, so by Lemma 4,
we haveZ

Pn

jVn (x)j dx � C
Z
Pn

kfn (x; v + cn)� f0 (v + vi)kW s;p
v
dx

� C
Z T

0

�
kfn � f0kW s;p

v
+ kf0 (v + cn)� f0 (v + vi)kW s;p

�
dx

� C
�
kfn � f0kW s;p

x;v
+ kf0 (v + cn)� f0 (v + vi)kW s;p

�
So
R
Pn
jVn (x)j dx ! 0 when n ! 1. Since

R T
0
En (x) dx = 0 and En 2

H1 (0; T ) is T�periodic; we have

kE0nkL2(0;T ) �
2�

T
kEnkL2(0;T ) :

Also by the assumption of Theorem 2,

ai =

Z
R

@vf0
v � vi

<

�
2�

T

�2
:

Combining above, from (28), we get

kE0nk
2
L2(0;T ) �

max fai; 0g�
2�
T

�2 kEnk2L2(0;T ) +
Z
Pn

jVn (x)j dx kEnk2L1

� kE0nk
2
L2(0;T )

 
max fai; 0g�

2�
T

�2 + T

Z
Pn

jVn (x)j dx
!

< kE0nk
2
L2(0;T ) ;

when n is large enough. A contradiction again.
Case 2.2: fcng diverges. We assume cn ! +1; and the case when

cn ! �1 is similar. Again, for a.e. x 2 Pn, @vfn (x; cn) = 0. Let �n (v)
be a cut-o¤ function such that: 0 � �n � 1; �n (v) = 1 when v 2

�
cn
2 ;

3cn
2

�
;
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�n (v) = 0 when v =2
�
cn
2 � 1;

3cn
2 + 1

�
and j�njC1 � M (independent of n).

Since W s1;p ,!W s2;p when s1 > s2; we can assume 1
p < s� 1 � 1. ThenZ

Pn

����Z
R

@vfn
v � cn

dv

���� dx � Z
Pn

�Z
R

�����n@vfnv � cn

���� dv + Z
R

���� (1� �n) @vfnv � cn

���� dv� dx
� C

Z
Pn

 
k�n@vfnkW s�1;p

v
+

Z
jv�cnj� cn

2

���� @vfnv � cn

���� dv
!
dx

� C
Z T

0

�
k�n@v (fn � f0)kW s�1;p

v
+ k�n@vf0k

Ws�1;p
+ c

�1+ 1
p0

n kfnkW 1;p
v

�
dx

� C (M) kfn � f0kW s;p
x;v
+ CT k�n@vf0k

Ws�1;p
+ CTc

�1+ 1
p0

n kfnkW 1;p
x;v

! 0; when n!1,

and this again leads to a contradiction as in Case 1. In the above, we use two
estimates:
i)

k�n@v (fn � f0)kW s�1;p
v

� C (M) k@v (fn � f0)kW s�1;p
v

:

ii)
k�n@vf0k

Ws�1;p
! 0; when n!1. (29)

We prove them below. Estimate i) follows from the following general estimate:
Given u (v) 2 C10 (R) ; then for any g 2 W�;p (R) (p > 1; 0 � � � 1), we

have
kugkW�;p(R) � C (kukC1) kgkW�;p(R) : (30)

This estimate is obvious for � = 0 and � = 1, and the case � 2 (0; 1) then
follows from the interpolation theorem. To show estimate ii), we �rst note that
for any h 2 C10 (R) ; obviously

k�nhk
Ws�1;p

� C k�nhk
W1;p

! 0; when n!1:

Then the estimate (29) follows by using the fact that C10 (R) is dense inW s�1;p

and the estimate (30). This �nishes the proof of Theorem 2.
In the above proof of Theorem 2, we do not assume that the possible BGK

waves to have the form (18) or the electric �eld to vanish only at �nitely many
points. So we can exclude any traveling structures which might have the form
of a nontrivial wave pro�le plus a homogeneous part.
The following Lemma shows that the condition 0 < T < T0 in Theorem 2 is

necessary.

Lemma 5 Assume f0 (v) 2 C4 (R)\W 2;p (R) (p > 1) : Let S = fvigli=1 be the
set of all extrema points of f0 and 0 < T0 < +1 be de�ned by�

2�

T0

�2
= max

vi2S

Z
f 00 (v)

v � vi
dv =

Z
f 00 (v)

v � vm
dv (31)
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Then 9 "0 > 0, such that for any 0 < " < "0 there exist nontrivial travelling wave
solutions (f" (x� vmt; v) ; E" (x� vmt)) to (1), such that (f" (x; v) ; E" (x)) has
period T0 in x, E" (x) not identically zero, and

kf" � f0kL1x;v +
Z T

0

Z
R

v2 jf0 � f"j dxdv + kf" � f0kW 2;p
x;v
< " (32)

Proof. To simplify notations, we assume vm = 0. As in the proof of Lemma
2, for �1 > 0 we de�ne

f�1 (v) = f0 (v)

�
1� �

�
v

�1

��
+

�
f0 (v) + f0 (�v)

2

�
�

�
v

�1

�
= f0 (v)�

�
f0 (v)� f0 (�v)

2

�
�

�
v

�1

�
;

where � (v) is the cut-o¤ function de�ned by (7). Then we have:

i) f 0�1 (0) = 0;

Z
f 00 (v)

v
dv =

Z
f 0�1 (v)

v
dv =

�
2�

T0

�2
;

and

ii) f�1 (v) 2 C4 (R) \W 2;p (R) ; kf�1 � f0kW 2;p(R) ! 0;when �1 ! 0:

Property i) follows since � (v) is even. To prove property ii), we only need to
show that k@vv (f�1 � f0)kLp(R) ! 0 when �1 ! 0. Since in the proof of Lemma
2, it is already shown that kf�1 � f0kW 1;p(R) ! 0 when �1 ! 0. Note that

@vv (f�1 � f0) =
1

2�21
�00
�
v

�1

�
(f0 (v)� f0 (�v)) +

1

�1
�0
�
v

�1

�
(f 00 (v) + f

0
0 (�v))

+
1

2
�

�
v

�1

�
(f 000 (v)� f 000 (�v))

= I + II + III:

Since

f0 (v)� f0 (�v) =
Z v

�v
f 00 (s) ds =

Z v

�v

Z s

0

f 000 (�) d�ds

=

Z v

0

(v � �) f 000 (�) d� +
Z 0

�v
(�v � �) f 000 (�) d�;

and

jf0 (v)� f0 (�v)jp

� C
 ����Z v

0

(v � �) f 000 (�) d�
����p + ����Z 0

�v
(�v � �) f 000 (�) d�

����p
!

� C
 Z v

0

jf 000 (�)j
p
d�

�Z v

0

(v � �)
p

p�1 d�

�p�1
+

Z 0

�v
jf 000 (�)j

p
d�

�Z 0

�v
(v + �)

p
p�1 d�

�p�1!
� Cv2p�1 kf 000 k

p
Lp(�v;v) ;
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soZ
R

jIjp dv � C

�2p1

Z 2�1

�1

jf0 (v)� f0 (�v)jp dv �
C

�2p1

Z 2�1

�1

v2p�1 kf 000 k
p
Lp(�v;v) dv

� C kf 000 k
p
Lp(�2�1;2�1) :

Similarly,Z
R

jIIjp dv � C

�p1

Z 2�1

�1

 ����Z v

0

f 000 (�) d�

����p + ����Z 0

�v
f 000 (�) d�

����p
!
dv

� C

�p1

Z 2�1

�1

vp�1 kf 000 k
p
Lp(�v;v) dv � C kf

00
0 k

p
Lp(�2�1;2�1)

and Z
R

jIIIjp dv � C kf 000 k
p
Lp(�2�1;2�1) ;

thus when �1 ! 0, k@vv (f�1 � f0)kLp(R) ! 0: Choose �1 > 0 such that

kf�1 � f0kW 2;p(R) < "=2:

Since f�1 2 C4 (R) \W 2;p (R) andZ
f 0�1 (v)

v
dv =

�
2�

T0

�2
;

this is exactly the Case 3 treated in the proof of Proposition 1, so we can
construct a nontrivial BGK solution (f"; E") near (f�1 (v) ; 0) satisfying

kf" � f�1kL1x;v +
Z T

0

Z
R

v2 jf" � f�1 j dxdv + kf" � f�1kW 2;p
x;v
<
"

2
:

Thus (f"; E") is a BGK solution satisfying (32).
From the proof of Theorem 2, it is easy to get Corollary 2.
Proof of Corollary 2. Suppose otherwise, then there exists a sequence

"n ! 0, and homogeneous states ffn (v)g which are linear unstable with x�period
T and kfn � f0kW s;p(R) < "n. By Lemma 7, for each n, there exists a critical
point vn of fn (v) such thatZ

f 0n (v)

v � vn
dv >

�
2�

T

�2
:

Since

jf 00 (vn)j � k@v (fn � f0)kC(R) � C kfn � f0kW s;p(R) � C"n;

either fvng converges to one of the critical point of f0 (v) ; say v0, or fvng
diverges. As in the proof of Theorem 2, in the �rst case, we haveZ

f 0n (v)

v � vn
dv !

Z
f 00 (v)

v � v0
dv; when n!1:
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This implies that Z
f 00 (v)

v � v0
dv �

�
2�

T

�2
>

�
2�

T0

�2
;

a contradiction. For the second case, we haveZ
f 0n (v)

v � vn
dv ! 0;when n!1;

a contradiction again.

4 Linear damping

In this section, we study in details the linear damping problem in Sobolev spaces.
First, the linear decay estimates derived here are used in Section 5 to show
that all invariant structures in Hs

�
s > 3

2

�
neighborhood of stable homogeneous

states are trivial. Second, the linear decay holds true for initial data as rough
as f (t = 0) 2 L2, and this suggests that Theorems 1, 2 and 3 about nonlinear
dynamics have no analogues at the linear level. We refer to Remark 5 for more
discussions.
The linearized Vlasov-Poisson around a homogeneous state (f0 (v) ; 0) is the

following (
@f
@t + v

@f
@x � E

@f0
@v = 0;

@E
@x = �

R +1
�1 f dv;

(33)

where f and E are T�periodic in x and the neutralizing condition becomesR T
0

R
R
f dvdx = 0. Notice that any (f;E) = (g (v) ; 0) with

R
g (v) dv = 0 is

a steady solution of the linear system (33). For a general solution (f;E) of
(33); the homogeneous component of f remains steady and does not a¤ect the
evolution of E. So we can consider a function h (x; v) which is T�periodic in x
and

R T
0
h (x; v) dx = 0. Denote its Fourier series representation by

h (x; v) =
X

0 6=k2Z
ei

2�
T kxhk (v) :

We de�ne the space Hsx
x H

sv
v by

h 2 Hsx
x H

sv
v if khkHsx

x Hsv
v
=

0@X
k 6=0

jkj2sx khkk2Hsv
v

1A 1
2

<1:

Proposition 2 Assume f0 (v) 2 Hs0 (R)
�
s0 >

3
2

�
and let 0 < T0 � +1 be

de�ned by (3). Let (f (x; v; t) ; E (x; t)) be a solution of (33) with x�period
T < T0 and g (x; v) = f (x; v; 0) � 1

T

R T
0
f (x; v; 0) dx. If g 2 Hsx

x H
sv
v with

jsvj � s0 � 1; then

ktsvE (x; t)k
L2tH

3
2
+sx+sv

x

� C0 kgkHsx
x Hsv

v
� C0 kf (x; v; 0)kHsx

x Hsv
v
; (34)

for some constant C0:
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One may compare this proposition with other smoothing estimates in PDEs.
Here based on the most naive estimate, the initial value g 2 Hsx

x H
sv
v � Hsx+sv

x;v

only implies E(0) 2 Hsx+1
x which is much weaker than H

3
2+sv+sx
x in the above

proposition. However, this improved regularity of E may blow up as t! 0.
Proof. To simplify notations, we assume T = 2�. Let

g (x; v) =
X

0 6=k2Z
eikxgk (v) ;

then by assumption

kgkHsx
x Hsv

v
=

X
0 6=k2Z

jkj2sx kgkk2Hsv <1.

Let
f (x; v; t) =

X
k 6=0

eikxhk (v; t) ; E (x; t) =
X

k 6=02Z
eikxEk (t) ;

then

Ek (t) = �
1

ik

Z
R

hk (v; t) dv; Ek (0) = �
1

ik

Z
R

gk (v) dv:

Below we denote C to be a generic constant depending only on f0:When k >
0; we use the the well-known formula for Ek (t)

Ek (t) =
1

2�i

Z �+i1

��i1

Gk (�p=ik)
k2 � F (�p=ik)e

ptdp; (35)

where

Gk (z) =

Z +1

�1

gk (v)

v � z dv; F (z) =
Z +1

�1

f 00 (v)

v � z dv, Im z > 0

and � is chosen so that the integrand in (35) has no poles for Re p > �. The
formula (35) was derived in Landau�s original 1946 paper ([29]) by using Laplace
transforms. Here we follow the notations in ([48]). By using the new variable
z = �p=ik, we get

Ek (t) =
k

2�

Z i�
k +1

i�
k �1

Gk (z)

k2 � F (z)e
�ikztdz: (36)

By assumption k � 1 = 2�
T > 2�

T0
, so by Penrose�s criterion (Lemma 7), there

exist no unstable modes to the linearized equation with x�period 2�=k. There-
fore, k2 � F (z) 6= 0 when Im z > 0. Moreover, by the proof of Lemma 7, under
the condition k > 2�

T0
; k2 � F (x+ i0) 6= 0 for any x 2 R. It is also easy to see

that F (x+ i0)! 0 when x!1. So there exists c0 > 0, such that��k2 � F (x+ i0)�� � c0k2; for any x 2 R and k: (37)
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Note that for z = i� + x; when � ! 0+; by (50),

Gk (z)! Gk (x+ i0) = P

Z
R

gk (v)

v � x dv + i�gk (x) = Hgk + i�gk;

and

F (z)! F (x+ i0) = P

Z
R

f 00 (v)

v � x dv + i�f
0
0 (x) = Hf 00 + i�f 00;

where H is the Hilbert transform. So letting � ! 0+, from (36), we have

Ek (t) =
k

2�

Z
R

Gk (x+ i0)

k2 � F (x+ i0)e
�ikxtdx: (38)

Let

Ak (t) =
1

2�

Z
R

Gk (x+ i0)

k2 � F (x+ i0)e
�ixtdx

be the Fourier transform of

Hk (x) =
Gk (x+ i0)

k2 � F (x+ i0) ;

then Ek (t) = kAk (kt). Since H : Hs ! Hs is bounded for any s 2 R,

kGk (x+ i0)kHsv � C kgkkHsv
v
; jF (x+ i0)kHs0�1 � C kf0kHs0

v
:

By (37) and the inequality

kf1f2kHs � Cs;s1 kf1kHs1 kf2kHs ; if s1 >
1

2
; jsj � s1;

we have

kHkkHsv �
1

k2
kGk (x+ i0)kHsv +

1

k4





Gk (x+ i0) F (x+ i0)

1� F (x+ i0) =k2






Hsv

� C

k2
kgkkHsv

v

�
1 +

1

k2





 F (x+ i0)

1� F (x+ i0) =k2






Hs0�1

�
� C 0

k2
kgkkHsv

v
:

where C 0 depends on f0 but not k. In the above, the second inequality holds
since the estimates��1� F (x+ i0) =k2�� � c0 and kF (x+ i0)kHs0�1 � C kf0kHs0 ;

imply 



 F (x+ i0)

1� F (x+ i0) =k2






Hs0�1

< C kf0kHs0 (39)

through direct veri�cation where, for 0 < s0 � 1 < 1, one needs to use the
equivalent characterization of W s;p (Rn) when 0 < s < 1; p > 1 (See [45,
Lemma 35.2]):

W s;p (Rn) =

�
u 2 Lp (Rn) j

Z Z
Rn�Rn

ju (x)� u (y)jp

jx� yjn+sp
dxdy <1

�
:
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So Z
R

jtj2sv jAk (t)j2 dt � kHkk2Hsv �
C

k4
kgkk2Hsv

v

and

ktsvEk (t)k2L2 =
Z
R

jtj2sv jEk (t)j2 dt =
Z
jtj2sv k2 jAk (kt)j2 dt

= k1�2sv
Z
R

jtj2sv jAk (t)j2 dt � Ck�3�2sv kgkk2Hsv
v
:

For k < 0, the same estimate

ktsvEk (t)k2L2 � C jkj
�3�2sv kgkk2Hsv

v
;

follows by taking the complex conjugate of the k > 0 case. Thus

ktsvE (x; t)k2
L2tH

3
2
+sx+sv

x

=
X
k 6=0

jkj3+2sv+2sx ktsvEk (t)k2L2

� C
X
k 6=0

jkj2sx kgkk2Hsv
v
= C kgk2Hsx

x Hsv
v
.

This �nishes the proof.
The decay estimate in Proposition 4 is in the integral form. With some

additional assumption on the initial data, we can obtain the pointwise decay
estimate.

Proposition 3 Assume f0 (v) 2 Hs0 (R)
�
s0 >

3
2

�
and let 0 < T0 � +1 be

de�ned by (3). Let (f (x; v; t) ; E (x; t)) be a solution of (33) with x�period
T < T0 and

g (x; v) = f (x; v; 0)� 1

T

Z T

0

f (x; v; 0) dx:

If g 2 Hsx
x H

sv
v , vg 2 H

s0x
x H

s0v
v with sv > � 1

2 ; sv + s
0
v � 0 and max fjsvj ; js0vjg �

s0 � 1, then
kEkHs (t) = o

�
t�

sv+s
0
v

2

�
, when t!1;

where

s = min

�
3

2
+ sx + sv;

1

2
+ s0x + s

0
v

�
: (40)

Corollary 3 Assume f0 (v) 2 Hs0 (R)
�
s0 >

3
2

�
and T < T0.

(i) If g 2 H� 3
2

x L2v and vg 2 H
� 1
2

x L2v, then kEkL2x (t)! 0 when t!1.
(ii) If g; vg 2 Hk

x;v with k � s0�1; then kEkHk+1
2
(t) = o

�
t�k
�
when t!1.

Proposition 3 and its Corollary shows that linear damping is true for initial
data of very low regularity, even in certain negative Sobolev spaces. It also
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shows that the decay rate is mainly determined by the regularity in v, although
the regularity in x a¤ects the norm of electrical �eld that decays.
Proof of Proposition 3. First we derive a formula for Et (t). We notice

that (ft; Et) satis�es the linear system (33) and

ft (x; v; 0) = �v@xf (x; v; 0) + E (x; 0) f 00 (v)

=
X
k 6=0

eikx
�
�ikvgk (v)�

1

ik

Z
R

gk (v) dv f
0
0 (v)

�
=

3X
j=1

~gj (x; v) ;

where

~g1 (x; v) = �@x (vg (x; v)) ;

~g2 (x; v) = � 1
ik

X
k 6=0

eikx
Z
R

gk (v)� (v) dv f
0
0 (v) =

X
k 6=0

eikx~g2k (v) ;

~g3 (x; v) = � 1
ik

X
k 6=0

eikx
Z
R

gk (v) (1� � (v)) dv f 00 (v) =
X
k 6=0

eikx~g3k (v) ;

and � (v) is the cut-o¤ function de�ned by (7). Then ~g1 2 Hs0x�1
x H

s0v
v ; ~g2 2

Hsx+1
x Hs0�1

v ; ~g3 2 Hs0x+1
x Hs0�1

v , and

k~g1k
H
s0x�1
x H

s0v
v

= kvgk
H
s0x
x H

s0v
v

k~g2k2Hsx+1
x H

s0�1
v

=
X
k

jkj2sx




Z

R

gk (v)� (v) dv f
0
0





2
H
s0�1
v

�
X
k

jkj2sx kgkk2Hsv
v
k� (v)k2H�sv

v
kf0k2Hs0

v
� C kgk2Hsx

x Hsv
v
;

k~g3k2
H
s0x+1
x H

s0�1
v

�
X
k

jkj2s
0
x kvgkk2

H
s0v
v





1� � (v)v





2
H
�s0v
v

kf0k2Hs0
v
� C kvgk2

H
s0x
x H

s0v
v

:

Correspondingly, we decompose

(ft; Et) =
3X
i=1

�
f it ; E

i
t

�
with

�
f it ; E

i
t

�
being the solution of (33) with initial data f it (t = 0) = ~gi (x; v).

Then by Proposition we have


ts0vE1t 



L2tH

1
2
+s0x+s0v

x

� C kvgk
H
s0x
x H

s0v
v

;


ts0�1E2t 



L2tH
5
2
+sx+s0�1

x

� C kgkHsx
x Hsv

v

and 

ts0�1E3t 


L2tH

5
2
+s0x+s0�1

x

� C kvgk
H
s0x
x H

s0v
v

:
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For any t2 > t1 su¢ ciently large and s de�ned by (40), we have���kEk2Hs
x
(t2)� kEk2Hs

x
(t1)

���
=

����Z t2

t1

hE (t) ; Et (t)iHs
x
dt

���� � Z t2

t1

kE (t)kHs
x

 
3X
i=1



Eit (t)

Hs
x

!
dt

� t�sv�s
0
v

1

Z t2

t1

ktsvE (t)kHs
x




ts0vE1t 



H

1
2
+s0x+s0v

x

dt

+ t
�sv�(s0�1)
1

Z t2

t1

ktsvE (t)kHs
x



ts0�1E2t 


H

5
2
+sx+s0�1

x

dt

+ t
�sv�(s0�1)
1

Z t2

t1

ktsvE (t)kHs
x



ts0�1E3t 

 dt
� t�sv�s

0
v

1 ktsvE (x; t)k
L2t (t1;t2)H

3
2
+sx+sv

x

�
�


ts0vE1t 




L2t (t1;t2)H
1
2
+s0x+s0v

x

+


ts0�1E2t 



L2t (t1;t2)H
5
2
+sx+s0�1

x

+


ts0�1E3t 



L2t (t1;t2)H
5
2
+s0x+s0�1

x

�
:

So
n
kEk2Hs

x
(t)
o
t�0

is a Cauchy sequence, thus limt!1 kEk2Hs
x
(t) exists and

must be zero since ktsvEk2L2tHs
x
< 1 with sv > � 1

2 . By �xing t1 and letting
t2 !1 in the above computation, it follows that

kEk2Hs
x
(t1) = o

�
t
�sv�s0v
1

�
:

This �nishes the proof.

Remark 3 The integral decay estimate in Proposition 4 is optimal and the
pointwise decay estimate in Proposition 3 is close to be optimal. Intuitively, the
integral estimate (34) suggests that

kE (x; t)k
H

3
2
+sx+sv

x

= o
�
t�(sv+

1
2 )
�
: (41)

In [48], the single-mode solution eikx (f (v; t) ; E (t)) with initial pro�le

f (v; 0) = g (v) =

�
(v � �)2 e�(v��)2 v � �

0 v � � ; � is arbitrary constant,

was calculated explicitly for the linearized problem at Maxwellian, and the decay
rate for jE (t)j was found to be O

�
t�3
�
. Note that g (v) ; vg 2 H2 and g000; (vg)000

are delta functions which belong to H�( 12+") for any " > 0; and thus g (v) ; vg 2
H

5
2�". So Proposition 4 suggests a decay rate o

�
t�(3�")

�
in the integral form

and Corollary 3 (ii) yields a pointwise decay rate o
�
t�

5
2+"
�
. In [2, pp. 188-

189], the authors made a more general claim about the decay rate of single mode
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solutions: for initial pro�le g (v) with (n+ 1)�th derivative being ��function
like, the decay rate of jE (t)j is O

�
t�(n+1)

�
. In such cases, our results give the

decay rates o
�
t�(n�")

�
in the integral form and o

�
t�(n+

1
2�")

�
pointwise.

In Theorem 3, we use the integral estimate (34) to prove that H
3
2 is the

critical regularity for existence or nonexistence of nontrivial invariant structures
near stable homogeneous states. This again suggests that the decay estimate in
Proposition 4 is optimal.

Remark 4 The linear decay result is also true for initial data in Lp space. For
simplicity, we consider a single mode solution

(f (x; v; t) ; E (x; t)) = eikx (h (v; t) ; E (t)) (42)

to (33) with h (v; 0) = g (v). Assume f0 (v) 2 L1 (R) \W 2;p0 (R) (p0 > 1) and
0 < T0 � +1 be de�ned by (3). We have the following result: If T = 2�

k < T0
and g (v) 2 Lp (p > 1) ; v2g 2 L1, then jE (t)j ! 0 when t ! +1. We prove
it brie�y below. Since g 2 Lp; v2g 2 L1, so

kgkL1(R) �
Z
jvj�1

jgj dv +
Z
jvj�1

jgj dv � 21=p
0
kgkLp +



v2g


L1
<1;

and
kvgkLq �




v jgj 12 



L2




jgj 12 



L2p

�


v2g

 1

2

L1
kgk

1
2

Lp ;

for 1 < q < 2 satisfying 1
q =

1
2 +

1
2p . Since q < p , for any 1 < q1 < q; letting

1
q2
= 1

q1
� 1

q ; we have

kgkLq1 (R) �
�
kgkLq1 (jvj�1) + kgkLq1 (jvj�1)

�
� C

 
kgkLp +





1v





Lq2 (jvj�1)

kvgkLq

!
<1:

Since H is bounded Lp ! Lp for any p > 1 and the Fourier transform is bounded
Lp ! Lp

0
for any 1 < p � 2, so from (38),

kE (t)kLq10 � C kgkLq1 (R) <1: (43)

As in the proof of Proposition 3, (ft; Et) satis�es (33)with

ft (t = 0) = e
ikx

�
�ikvg (v)� 1

ik

Z
R

g (v) dv f 00 (v)

�
= eikx~g (v) :

Since
k~g (v)kLq � C

�
kvgkLq + kgkL1(R) kf

0
0kLq

�
<1;

by using the estimate for E (t) ; we get

kE0 (t)kLq0 � C k~g (v)kLq <1: (44)

The decay of jE (t)j follows from the estimates (43) and (44).
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Remark 5 In Proposition 3, we prove that the linear decay of electrical �eld
E in L2 norm holds true for initial data as rough as

f (t = 0) 2 H� 3
2

x L2v; vf (t = 0) 2 H
� 1
2

x L2v:

In particular, it is not necessary to have any assumption on derivatives of
f (t = 0) to get linear decay of E. The linear decay result implies that there exist

no nontrivial invariant structures even in H
� 3
2

x L2v space for the linearized prob-

lem. So our result on existence of BGK waves inW s;p
�
s < 1 + 1

p

�
neighborhood

(Theorem 1) can not be traced back to the linearized level. Also, the contrasting

nonlinear dynamics in W s;p
�
s > 1 + 1

p

�
and particularly in Hs

�
s > 3

2

�
spaces

(Theorems 2 and 3) have no analogue on the linearized level. These again are
due to the fact that particle trapping e¤ects are completely ignored on the linear
level, but instead they play an important role on nonlinear dynamics.

5 Invariant structures in Hs
�
s > 3

2

�
We de�ne invariant structures near a homogeneous state (f0 (v) ; 0) in Hs

x;v

(s � 0) space to be the solutions (f (t) ; E (t)) of nonlinear VP equation (1a)-
(1b), satisfying that for all t 2 R;

kf (t)� f0kHs((0;T )�R) < "0;

for some constant "0 > 0. The above de�ned invariant structures include the
well known structures such as travelling waves, time-periodic, quasi-periodic
or almost periodic solutions. In Sections 2 and 3, we prove that W 1+ 1

p ;p is
the critical regularity for existence of nontrivial travelling waves near a stable
homogeneous state. For p = 2; this critical regularity is H

3
2 . In this section, we

prove a much stronger result that H
3
2 is also the critical regularity for existence

of any nontrivial invariant structure near a stable homogeneous state. In the
proof, we use the linear decay estimate in Proposition 4.

Lemma 6 Assume f0 (v) 2 Hs0 (R)
�
s0 >

3
2

�
and let 0 < T0 � +1 be de�ned

by (3). Let (f (x; v; t) ; E (x; t)) be a solution of (1a)-(1b) with x�period T < T0,
satisfying that: For some 3

2 < s � s0 and su¢ ciently small "0;

kf (t)� f0kL2xHs
v((0;T )�R)

< "0; for all t � 0:

Then 


(1 + t)s�1E (x; t)



L2ft�0gH

3
2
x

� C"0; (45)

for some constant C:

Proof. Denote L0 to be the linearized operator corresponding to the lin-
earized Vlasov-Poisson equation at (f0 (v) ; 0), and E is the mapping from f (x; v)
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to E (x) by the Poisson equation

Ex = �
Z
f dv;

where f satis�es the neutral condition
R T
0

R
R
f (x; v) dvdx = 0: It follows from

Proposition 4 that: For any 0 � sv � s0 � 1; if h (x; v) 2 L2xHsv
v ;then

(1 + t)sv E �etL0h�



L2tH
3
2
x

� C kh (x; v)kL2xHsv
v
: (46)

Denote f1 (t) = f (t)� f0, then
@tf1 = L0f1 + E@vf1:

Thus

f1 (t) = e
tL0f1 (0) +

Z t

0

e(t�u)L0 (E@vf1) (u) du = flin (t) + fnon (t) ;

and correspondingly

E (t) = E (flin (t)) + E (fnon (t)) = Elin (t) + Enon (t) :
By the linear estimate (46),


(1 + t)s�1Elin (x; t)




L2ft�0gH
3
2
x

� C kf1 (0)kL2xHs�1
v

;

and


(1 + t)s�1Enon (x; t)


2
L2ft�0gH

3
2
x

=

Z 1

0

(1 + t)
2(s�1) kEnon (x; t)k2

H
3
2
x

dt

�
Z 1

0

(1 + t)
2(s�1)

�Z t

0




E he(t�u)L0 (E@vf1) (u)i



H

3
2
x

du

�2
dt

�
Z 1

0

(1 + t)
2(s�1)

Z t

0

(1 + (t� u))�2(s�1) (1 + u)�2(s�1) du

�
Z t

0

(1 + u)
2(s�1)

(1 + (t� u))2(s�1)



E he(t�u)L0 (E@vf1) (u)i


2

H
3
2
x

dudt

� C
Z 1

0

Z t

0

(1 + u)
2(s�1)

(1 + (t� u))2(s�1)



E he(t�u)L0 (E@vf1) (u)i


2

H
3
2
x

dudt

= C

Z 1

0

(1 + u)
2(s�1)

Z 1

u

(1 + (t� u))2(s�1)



E he(t�u)L0 (E@vf1) (u)i


2

H
3
2
x

dtdu

� C
Z 1

0

(1 + u)
2(s�1) k(E@vf1) (u)k2L2xHs�1

v
du

� C
Z 1

0

(1 + u)
2(s�1) kE (u)k2

H
3
2
x

kf1 (u)k2L2xHs
v
du

� C"20



(1 + t)s�1E (x; t)


2

L2ft�0gH
3
2
x

:
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In the above estimate, we use the fact thatZ t

0

(1 + (t� u))�2(s�1) (1 + u)�2(s�1) du � C (1 + t)�2(s�1)

because 2 (s� 1) > 1 by our assumption that s > 3
2 , and the inequality

kE@vf1kL2xHs�1
v

� C kEk
H

3
2
x

kf1kL2xHs
v
:

Thus 


(1 + t)s�1E (x; t)



L2ft�0gH

3
2
x

�



(1 + t)s�1Elin (x; t)




L2ft�0gH
3
2
x

+



(1 + t)s�1Enon (x; t)




L2ft�0gH
3
2
x

� C kf1 (0)kL2xHs
v
+ C"0




(1 + t)s�1E (x; t)



L2ft�0gH

3
2
x

:

By taking "0 = 1
2C ; we get the estimate (45).

Proof of Theorem 3. For any t0 > 0, let
�
~f (t) ; ~E (t)

�
be the solution of

nonlinear VP equation (1a)-(1b) with the initial data�
~f (0) ; ~E (0)

�
= (f (�t0) ; E (�t0)) :

Then
(f (t) ; E (t)) =

�
~f (t+ t0) ; ~E (t+ t0)

�
:

The assumption (4) implies that


 ~f (t)� f0



L2xH

s
v

< "0; for all t 2 R:

Thus by Lemma 6, 


(1 + t)s�1 ~E (x; t)



L2ft�0gH

3
2
x

� C"0:

So Z 1

0

kE (x; t)k2
H

3
2
x

dt =

Z t0+1

t0




 ~E (x; t)


2
H

3
2
x

dt

� 1

(1 + t0)
2(s�1)

Z t0+1

t0

(1 + t)
2(s�1)




 ~E (x; t)


2
H

3
2
x

dt

� (C"0)
2

(1 + t0)
2(s�1) :
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Since t0 can be arbitrarily large, we haveZ 1

0

kE (x; t)k2
H

3
2
x

dt = 0

and thus E (x; t) � 0 when t 2 [0; 1]. Repeating the above argument for any
�nite time interval I � R, we get E (x; t) � 0 when t 2 I. Thus E (x; t) � 0 for
any t 2 R.
The following nonlinear instability result follows immediately from Theorem

3.

Corollary 4 Assume the homogeneous pro�le f0 (v) 2 Hs (R)
�
s > 3

2

�
: For

any T < T0 (de�ned by (3)), there exists "0 > 0, such that for any solution
(f (t) ; E (t)) to the nonlinear VP equation (1a)-(1b) with nonzero E (0), there
exists T 2 R such that kf (T )� f0kL2xHs

v
� "0:

The invariant structures studied in Theorem 3 stay in the L2xH
s
v

�
s > 3

2

�
neighborhood

of a stable homogeneous state (f0 (v) ; 0) for all time t 2 R. We can also study
the positive (or negative) invariant structures near (f0 (v) ; 0) ; which are solu-
tions (f (t) ; E (t)) to nonlinear VP equation satisfying that kf (t)� f0kL2xHs

v
<

"0; for all t � 0 (or t � 0): The next theorem shows that the electric �eld of
these semi-invarint structures must decay when t! +1 (or t! �1):

Theorem 4 Assume the homogeneous pro�le f0 (v) 2 Hs (R)
�
s > 3

2

�
: For any

T < T0 (de�ned by (3)), there exists "0 > 0 su¢ ciently small, such that if

kf (t)� f0kL2xHs
v
< "0; for all t � 0 (or t � 0) ;

and

kf (0)kL1x;v <1;
Z T

0

Z
R

v2f (0; x; v) dvdx <1;

then kE (t; x)kL2x ! 0 when t! +1 (or t! �1) :

Proof. We only consider the positive invariant case, since the proof is the
same for the negative invariant case. First, there exists a constant C depending
on M1 = kf (0)kL1 and M2 =

R T
0

R
R
1
2v
2f (0) dvdx, such that

kE (x; t)kH1
x
� C; for all t:

Indeed, by the same estimate as in (25),

k� (x; 0)kL3 =




Z f (x; v; 0) dv






L3
� kf (0)k

2
3

L1

 Z T

0

Z
R

v2f (x; v; 0) dvdx

!1=3
=M

2
3
1 M

1
3
2
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and

kE (x; 0)kH1 � C k1� � (x; 0)kL2 � C
�
T =2 + T 1=6 k� (x; 0)kL3

�
� C: (47)

By the energy conservation,Z T

0

Z
R

v2f (x; v; t) dvdx+kE (x; t)k2L2x =
Z T

0

Z
R

v2f (x; v; 0) dvdx+kE (x; 0)k2L2 < C:

Let j =
R
vf dv, then

jj (t)j =
����Z vf (t) dv

���� � kf (t)k1=3L1

�Z
R

v2f (x; v; t) dvdx

�2=3
;

and thus
kj (x; t)k

L
3
2
x

�M
1
3
1 M

3
2
2 � C:

Since

d

dt
kE (x; t)k2L2x =

Z T

0

j (x; t)E (x; t) dx

� kj (x; t)k
L
3
2
x

kE (x; t)kL3x � C kE (x; t)kH1
x
;

andZ 1

0

kE (x; t)kH1
x
dt �

�Z 1

0

(1 + t)
�2(s�1)

dt

� 1
2
�Z 1

0

(1 + t)
2(s�1) kE (x; t)k2

H
3
2
x

dt

� 3
2

� C"0;

thus limt!1 kE (x; t)kL2x exists and this limit must be zero. This �nishes the
proof.

6 Appendix

In this appendix, we reformulate Penrose�s linear stability criterion. The main
purpose is to clarify the intervals of wave numbers (periods) for which linear
instability can be found. In the original paper of Penrose [41], a necessary and
su¢ cient condition was given for linear instability of a homogeneous state at
certain wave number. However, the precise range of unstable wave numbers was
not given in [41].

Lemma 7 Assume f0 (v) 2W 2;p (R) (p > 1) : Let S = fvigli=1 be the set of all
extrema points of f0: If for some 1 � i � l,Z

f 00 (v)

v � vi
dv =

�
2�

Ti

�2
> 0; (48)
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then there exists linearly growing mode with x�period T near Ti. More precisely,
when vi is a minimum (maximum) point of f0, unstable modes exist for T slightly
greater (smaller) than T . Let 0 < T0 � +1 be de�ned by�

2�

T0

�2
= max

�
0;max
vi2S

Z
f 00 (v)

v � vi
dv

�
:

Then for T < T0, there exist no unstable modes with x�Period T .

Proof. Plugging the normal mode solution

(f (x; v; t) ; E (x; t)) = eik(x�ct) (fk (v) ; Ek)

into the linearized Vlasov-Poisson equation, we obtain the standard dispersion
relation

k2 �
Z
f 00 (v)

v � c dv = 0: (49)

Linear instability with x�period T corresponds to a solution of (49) with k = 2�
T

and Im c > 0. When the condition (48) is satis�ed, we have a neutral mode of

stability with k0 =
�
2�
Ti

�2
and c0 = vi. Then local bifurcation of unstable modes

near (k0; c0) can be shown, for example, by the arguments used in [30] for the
shear �ow instability. The bifurcation direction can be seem from the following
computation. Let (k; c) be an unstable mode near (k0; c0) :Then

k2 � k20 =
Z
f 00 (v)

v � c dv �
Z
f 00 (v)

v � vi
dv = (c� vi)

Z
f 00 (v)

(v � vi) (v � c)
dv

and by Plemelj formula when Im c! 0+;

k2 � k20
c� vi

=

Z
f 00 (v)

(v � vi) (v � c)
dv ! P

Z
f 00 (v)

(v � vi)2
dv + i�f 000 (vi) ;

where P
R
is the Cauchy principal value. So when f 000 (vi) > 0 (< 0), we have to

let k2 < k20
�
k2 > k20

�
to ensure Im c > 0. The linear stability when T < T0 can

be seem most easily from the following Nyquist graph (see [41]) in the complex
plane

Z (� + i0) = lim
�!0+

Z
f 00 (v)

v � (� + i�)dv = P
Z
f 00 (v)

v � � dv + i�f
0
0 (�) ; � 2 R: (50)

The unstable wave numbers consist of the part on the positive real axis enclosed
by the graph of Z (� + i0). So the maximal unstable wave number correspond
to the right-most intersection point of the graph of Z (� + i0) with the positive

real axis. Therefore if one of the integral
R f 00(v)
v�vi dv is positive, the maximal

unstable wave number kmax is

k2max = max
vi2S

Z
f 00 (v)

v � vi
dv =

�
2�

T0

�2
;
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and all perturbations with k > kmax or equivalently T < T0 are linearly stable.
For homogeneous states with all

R f 00(v)
v�vi dv to be non-positive, such as Maxwellian

e�
1
2v

2

, perturbations of any period (wave number) are linearly stable and thus
T0 = +1:

Remark 6 1) The assumption f0 (v) 2 W 2;p (R) (p > 1) is used to ensure
that f 00 (v) is locally Hölder continuous and thus the function Z (� + i0) is well
de�ned, continuous and bounded. Lemma 7 is still true for f0 2 W 1;p and f 00
locally Hölder continuous, particularly for f0 (v) 2W s;p (R)

�
p > 1; s > 1 + 1

p

�
.

2) The local bifurcation of unstable modes near a neutral mode (k0; vi) can
be extended globally in the following way. Let vi be an extrema point of f0 (v) ;

k20 =

�
2�

Ti

�2
=

Z
f 00 (v)

v � vi
dv > 0:

Suppose f 000 (vi) > 0, then the unstable modes with Im c > 0 exist when k is
slightly less than k0. This unstable mode can be continuated by decreasing k as
long as the growth rate is not zero. This continuation process can only stop at
another neutral mode (k1; c1) with k1 < k0; c1 2 R;: By (50), we must have

f 00 (c1) = 0; k
2
1 =

�
2�

T1

�2
=

Z
f 00 (v)

v � c1
dv > 0:

For any wave number k 2 (k1; k0), there exists an unstable mode. Moreover,
since the local bifurcation of unstable modes near k1 is only for slightly larger
wave number, we must have f 000 (c1) < 0. Similarly, when f 000 (vi) < 0, the
unstable modes exist for wave numbers k 2 (k0; k2), where

k22 =

�
2�

T2

�2
=

Z
f 00 (v)

v � c2
dv; with f 00 (c2) = 0; f

00
0 (c2) > 0.

From the above continuation argument, it is also easy to see the linear sta-
bility for k > kmax without using the Nyquist graph. Suppose at some k0 > kmax
there exists an unstable mode. Then we can extend this unstable mode for k > k0

until it stops at a neutral mode (k00; c00) with

(k00)
2
=

Z
f 00 (v)

v � c00 dv > 0; f
0
0 (c

00) = 0:

But k00 > k0 > kmax, this is a contradiction with the de�nition of kmax : We also
note that kmax must occur at a minimal point of f0, since the unstable modes
only bifurcate for wave numbers less than kmax :
3) Finally, we point out that there could exist �stability gaps�of wave num-

bers in (0; kmax). By our discussions above in 2), such stability gap must be of

the form
�
�k; ~k
�
where

�k2 =

Z
f 00 (v)

v � �c dv > 0;
~k2 =

Z
f 00 (v)

v � ~c dv > 0;
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and �c; ~c are minimum and maximum points of f0 respectively. From the Nyquist
graph of Z (� + i0), it is easy to see that these stability gaps correspond to positive
intervals in the real axis not enclosed by the Nyquist curve.

Acknowledgement

This work is supported partly by the NSF grants DMS-0908175 (Lin) and
DMS-0801319 (Zeng). We thank Cédric Villani for useful comments.

References

[1] Adams, Robert A.; Fournier, John J. F., Sobolev spaces. Second edi-
tion. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic
Press, Amsterdam, 2003.

[2] Akhiezer, A., Akhiezer, I., Polovin, R., Sitenko, A., and Stepanov, K,
Plasma electrodynamics, Vol. I: Linear theory, Pergamon Press, 1975
(Enlglish Edition). Translated by D. ter Haar.

[3] Armstrong, T., Montgomery, D., Asymptotic state of the two-stream insta-
bility, J.Plasma. Physics, 1, part 4, 425-433 (1967).

[4] Backus, G. Linearized plasma oscillations in arbitrary electron distribu-
tions. J. Math. Phys. 1, 178�191, (1960).

[5] Gizzo, A., Izrar, B., Bertrand, P., Fijalkow, E., Feix, M. R., Shoucri, M.,
Stability of Bernstein-Greene-Kruskal plasma equilibria. Numerical experi-
ments over a long time, Phys, Fluids, 31, no. 1, 72-82 (1988).

[6] Bernstein, I., Greene, J., Kruskal, M., Exact nonlinear plasma oscillations.
Phys. Rev. 108, 3, 546-550 (1957).

[7] Bernstein, Ira B. Waves in a Plasma in a Magnetic Field, Phys. Rev. 109,
10 - 21 (1958).

[8] Bohm, D. and Gross, E. P. Theory of Plasma Oscillations. A. Origin of
Medium-Like Behavior, Phys. Rev. 75, 1851 - 1864 (1949).

[9] Brunetti, M., Califano, F. and Pegoraro, F. Asymptotic evolution of non-
linear Landau damping, Physical Review E 62 4109-4114 (2000).

[10] Buchanan, M. L. and Dorning, J. J., Nonlinear electrostatic waves in col-
lisionless plasmas, Phys. Rev. E 52, 3015 - 3033 (1995).

[11] Buchanan, M. L. and Dorning, J. J., Superposition of nonlinear plasma
waves, Phys. Rev. Lett. 70, 3732 - 3735 (1993).

[12] Case, K. Plasma oscillations. Ann. Phys. 7, 349�364 (1959).

41



[13] Caglioti, E., and Ma¤ei, C. Time asymptotics for solutions of Vlasov�
Poisson equation in a circle. J. Statist. Phys. 92, 301�323 (1998).

[14] Danielson, J. R., Anderegg, F. and Driscoll, C. F. Measurement of Landau
Damping and the Evolution to a BGK Equilibrium, Physical Review Letters
92, 245003-1-4 (2004).

[15] Degond, P. Spectral theory of the linearized Vlasov�Poisson equation, Trans.
Amer. Math. Soc. 294, 2, 435�453 (1986).

[16] Demeio, L. and Zweifel, P. F. Numerical simulations of perturbed Vlasov
equilibria, Phys. Fluids B 2, 1252-1255 (1990).

[17] Demeio, L. and Holloway, J. P., Numerical simulations of BGK modes,
Journal of Plasma Physics, 46, 63-84 (1991).

[18] Glassey, R., and Schae¤er, J., On time decay rates in Landau damping.
Comm. Partial Di¤erential Equations 20, 647�676 (1995).

[19] Glassey, R., and Schae¤er, J. Time decay for solutions to the linearized
Vlasov equation, Transport Theory Statist. Phys. 23, 411�453 (1994).

[20] Guo, Y. and Strauss, W., Instability of periodic BGK equilibria, Comm.
Pure Appl. Math. Vol XLVIII, 861-894 (1995).

[21] Klimas, A. J. and Cooper, J. Vlasov�Maxwell and Vlasov�Poisson equa-
tions as models of a one-dimensional electron plasma, Phys. Fluids 26,
478-480 (1983).

[22] Holloway, J. P. and Dorning, J. J. Undamped plasma waves, Phys. Rev. A
44, 3856-3868 (1991).

[23] Holloway, J. P. and Dorning, J. J., Nonlinear but small amplitude longi-
tudinal plasma waves. Modern mathematical methods in transport theory
(Blacksburg, VA, 1989), 155�179, Oper. Theory Adv. Appl., 51, Birkhäuser,
Basel, 1991.

[24] Hörmander, Lars The analysis of linear partial di¤erential operators. I.
Distribution theory and Fourier analysis. Second edition. Grundlehren der
Mathematischen Wissenschaften, 256. Springer-Verlag, Berlin, 1990.

[25] Hwang, H. J., and Vélazquez, J. On the existence of exponentially decreas-
ing solutions of the nonlinear landau damping problem, Indiana Univ. Math.
J. 58, no. 6, 2623-2660 (2009).

[26] Isichenko, M. B., Nonlinear Landau Damping in Collisionless Plasma and
Inviscid Fluid, Phys. Rev. Lett. 78, 2369-2372 (1997).

[27] Krasovsky, V. L., H. Matsumoto, and Y. Omura, Electrostatic solitary
waves as collective charges in a magnetospheric plasma: Physical structure
and properties of Bernstein�Greene�Kruskal (BGK) solitons, J. Geophys.
Res., 108(A3), 1117 (2004).

42



[28] Lancellotti, C. and Dorning, J. J. Time-asymptotic wave propagation in
collisionless plasmas, Physical Review E 68 026406 (2003).

[29] Landau, L. On the vibration of the electronic plasma. J. Phys. USSR 10,
25 (1946).

[30] Lin, Zhiwu, Instability of some ideal plane �ows, SIAM J. Math. Anal. 35,
318-356 (2003).

[31] Lin, Zhiwu, Instability of periodic BGK waves, Math. Res. Letts., 8, 521-
534 (2001).

[32] Lin, Zhiwu, Nonlinear instability of periodic waves for Vlasov-Poisson sys-
tem, Comm. Pure. Appl. Math. 58, 505-528 (2005).

[33] Lin, Zhiwu and Zeng, Chongchun, Invariant manifolds of Euler equations,
preprint in preparation.

[34] Lin, Zhiwu and Zeng, Chongchun, Dynamical structures near the Couette
�ow, preprint, 2010.

[35] Lin, Zhiwu and Zeng, Chongchun, Invariant manifolds of Vlasov-Poisson
equations, work in progress.

[36] Medvedev, M. V. Diamond, P. H., Rosenbluth, M. N. and Shevchenko, V.
I., Asymptotic Theory of Nonlinear Landau Damping and Particle Trapping
in Waves of Finite Amplitude, Physical Review Letters 81, 5824 (1998).

[37] Manfredi, Giovanni, Long-Time Behavior of Nonlinear Landau Damping,
Physical Review Letters 79 2815 (1997).

[38] Mouhot, C., and Villani, C., On Landau damping, Preprint, 2009.

[39] Muschietti, L. Ergun,R. E., Roth, I. and Carlson, C. W. Phase-space elec-
tron holes along magnetic �eld lines, Geophys. Res. Lett. 26, 1093-1096,
(1999).

[40] Orr, W. McF. Stability and instability of steady motions of a perfect liquid,
Proc. Ir. Acad. Sect. A, Math Astron. Phys. Sci. 27, 9-66, (1907).

[41] Penrose, O., Electrostatic instability of a non-Maxwellian plasma. Phys.
Fluids 3, 258�265 (1960).

[42] O�Neil, T. Collisionless damping of nonlinear plasma oscillations. Phys.
Fluids 8, 2255�2262 (1965).

[43] Stein, Elias M., Singular integrals and di¤erentiability properties of func-
tions. Princeton Mathematical Series, No. 30 Princeton University Press,
1970.

[44] Strichartz, Robert S, Multipliers on fractional Sobolev spaces, J. Math.
Mech. 16, 1031�1060 (1967).

43



[45] Tartar, Luc, An introduction to Sobolev spaces and interpolation spaces,
Lecture Notes of the Unione Matematica Italiana, 3. Springer, Berlin; UMI,
Bologna, 2007.

[46] Triebel, Hans, Theory of function spaces, Monographs in Mathematics, 78,
Birkhäuser Verlag, Basel, 1983.

[47] Valentini, F., Carbone, V., Veltri, P. and Mangeney, A., Wave-Particle
Interaction and Nonlinear Landau Damping in Collisionless Electron Plas-
mas, Transport Theory and Statistical Physics, 34, 89 - 101 (2005).

[48] Weitzner, Harold, Plasma oscillations and Landau damping. Phys. Fluids
6, 1123�1127 (1963).

[49] van Kampen, N. On the theory of stationary waves in plasma. Physica 21,
949�963 (1955).

[50] Zhou, T., Guo, Y., and Shu, C.-W. Numerical study on Landau damping.
Physica D 157, 322�333 (2001).

44


