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ABSTRACT. We study the local dynamics near general unstable traveling waves
of the 3D Gross-Pitaevskii equation in the energy space by constructing smooth
local invariant center-stable, center-unstable and center manifolds. We also
prove that (i) the center-unstable manifold attracts nearby orbits exponen-
tially before they go away from the traveling waves along the center or unsta-
ble directions and (ii) if an initial data is not on the center-stable manifolds,
then the forward orbit leaves traveling waves exponentially fast. Furthermore,
under an additional non-degeneracy assumption, we show the orbital stabil-
ity of the traveling waves on the center manifolds, which also implies the local
uniqueness of the local invariant manifolds. Our method based on a geomet-
ric bundle coordinates should work for a general class of Hamiltonian PDEs.

1. INTRODUCTION

Consider the Gross-Pitaevskii (GP) equation

(GP) i ut +∆u + (1−|u|2)u = 0, u :R×R3 →C,

where u satisfies the boundary condition |u| → 1 as |x| →∞. The (GP) equation
arises in various physical problems such as superconductivity, superfluidity in
Helium II, and Bose-Einstein condensate (for example [1, 43]). Formally, the
(GP) equation is a Hamiltonian PDE associated to the energy

(1.1) E(u) = 1

2

∫
R3
|∇u|2d x + 1

4

∫
R3

(1−|u|2)2d x,

and the energy space is

(1.2) X0 = {u ∈ H 1
loc (R3) : ∇u ∈ L2(R3),1−|u|2 ∈ L2(R3)}.

The well-posedness of (GP) in X0 was proved by Gérard [19]. From the definition
of X0, it is clear that the real part and imaginary part of a function in X0 may have
different spatial decay rates, which makes the analysis of this equation quite dif-
ferent from the classical NLS.

Due to the translation invariance of (GP), the momentum P (u) = 1
2

∫
R3〈i∇u,u−

1〉d x is also formally conserved. We denote each component of P (u) as

(1.3) P j (u) = 1

2

∫
R3
〈i∂x j u,u −1〉d x =−

∫
R3
〈u1 −1,∂x j u2〉d x
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for j = 1,2,3. The corresponding relative equilibria are traveling wave solutions
to (GP) which are solutions in the form of Uc (x−ct ) where c ∈R3 and Uc satisfies

(1.4) −i c ·∇Uc +∆Uc + (1−|Uc |2)Uc = 0.

Due to the rotational invariance of (GP), we only need to consider those traveling
waves traveling in x1 direction, i.e., u(t , x) =Uae1 (x −ae1t ), where e1 = (1,0,0)T .

Traveling waves with finite energy play a very important role in the dynamics
of (GP). In a series of papers [3, 2, 22, 29, 30], the existence, some qualitative
properties, and the stability of traveling waves have been studied formally. A
rigorous mathematical study was initiated by Béthuel and Saut in [12], in which
they proved the existence of traveling waves for 2D (GP), followed by [9, 10, 11,
14, 23, 24, 39, 38]. In particular, Mariş [39] constructed full branch of subsonic
traveling waves for 3D (GP) by minimizing the energy-momentum functional
subject to a Pohozaev type constraint.

Given any traveling wave solution Uc = (uc , vc ) of (GP) with traveling speed
c ∈R3, |c| ∈ (0,

p
2), its spatial translations form a 3D manifold

M = {Uc (·+ y) : y ∈R3}

of traveling waves. The main goal of this paper is to study the local dynamics
near such M of an unstable traveling wave Uc (see the remark on instability
right after Theorem 1.4).

We rewrite (GP) in the traveling frame u(t , x) =U (t , x − ct ), where U satisfies

(1.5) i∂tU − i c ·∇U +∆U + (1−|U |2)U = 0.

It is clear that Uc is a steady state of (1.5). Linearizing (1.5) at Uc , one has

(1.6) ∂tU = JLcU , J =
(

0 1
−1 0

)
, Lc = (E + c ·P )′′(Uc ), U ∈ X1 = H 1 × Ḣ 1.

A more explicit expression of Lc can be found in (2.11). Under a mild spatial de-
cay assumption (2.6) of Uc , it is straight forward to verify that the tangent space
of the energy space X0 at Uc is X1, where naturally the linearized equation (1.6)
should be considered. The linearized energy quadratic form Lc : X1 → X ∗

1 is
bounded, symmetric, and uniformly positive except in finite many directions.
Even though the symplectic operator J−1 = J∗ = −J : X ∗

1 → X1 is not bounded
and thus the classic framework of Grillakis-Shatah-Strauss [26, 27] does not ap-
ply to (1.6), the recent results in [36] are applicable to analyze JLc . Consequently,
(1.6) satisfies the following exponential trichotomy property (even without the
non-degeneracy assumed in in [35]).

Lemma 1.1. There exist C ,λ,d1 > 0 and closed subspaces X c , X u , X s of X1 invari-
ant under e JLc such that X1 = X u ⊕X c ⊕X s , d = dim X u = dim X s <∞, and

‖e JLc |X s‖ ≤Ceλt , ∀t ≥ 0, ‖e JLc |X u‖ ≤Ceλt ; ∀t ≤ 0,

‖e JLc |X c‖ ≤C (1+|t |d1 ), ∀t ∈R.

The exponential trichotomy both describes the linear dynamics near the trav-
eling waves and provides a framework to analyze the local nonlinear dynamics.

zhiwu
删划线
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If X u,s = {0}, Uc is spectrally stable and it actually implies the nonlinear orbital
stability of M under some additional assumptions (see, for example, [16, 35]).
If Uc is spectrally unstable with d > 0, conceptually one expects the existence
of locally invariant submanifolds which can be viewed as the deformation from
the invariant subspaces under small nonlinear perturbations. Here the local in-
variance of a submanifold N means that, for any initial value U (0) in the in-
terior of N , the solution U (t ) ∈ N , t ∈ (−T,T ), for some T > 0, and thus it
can exit N only through its boundary. The locally invariant submanifolds re-
lated to the exponential trichotomy are the unstable and stable manifolds of Uc

and the center-unstable, center-stable, and center manifolds of M . The former
two contain Uc and are tangent to X u and X s at Uc , while the latter three ones
should contain M , be translation invariant, and be tangent to X cu = X u ⊕ X c ,
X cs = X s ⊕X c , and X c . Some comments on their dynamic significance:
1.) The nonlinear dynamics in these invariant manifolds are reflected by, or even
exactly conjugate to in the case of the unstable and stable manifolds, the corre-
sponding linear ones. For example, the unstable manifold can be characterized
as the set of initial data near Uc whose solutions converge to Uc as t →−∞ and
go away from Uc at least at certain exponential growth rate as t increases. This
immediately provides a stronger result than the mere nonlinear instability.
2.) These invariant manifolds provide a framework to organize the local dynam-
ics. For a typical initial value near M , its trajectory would first approach the
center-unstable manifold along the direction of X s and then exit the neighbor-
hood of M along the X u direction, constituting a saddle type dynamics.
3.) Numerics [8] indicate that after leaving a neighborhood of unstable traveling
waves (upper branch), the orbits of (GP) scatter to either stable traveling waves
(lower branch) or constant states. Under non-degeneracy conditions (H1-2) in
Section 6, there is orbital stability in the center-stable manifolds which provides
a third type of dynamics not easily observed in numerics, where orbits stay close
to M for all t > 0. In the case where the center-stable manifold is co-dim 1, it
very likely serves as the boundary between the first two types of asymptotic be-
haviors. Combined with other tools like the viral identity, such classification
of dynamics near unstable solitons based on invariant manifolds has been ob-
tained for models including the Klein-Gordon and NLS [41, 40].

Under some additional conditions, the 1-dim unstable and stable manifolds
of an unstable traveling wave Uc were constructed in X0∩H 3 in [35]. As they rep-
resent low dimensional special structures in the phase space, it is indeed more
desirable for them to have extra properties such as higher H k regularity, k > 1.

The main results of this paper is the existence, smoothness, and some dy-
namic properties of the center-stable, center-unstable, and center manifolds of
unstable traveling waves of (GP). In contrast to the finite dimensional stable and
unstable directions, as the center subspace has a finite codimension, it is more
preferable for the these invariant manifolds to be constructed and describe the
dynamics in the energy space X0. Moreover, on a center manifold where its
topology is the same as one of the energy space, the energy conservation pro-
vides a crucial control on the nonlinear dynamics.

zhiwu
删划线
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Theorem 1.2. Let Uc be a traveling wave of (GP) satisfying the spatial decay con-
dition (2.6) and that ∃ λ ∈σ(JLc ) with Reλ> 0, (i.e. d = dim X u,s > 0), then

(1) There exist the locally invariant co-dim d center-unstable and center-stable
manifolds W cu and W cs and the co-dim 2d center manifold W c , all con-
taining M .

(2) W cu , W cs , W c are translation invariant, i.e. if U ∈W cu,cs,c , then U (·+y) ∈
W cu,cs,c for any y ∈R3.

(3) Let ψ be defined in (2.2), then ψ−1(W cu,cs,c ) are smooth submanifolds of
X1. Moreover, the tangent spaces of ψ−1(W cu,cs,c ) at ψ−1(Uc ) are equal
to (Dψ−1)(Uc )X cu,cs,c .

(4) Orbits in a small neighborhood of M are exponentially attracted to W cu

as t increases (before they possibly exit the neighborhood in the center-
unstable directions), while repelled exponentially by W cs .

(5) W c =W cu ∩W cs ⊃M is the transversal intersection of W cu and W cs .

Remark 1.3. In the above neither the non-degeneracy kerLc = span{∂x j Uc | j =
1,2,3} of Lc nor that Uc is a ground state obtained in [39] is assumed. Without
such non-degeneracy, traveling waves for the given wave speed c may not be
locally unique. However, all nearby traveling waves with close wave speed must
belong to W c . See Proposition 4.19.

As X0 is not a flat space, we identify X0 with X1 through a coordinate map
ψ : X1 → X0 given in (2.2), borrowed from [20]. So these invariant manifolds are
smooth in the sense that their images under ψ−1 are smooth submanifolds in
X1. The above statement (4) also implies that W c exponentially attracts nearby
orbits in W cs and exponentially repels those in W cu (before they possibly exit
a neighborhood of M along X c ). Consequently M is orbitally unstable. More
detailed statements of the results are given in Section 4 and 5.

It is well-known that center-unstable manifolds, et. al. are not unique even
for ODEs and the dynamics, including the stability, on the center manifold is
rather subtle. However, under non-degeneracy conditions (H1-2) which ensure
the uniform positivity of Lc on X c , in Section 6 we prove

Theorem 1.4. Assume (H1-2) in addition, then there exist C ,δ> 0 such that

(1) Given any initial value U (0) such thatψ−1
(
U (0)

)
is in a (C−2δ)-neighborhood

of ψ−1(M ), then U (0) ∈W cu,cs if and only ifψ−1
(
U (t )

)
is in aδ-neighborhood

of ψ−1(M ) for all ∓t ≥ 0, and U (0) ∈ W c if and only if ψ−1
(
U (t )

)
is in a

δ-neighborhood of ψ−1(M ) for all t ∈R.
(2) M is orbitally stable in W c and W cu,cs,c are locally unique.

Remarks on the instability of Traveling waves of (GP). Firstly, the existence
of unstable traveling waves of the 3D (GP) was first suggested in [29], where a
Derrick-type argument was used to show that the numerically derived travel-
ing waves in the upper branch in the energy-momentum plane are not energy
minimizers under fixed momentum. Such instability was further supported by
numerical evidence in [29] that initial perturbations near the upper branch can
evolve toward the stable lower branch. A Grillakis-Shatah-Strauss type stability
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criterion was formulated based on numerics and heuristic arguments [8, 29] and
then later rigorously proved [35] for the traveling waves constructed by Mariş
[39]. Moreover, a variation of this criterion was used to obtain rigorously the
spectral instability of a slow traveling wave of the 2D NLS with non-vanishing
condition at infinity in [35]. Secondly, in [8], numerical computations with high
resolutions were performed to find eigenvalues of the 105 × 105 matrices ob-
tained from the linearized (GP) along the whole upper branch. At each of such
traveling waves, only one unstable eigenvalue was identified and it has cylin-
drical symmetric eigenfunctions (consistent with [35]). The maximal exponen-
tial growth rate is approximately 0.012. Thirdly, when c → p

2−, it was formally
shown in [30] and later rigorously proved in [15] that properly rescaled traveling
waves of 3D (GP) converge to solitary waves of 3D KP-I equation. A formal lead-
ing order relationship between the eigenvalue of (GP) and the 3D KP-I equation
was also given in [8]. As the ground state solitary waves of the 3D KP-I displays
certain instability [37], it also indicates such for some traveling waves of (GP).
On the one hand, we fully admit that we are not aware of any existing traveling
waves of the 3D (GP) having been rigorously proved to be spectrally unstable. On
the other hand, we feel that there have been strong enough indications, partic-
ularly the numerics in [8], of the existence of spectrally unstable traveling waves
to warrant the study of the local dynamics of the 3D (GP) near such waves.

Among previous results on local invariant manifolds of relative equilibria of
dispersive PDEs, Bates and Jones [4] proved a general theorem on the existence
of Lipschitz locally invariant manifolds of equilibria for semilinear PDEs by an
energy argument, and then applied it to the Klein-Gordon equation. In [44],
Schlag constructed a co-dimension 1 center-stable manifold of the manifold of
ground states for the 3D cubic NLS in W 1,1(R3)

⋂
W 1,2(R3) under an assump-

tion that the linearization of NLS at each ground has no embedded eigenvalue
in the essential spectrum and proved the scattering on the center-stable mani-
fold. Later this result was improved by Beceanu [6, 7] who constructed center-
stable manifolds in W 1,2(R3)

⋂ |x|−1L2(R3) and in critical space Ḣ 1/2(R3) . Sim-
ilar results were obtained in Krieger and Schlag [34] for the supercritical 1D
NLS. Nakanishi and Schlag [40] constructed a center-stable manifold of ground
states for 3D cubic NLS in the energy space with a radial assumption by using
the framework in Bates and Jones [4]. Nakanishi and Schlag [42] constructed
center-stable manifolds of ground states for nonlinear Klein-Gordon equation
without radial assumption, following a graph transform approach. Also, see
[41, 31, 32, 33, 21] for related results.

At a rough conceptual level, our proof follows the framework as in [13, 18].
However, instead of being near a steady state, our construction is around the
3-dim invariant manifold M , which is qualitatively comparable to [17], a more
general result in finite dimensions. A rather naive initial attempt may be to con-
struct the local invariant manifolds near Uc (·+ y) for each y ∈R3 and then patch
them together to obtain W cu,cs,c . While the local construction for each y may
follow from the standard procedure combined with some space-time estimates,



6 JIAYIN JIN, ZHIWU LIN†, AND CHONGCHUN ZENG‡

it is highly questionable whether such ‘patch-up’ is possible as these local in-
variant manifolds of each Uc (· + y) are not unique in the first place. Therefore
as in [42] we construct W cu,cs,c as the center-unstable, center-stable, and cen-
ter manifolds of the whole M instead of the individual Uc (·+ y). This requires a
coordinate system in a neighborhood of M . A rather natural option would be

U =ψ(
Φ(y, wu , w s , wc )

)=ψ(
ψ−1(Uc )(·+ y)+wu(·+ y)+w s(·+ y)+wc (·+ y)

)
where Dψ(Uc )wu,s ∈ X u,s and Dψ(Uc )wc ∈ X̃ c , where X̃ c is a fixed subspace of
X c transversal to span{∂x j Uc : j = 1,2,3} with codim-X̃ c = 2d +3. The possible

polynomial growth of e JLc in some directions in X̃ c are too weak compared to its
exponential decay along X u,s (as t →∓∞) to cause any real trouble. However,
a much more serious issue is that the above local coordinate mapping Φ is a
homeomorphism but not a diffeomorphism from its domain to X1. In fact,

D yΦ(y, wu , w s , wc ) =
(
∂y

(
ψ−1(Uc )

)+∂y wu +∂y w s +∂y wc
)
(·+ y).

While the first three terms on the right side belong to X1 due to the high regular-
ity of Uc and functions in X u,s , in general the last term ∂y wc ∈ L2 only as wc ∈ X̃ c

and X̃ c is of finite co-dim in X1.
This issue of loss of regularity due to the translation parametrization also ap-

peared in previous works on other PDE models such as [5] and [42], in the lat-
ter of which it was handled by a rather analytically oriented nonlinear ‘mobile
distance’. Here instead we adopt a more geometric bundle coordinate system
used in [5], based on the observation that, while the above parametrization by
the spatial translation of y is not smooth with respect to y , the vector bundles
{w ∈ X1 : w(· − y) ∈ X u,s,c } are smooth in y . In such a framework based on vec-
tor bundle coordinates, some second fundamental form type quantities are to
be carefully treated in the rather technical but intuitive analysis. See also Re-
mark 2.6. Based on this coordinate system, we decompose equation (GP) and, as
in the standard procedure in constructing local invariant manifolds, we cut off
the nonlinear terms (except the ones corresponding to the second fundamen-
tal form of the center bundle) outside a small neighborhood of M . Our subse-
quent estimates are mainly based on the exponential trichotomy and the energy
conservation and involve minimal amount of dispersive estimates in Section 3.
In particular, no spectral assumptions such as the nonexistence of embedded
eigenvalues or resonance is needed.

At this stage, with the estimates of non-homogeneous linear equations in Sec-
tion 3, one may apply the usual Lyapunov-Perron integral equation method or
the graph transform of Hadamard to obtain invariant manifolds for the modified
system (with the cut-off) which coincides with the original one near M . While
we obtained the invariant manifolds by conceptually following the procedure in
[13, 18] which is more in line with the Lyapunov-Perron method, one could also
choose to estimate the time-T map of the modified equation and then apply the
graph transform method as in [17, 5].

While we focus on local invariant manifolds of traveling waves of the 3D (GP)
in this paper, we believe that this framework is rather general and it could be
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adapted with minimal modifications to yield local invariant manifolds of unsta-
ble relative equilibria, including ground states and excited states, of a class of
Hamiltonian dispersive PDEs such as the NLS, nonlinear Klein-Gordon equa-
tions, etc., involving finite dimensional symmetry groups such as the phase ro-
tations, spatial translation or rotations, etc. Generally, the main necessary as-
sumptions would just be that the Hessian of the modified energy functional at
the relative equilibria (like Lc ) has only finitely many negative directions, so that
the linear analysis in [36] is applicable. In fact, in a forthcoming paper, we con-
struct local invariant manifolds of traveling waves of supercritical gKdV equa-
tion and analyze the nearby dynamics.

The paper is organized as the follows. In Section 2 we set up the basic frame-
work for the construction of local invariant manifolds of M . Section 3 is on
the estimate of non-homogeneous linear equations. The existence of Lipschitz
local invariant manifolds and some of their properties related to the local dy-
namics are obtained in Section 4, while the smoothness in Section 5. The non-
degenerate case under assumption (H1-2) is analyzed in Section 6. Finally, some
tedious technical details are left in the Appendix.
Notations. Throughout the paper, we follow the following notations:

• Ḣ s : the homogeneous Sobolev space {u | |D|su ∈ L2}.
• X0: the energy space defined in (1.2).
• X1 = H 1 × Ḣ 1 defined in (1.6).
• 〈·, ·〉: Euclidean or L2 duality pair unless specified otherwise.
• The generic upper bound C is always independent of y ∈R3.
• Differentiations are usually not with respect to c, unless specified.

2. A COORDINATE SYSTEM NEAR TRAVELING WAVES

In this section, we rewrite equation (GP) in an appropriate local coordinate
system near traveling waves.

2.1. Structure of X0 and a generalization of the momentum. Any u ∈ X0 can
be written as u =α(1+ v) where α ∈ S1 and v ∈ Ḣ 1(R3) satisfying

|1+ v |2 −1 = 2Re(v)+|v |2 ∈ L2(R3).

The distance on the energy space is introduced as following. Given u =α(1+ v)
and ũ = α̃(1+ ṽ) in X0, we define the distance d by

(2.1) d(u, ũ) = |α− α̃|+‖∇v −∇ṽ‖L2(R3) +‖|1+ v |2 −|1+ ṽ |2‖L2(R3).

Select χ(ξ) ∈C∞
0 (R) such that χ(ξ) = 1 near ξ= 0 and define the Fourier mul-

tiplier χ(D) as àχ(D)u(ξ) =χ(|ξ|)û(ξ).

Lemma 2.1. ([20]), The mapping

ψχ :S1 × (H 1(R3)+ i Ḣ 1(R3)) → X0

(α, w) 7→α

(
1+w −χ(D)

(
(Im(w))2

2

))(2.2)
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is a homeomorphism.

Remark 2.2. Note that X0 is not a linear space, but this homeomorphism be-
tween H 1 × Ḣ 1 and X0 allows us to work in the linear space H 1 × Ḣ 1. Since
Ḣ 1(R3) ⊂ L6(R3), the above α ∈ S1 is invariant for any solution of (GP), which
can be fixed to be 1 due to the phase invariance of (GP). Also, this structure of
X0 does not depend on the choice of the cut-off function χ. To simplify the no-
tation, we will fix α = 1 and wrote ψ(w) for ψχ(1, w). Apparently, ψ−1 is given
by

(2.3) ψ−1(u + i v) = (
u −1+ 1

2
χ(D)(v2), v

)
.

The coordinate mapping ψ commutes with the translation and SO(3) action.
Namely, let y ∈R3 and Q3×3 be an orthogonal matrix with detQ = 1, then

(2.4) ψ
(
α, w(Q·))=ψ(α, w)(Q·), ψ

(
α, w(·− y)

)=ψ(α, w)(·− y).

This is useful as (GP) is invariant under the translation and SO(3) action.
Let X1 = H 1 × Ḣ 1. By Lemma 2.1, for any u ∈ X0, there exits a unique w =

w1 + i w2 ∈ X1 such that u =ψ(w). As in [35], extend momentum as

(2.5) P̃ (w) =−
∫
R3

[
w1 + (1−χ(D))

w2
2

2

]
∇w2d x, P̃ ∈C∞(X1,R).

One can see that P̃ (w) = P (u) when u =ψ(w) ∈ 1+H 1(R3).

2.2. A local form of the GP equation near a traveling wave manifold. Consider
a smooth and bounded traveling wave solution Uc = uc + i vc of (GP) with the
traveling velocity c ∈ R3 satisfying |c| ∈ (0,

p
2), we first rewrite the equation in

the traveling frame in a neighborhood of Uc . Assume

(2.6) lim
|x|→∞

(|x|2(|ReUc (x)−1|+ |∇ReUc |
)+|x||ImUc (x)|)= 0.

Such traveling waves exist as proved [39, 25]. In terms of the coordinate mapping
ψ given in (2.2), let

wc :=ψ−1(Uc ) = (w1c , w2c ) ∈ X1.

The traveling wave manifold {Uc (·+y) | y ∈R3} with wave velocity c generated by
Uc is invariant under (GP). To study the nearby dynamics, we rewrite solutions
in the traveling frame u(t , x) =U (t , x − ct ) and then U (t , x) satisfies

(2.7) i∂tU − i c ·∇U +∆U + (1−|U |2)U = 0

or in the abstract form

(2.8) ∂tU = J (E + c ·P )′(U ), J =
[

0 1
−1 0

]
where we recall E and P are the energy and momentum defined in (1.1) and
(1.3), respectively, and J is the matrix representation of −i . The traveling wave
Uc generate a manifold of equilibria of (2.8):

(2.9) M = {Uc (·+ y) : y ∈R3}.
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Our main goal is to construct local invariant manifolds of M . For any y ∈R3, let

(2.10) Kc,y

(
w1

w2

)
= Dψ

(
wc (·+ y)

)(w1

w2

)
=

(
w1 −χ(D)

(
vc (·+ y)w2

)
w2

)
.

and

Lc,y =(E + c ·P )′′(Uc (·+ y)
)

=
[−∆−1+ (3u2

c + v2
c )(·+ y) −c ·∇+2(uc vc )(·+ y)

c ·∇+ (2uc vc )(·+ y) −∆−1+ (u2
c +3v2

c )(·+ y)

]
.

(2.11)

Both Kc,y and Lc,y are conjugate to Kc,0 and Lc,0 through translation

(2.12) Kc,y w = (
Kc,0w(·− y)

)
(·+ y), Lc,yU = (

Lc,0U (·− y)
)
(·+ y).

To simply the notation, we denote

Ky = K0,y , Lc = Lc,0.

From (2.6) and the Hardy’s inequality, we have that Kc,y is an isomorphism on
X1 with

(2.13) K −1
c,y w =

(
w1 +χ(D)

(
vc (·+ y)w2

)
w2

)
,

and Lc,y induces a real valued symmetric bounded bilinear form on X1, namely,

Kc,y , K −1
c,y ∈ L(X1), Lc,y ∈ L(X1, X ∗

1 ), L∗
c,y = Lc,y .

Moreover, using the translation invariance (2.12) and the Hardy’s inequality, there
exists C > 0 such that

(2.14) ‖Kc,y‖L(X1) +‖K −1
c,y‖L(X1) ≤C , ∀y ∈R3.

Consequently, J is viewed as a closed operator

J : X ∗
1 ⊃ D(J ) → X1 satisfying J∗ =−J

where

D(J ) ={w = (w1, w2) | w1 ∈ H−1 ∩ Ḣ 1 and w2 ∈ Ḣ−1 ∩H 1}

={w = (w1, w2) | w1 ∈ H 1 and |ξ|ŵ2, |ξ|−1ŵ2 ∈ L2}.

Suppose for some y(t ) ∈R3 and w(t ) = (
w1(t ), w2(t )

) ∈ X1 smooth in t ,

U (t ) =ψ(
wc

(·+ y(t )
)+w(t )

)
=Uc

(·+ y
)+Kc,y w −

(
1

2
χ(D)(w2

2),0

)T(2.15)

is a solution to (2.7).
Here (2.4) and the definition of Kc,y are used. Substituting (2.15) into (2.8) and

using the definition of Lc,y and that Uc is an equilibrium of (2.8), we obtain

∂t y ·∇Uc (·+ y)+∂t (Kc,y w)− (
χ(D)(w2∂t w2),0

)T

=JLc,y Kc,y w + J
(
(E + c ·P )′(U )−Lc,y Kc,y w

)
.
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The above equation of w = (w1, w2)T can be written as a system of 2 equation of
∂t w1 and ∂t w2, which can be solved easily due to the upper triangular structure
of Kc,y . In particular we have the equation for w2,

(2.16) ∂t w2 =−(
Lc,y Kc,y w

)
1 −∂t y ·∇vc (·+ y)+G2(c, y, w)

where G2 is given in the below. The above system of evolution equations for w
can be written in a compact form

(2.17) ∂t y ·∇Uc (·+ y)+∂t (Kc,y w) = JLc,y Kc,y w +G(c, y,∂t y, w),

where G = (
G1(c, y,∂t y, w),G2(c, y, w)

)T are

G =(|U |2 −|Uc (·+ y)|2 −2Uc (·+ y) · (Kc,y w)
)

JUc (·+ y)

+ (|U |2 −|Uc (·+ y)|2) JKc,y w + 1

2

(
2χ(D)(w2∂t w2 −w2∇w2 · c)

−(1−|U |2)χ(D)(w2
2)−∆χ(D)(w2

2)

)
and ∂t w2 in G1 should be substituted by (2.16). This results in the dependence
of G1 on ∂t y . The nonlinearity G is affine in ∂t y and contains terms of w of
algebraic degree between 2 and 6. Like Kc,y and Lc,y , G(c, y, ỹ , w) is translation
invariant in the sense of (2.12), namely,

(2.18) G(c, y +x, ỹ , w) =G
(
c, y, ỹ , w(·−x)

)
(·+x).

A more detailed form of and some basic estimates on G are straight forward but
tedious and we leave them in the Appendix.

2.3. Decomposition of X1 and local coordinates near traveling waves. The free
choices of y ∈ R3 and w ∈ X1 are clearly redundant in the representation of the
above U . We shall impose appropriate restrictions on w by analyzing the lin-
earization of (GP) near Uc . We will focus on unstable traveling waves. Namely,
we assume

(H) The spectrum σ(JLc )* iR.

Since |c| ∈ (0,
p

2), (2.6) and the explicit form (2.11) of Lc imply that Lc : X1 → X ∗
1

is a compact perturbation to

Lc,∞ =
[−∆+2 −c ·∇

c ·∇ −∆
]

: X1 → X ∗
1

which is an isomorphism as it induces a uniformly positive quadratic form on
X1. This follows from a proof similar to the one in [35] and we skip the de-
tails. Therefore dimkerLc < ∞ and it is uniformly positive on some finite co-
dimensional subspace of X1. Let n−(Lc ) be the Morse index of Lc , namely,

(2.19) n−(Lc ) = max{dimY | Lc is negative on the subspace Y ⊂ X1}.

According to the index formula and the structural decomposition of linear Hamil-
tonian systems [36], it holds that n−(Lc ) > 0 for any unstable traveling wave.
We first cite Theorem 2.1 in [36] whose hypotheses are easily satisfied due to
dimkerLc <∞ and Remark 2.2 in [36].
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Theorem 2.1 in [36]. There exist closed subspaces Y j , j = 1, . . . ,6, and Y0 = kerLc

such that

(1) X1 =⊕6
j=0Y j , Y j ⊂∩∞

k=1D
(
(JLc )k

)
, j , 3, and

dimY1 = dimY4, dimY5 = dimY6, dimY1 +dimY2 +dimY5 = n−(Lc );

(2) JLc and Lc take the following forms in this decomposition

(2.20) JLc ←→



0 A01 A02 A03 A04 0 0
0 A1 A12 A13 A14 0 0
0 0 A2 0 A24 0 0
0 0 0 A3 A34 0 0
0 0 0 0 A4 0 0
0 0 0 0 0 A5 0
0 0 0 0 0 0 A6


,

(2.21) Lc ←→



0 0 0 0 0 0 0
0 0 0 0 B14 0 0
0 0 LY2 0 0 0 0
0 0 0 LY3 0 0 0
0 B∗

14 0 0 0 0 0
0 0 0 0 0 0 B56

0 0 0 0 0 B∗
56 0


.

(3) B14 : Y4 → Y ∗
1 and B56 : Y6 → Y ∗

5 are isomorphisms and there exists ε> 0
satisfying ∓〈LY2,3 u,u〉 ≥ ε‖u‖2, for all u ∈ Y2,3;

(4) all blocks of JLc are bounded operators except A3, where A03 and A13

are understood as their natural extensions defined on Y3;
(5) A2,3 are anti-self-adjoint with respect to the equivalent inner product

∓〈LY2,3 ·, ·〉 on Y2,3;
(6) the spectra σ(A j ) ⊂ i R, j = 1,2,3,4, ±Reλ > 0 for all λ ∈ σ(A5,6), and

σ(A5) =−σ(A6); and
(7) n−(L|Y5⊕Y6 ) = dimY5 and n−(L|Y1⊕Y4 ) = dimY1.
(8) (u, v)X1 = 0 for all u ∈ Y1 ⊕Y2 ⊕Y3 ⊕Y4 and v ∈ kerLc .

We modify this decomposition of X1 slightly for this paper. Let

X T
c = span{∂x j Uc | j = 1,2,3}, Ỹ0 = {w ∈ kerLc | (w, w̃) = 0, ∀w̃ ∈ X T

c }

and
X d1

c = Ỹ0 ⊕Y1 ⊕Y2, X e,d2,+,−
c = Y3,4,5,6.

For any y ∈R3 and α ∈ {T,d1,e,d2,+,−}, define

Xα
c,y = {w ∈ X1 | w(·− y) ∈ Xα

c }.

Recall the traveling wave manifold M defined in (2.9). Clearly

(2.22) X1 = X T
c,y ⊕X d1

c,y ⊕X e
c,y ⊕X d2

c,y ⊕X +
c,y ⊕X −

c,y , X T
c,y = TUc (·+y)M ,

with associated projectionΠT,d1,e,d2,+,−
c,y . Let

0 <λ< min{Reµ |µ ∈σ(A5)}.
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Lemma 2.3. Assume (2.6) and (H), then there exists C > 0, such that, for any
y ∈R3,

(1) X +,−,T,d1,d2
c,y ⊂ Ḣ k ∩X1 for any k ≥ 1;

(2) 0 < dim X ±
c,y = d ≤ n−(Lc ), d1 = dim X d1

c,y = n−(Lc )+dimkerLc −3−d, and

d2 = dim X d2
c,y ≤ n−(Lc )−d ≤ d1;

(3) there exist bases V ±
c, j , j = 1, . . . ,d of X ±

c,0, V d1
c, j , j = 1, . . . ,d1, of X d1

c,0, V d2
c, j , j =

1, . . . ,d2 of X d2
c,0, and V T

c, j = ∂x j Uc , j = 1,2,3, of X T
c,0, along with ζ±c, j , j =

1, . . . ,d, ζd1
c, j , j = 1, . . . ,d1, ζd2

c, j , j = 1, . . . ,d2, and ζT
c, j , j = 1,2,3, belonging

to D
(
(JLc,y )∗

)∩H k = H k × (Ḣ−1 ∩H k ) for any k ≥ 1, such that

Παc,y w =
dim X α

c,0∑
j=1

〈ζαc, j (·+ y), w〉V α
c, j (·+ y), α ∈ {T,d1,d2,+,−},

consequently, projections ΠT,d1,e,d2,+,−
c,y are smooth in y with derivatives

bounded uniformly in y ∈R3;
(4) In the decomposition X1 = ⊕α∈{T,d1,e,d2,+,−}Xα

c,y , JLc,y and the quadratic
form Lc,y take the form

Lc,y ←→



0 0 0 0 0 0
0 L11(y) 0 L12(y) 0 0
0 0 Le (y) 0 0 0
0 L12(y)∗ 0 0 0 0
0 0 0 0 0 L+−(y)
0 0 0 0 L+−(y)∗ 0

 ,

JLc,y ←→



0 AT 1(y) ATe (y) AT 2(y) 0 0
0 A1(y) A1e (y) A12(y) 0 0
0 0 Ae (y) Ae2(y) 0 0
0 0 0 A2(y) 0 0
0 0 0 0 A+(y) 0
0 0 0 0 0 A−(y)


where
(a) all above blocks are translation invariant in the sense of (2.12);
(b) all above blocks are bounded except Ae (y);
(c) ‖e t A1(y)‖+‖e t A2(y)‖ ≤C (1+|t |)d1 ;
(d) the quadratic form 〈Le (y)V e ,V e〉 ≥ 1

C ‖V e‖2
X1

for any V e ∈ X e
c,y and

Ae (y) is anti-self-adjoint with respect to Le (y) = Lc,y |X e
c,y

.

(e) σ
(

A+(y)
)=−σ(

(A−(y)
)
, ‖e t A±(y)|X ±

c,y
‖ ≤Ceλt , for all ∓t ≥ 0;

Proof. All the conclusions directly follow from Theorem 2.1 in [36] except those
on the dual basis ζαc, j and the smoothness ofΠαc,y in y . In particular X +,−,T,d1,d2

c,y ⊂
Ḣ k ∩ X1 is due to D

(
(JLc )k

) = Ḣ 1+2k ∩ X1. To complete the proof, we only need
to show the smoothness ofΠαc,y in y . Due the translation invariance, we have

(2.23) Παc,y+y ′w =
(
Παc,y ′

(
w(·− y)

))
(·+ y), α ∈ {T,d1,e,d2,+,−}
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for any y ∈R3, which also implies

Dn
yΠc,y w =

(
Dn

yΠc,0
(
w(·− y)

))
(·+ y).

Let

w1, . . . , wd0 , wd0+1, . . . , wd ′
be a basis of X T

c ⊕X d1
c ⊕X d2

c ⊕X +
c ⊕X −

c

formed by bases of X T,d1,d2,+,−
c such that w j = ∂x j Uc , j = 1,2,3 and w1, . . . , wd0

is a basis of kerLc where d0 = dimkerLc .
Let

w̃ j =


[

1−∆ 0

0 −∆

]
w j , j = 1, . . . ,d0;

Lc w j , j = d0 +1, . . . ,d ′.

Clearly w̃ j ∈ X ∗
1 ∩H k = H k×(Ḣ−1∩H k ) for any k and j = 1, . . . ,d ′ and {w̃1, . . . , w̃d0 }

and {w̃d0+1, . . . , w̃d ′
} are both linearly independent. Moreover {w̃1, . . . , w̃d ′

} are
also linearly independent. In fact, assume

w̃ = a1w̃1 + . . . , ad0 w̃d0 = ad0+1w̃d0+1 + . . . , ad ′ w̃d ′

for some a1, . . . , ad ′ . Since w j ∈ kerLc for j = 1, . . . ,d0, we have

0 = 〈Lc

d0∑
j=1

a j w j ,
d ′∑

j=d0+1
a j w j 〉 = 〈w̃ ,

d0∑
j=1

a j w j 〉 = (w̃ , w̃)X ∗
1

.

Therefore w̃ = 0 and we obtain the linear independence of {w̃1, . . . , w̃d ′
}.

For any w ∈ X e
c , on the one hand, from the above Lc -orthogonality between

X e
c and X T

c ⊕ X d1
c ⊕ X d2

c ⊕ X +
c ⊕ X −

c , we have 〈w̃ j , w〉 = 〈Lc w j , w〉 = 0, for j =
d0+1, . . . ,d ′. On the other hand, due to the orthogonality between X e

c and kerLc

with respect to the (·, ·)X1 , for any j = 1, . . . ,d0, we have 〈w̃ j , w〉 = (w j , w)X1 = 0.
Counting the dimensions, we obtain that

w̃1, . . . , w̃d ′
form a basis of ker i∗X e

c
= { f ∈ X ∗

1 | 〈 f , w〉 = 0, ∀w ∈ X e
c }.

As ker i∗X e
c

is isomorphic to (X T
c ⊕X d1

c ⊕X d2
c ⊕X +

c ⊕X −
c )∗, let γ1, . . . ,γd ′ ∈ ker i∗X e

c

be the dual basis of w1, . . . , wd ′
. Since γ j can be written as a linear combinations

of w̃1, . . . , w̃d ′
, we have γ j ∈ H k × (Ḣ−1 ∩ H k ) for any k and j = 1, . . . ,d ′. From

(2.23) and the definition of γ j , it is easy to verify that, for anyα ∈ {T,d1,d2,+,−},
w ∈ X1, and y ∈R3,

Παc,y w = ∑
w j∈X α

c

〈γ j (·+ y), w〉w j (·+ y).

The smoothness of Παc,y in y follows from the regularity γ j ∈ H k × (Ḣ−1 ∩ H k )

and w j ∈ Ḣ k ∩X1 for any k and j = 1, . . . ,d ′, which also implies the smoothness
of Πe

c,y = I −∑
α=T,d1,d2,+,−Παc,y . Divide {w j , j = 1, . . . ,d ′} and {γ j , j = 1, . . . ,d ′}

according to α ∈ {T,d1,d2,+,−}, we obtain V α
c, j and ζαc, j and complete the proof

of the lemma. �
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Remark 2.4. Under the following additional non-degeneracy assumptions

(2.24) ker (Lc ) = span{∇Uc }, n−(Lc ) = d = dim X +,

we have X d1,d2
c,y = {0} and the decomposition may be simplified. We shall discuss

this case carefully in Section 6.

With respect to the bases {V α
c, j }, α ∈ {d1,d2,+,−}, operators

AT 1(y), A1(y), AT 2(y), A12(y), A2(y), A+(y), A−(y)

representing Πβc,y JLc,y |X α
c,y

: Xα
c,y → X β

c,y in the above block decomposition of
JLc,y can be represented by matrices

MT 1, M1, MT 2, M12, M2, M+, M−

which are independent of y due to the translation invariance(2.12) of Kc,y and
Lc,y . Namely,

(2.25) AT 1(y)
(
(V α

c,1, . . . ,V α
c,d1

)a
)= (V β

c,1, . . . ,V β
c,3)(MT 1a), ∀a ∈Rd1 , . . .

From Lemma 2.3,

(2.26) ‖e t M1‖+‖e t M2‖ ≤C (1+|t |)d1 , ∀t ∈R; ‖e t M±‖ ≤Ce±λt ,∀ ∓ t ≥ 0.

A similar representation through translation in x → x + y of Ae (y) would cause
loss of regularity when ∂y is carried out. Instead we will keep working with
Ae (y) = Πe

c,y JLc,yΠ
e
c,y . When viewed as an (unbounded) operator from X1 to

X1, it is a uniformly (in y) bounded perturbation to a constant coefficient oper-
ator and its derivatives of all orders are bounded operators. In fact, separating
the terms in (2.11) with constant coefficients from those with spatially decaying
variable coefficients implies

(2.27) JLc,y = JLc,∞+Q̃(y), Lc,∞ =
[

2−∆ −c ·∇
c ·∇ −∆

]
,

and

(2.28) Q̃(y) =
[

2uc vc u2
c −1+3v2

c
3(1−u2

c )− v2
c −2uc vc

]
(·+ y).

Lemma 2.5. Fix c ∈ (0,
p

2). For any integer k ≥ 0, there exists Ck > 0 such that
for any y ∈R3, it holds

‖Dk
y

(
Ae (y)− JLc,∞

)‖
L
(

(⊗k (R3))⊗X1,X1)
≤Ck .

Proof. Clearly Q̃(0) ∈ L∞ and ∇kQ̃(0) ∈ L∞∩L2 for any k ≥ 1, along with (2.6) and
Hardy’s inequality, it is straight forward to prove, for all y ∈R3 and V ∈ X1,

(2.29) ‖Q̃V ‖X1 +‖Dk
y Q̃V ‖X1 +‖JQ̃V ‖X ∗

1
+‖JDk

y Q̃V ‖X ∗
1
≤Ck‖V ‖X1 ,

for some Ck > 0 independent of y . Write

Ae (y)− JLc,∞ = Ae (y)− JLc,y +Q̃(y).
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Therefore, to complete the proof of the lemma, we only need to show the bound-
edness of Dk

y

(
JLc,y−Ae (y)

)
, which, according to Lemma 2.3, has the same block-

wise decomposition except the Ae (y) component replaced by 0. The uniform
boundedness (in y) of Ae (y)−JLc,y follows from the boundedness of those blocks,
where the uniformity in y is due to their translation invariance in the sense of
(2.12). The uniform upper bounds of Dk

y

(
JLc,y − Ae (y)

)
also follow the trans-

lation invariance of these blocks and the extra regularity of ζαc, j and V α
c, j , α ∈

{T,d1,d2,+,−}. �

Following from that X T
c,y is the tangent space TUc (·+y)M and Kc,y = Dψ

(
wc (·+

y)
)

is an isomorphism, K −1
c,y X T

c,y is the tangent space of

ψ−1(M ) = {wc (·+ y) | y ∈R3}.

Based on the Implicit Function Theorem, it is straight forward to prove that, for
small δ, {

wc (·+ y)+wd1 +we +wd2 +w++w− |
wα ∈ K −1

c,y Xα
c,y , ‖wα‖ < δ, α ∈ {d1,e,d2,+,−}

}
is a neighborhood of ψ−1(M ) ⊂ X1, where each point has a unique representa-
tion in the above form.

2.4. A local bundle coordinate system. Accordingly, we shall set up the bundle
coordinates near ψ−1(M ) precisely.

(2.30) X e = {(y,V e ) | y ∈R3, V e ∈ X e
c,y },

and balls on this bundle

(2.31) X e (δ) = {(y,V ) ∈X e | ‖V ‖X1 < δ}.

Let y# ∈ R3 and B 3(δ) be the open ball on R3 centered at y# with radius δ. For
δ¿ 1, a smooth (due to the smoothness of Πe

c,y with respect to y) local trivial-

ization from B 3(δ)× X e
c,y#

to X e , thus a local coordinate system, of X e is given
by (y,Πe

c,yV ), V ∈ X e
c,y#

. There is a natural translation on X e

(z, y,V e ) −→ (
y + z,V e (·,+z)

)
.

Along with other subspaces X T,d1,d2,+,−
c,y , we will often consider bundles Rk ⊕X e

over R3 with fibers Rk ⊕X e
c,y , as well as their balls

(2.32) B k (δ1)⊕X e (δ2) = {(y, a,V e ) | a ∈Rk , |a| < δ1, (y,V e ) ∈X e (δ2)}.

For any fixed y#, the smoothness of Πe
c,y with respect to y allows it serve to as a

local trivialization of the fibers X e
c,y for y near y#.

Define an embedding

Em :R3+d1+d2+2d ⊕X e → X1
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as

Em(y, aT , ad1, ad2, a+, a−,V e )

=
3∑

j=1
aT

j ∂x j wc (·+ y)+K −1
c,y

( d1∑
j=1

ad1
j V d1

c, j (·+ y)

+
d2∑

j=1
ad2

j V d2
c, j (·+ y)+

d∑
j=1

a+
j V +

c, j (·+ y)+
d∑

j=1
a−

j V −
c, j (·+ y)+V e

)
:=K −1

c,y

((
aT V T

c +ad1V d1
c +ad2V d2

c +a+V +
c +a−V −

c

)
(·+ y)+V e

)
.

(2.33)

The embedding Em⊥ :Rd1+d2+2d ⊕X e defined on the transversal bundle will be
used for the bundle coordinates near ψ−1(M )

(2.34) Em⊥(y, ad1, ad2, a+, a−,V e ) = Em(y,0, ad1, ad2, a+, a−,V e ).

Clearly Em⊥ is translation invariant in the sense

Em⊥(
y + ỹ , ad1, ad2, a+, a−,V e (·+ ỹ)

)
= Em⊥(y, ad1, ad2, a+, a−,V e )(·+ ỹ), ∀ỹ ∈R3.

(2.35)

On the one hand, according to the above trivialization, given any Banach
space Z , a mapping f : Z → X e is said to be smooth near some z0 ∈ Z if y(z)
and V e (z) ∈ X e

c,y(z0) are smooth in z near z0, where f (z) = (
y(z),Πe

c,y(z)V
e (z)

)
.

Due to the smoothness of Πe
c,y , in fact this is equivalent to the smoothness of

y(z) and V (z) ∈ X1 where f (z) = (
y(z),V (z)

)
.

On the other hand, for any Banach space Y , a mapping g : X e → Y is said to
be smooth near some (y#,V#) if

g̃ (y,V ) = g (y,Πe
c,yV ), y ∈R3, V ∈ X e

c,y#

is smooth in (y,V ) ∈R3 ×Xc,y# near (y#,V#). It is straight forward to verify

• g is smooth if and only if locally g (y,Πe
c,yV ), y ∈R3, V ∈ X1, is smooth on

R3 ×X1.
• g is smooth if and only if locally it is the restriction to X e of a smooth

mapping defined on R3 ×X1;
• g is smooth if and only if g ◦ f is smooth for any smooth f : Z → X e

defined on any Banach space Z ;
• Em is smooth with respect to (y,V e ), due to the smoothness of K −1

c,y and
the basis V α

c, j , α ∈ {T,d1,d2,+,−}.

We shall often work with g
(
y,Em(y, a,V e )

)
with g smooth on R3 ×X1.

Near the 3-dim manifold M of traveling waves, we will work through the
mappingΦ defined on Rd1+d2+2d ⊕X e which is diffeomorphic on Rd1+d2+2d (δ)⊕
X e (δ)

U =Φ(y, a,V e ) =ψ(
wc (·+ y)+Em⊥(y, a,V e )

)
.(2.36)
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This is a smooth vector bundle coordinate system in a neighborhood of M ⊂
X0 for sufficiently small δ > 0. From (2.33) and (2.34), Φ can be naturally ex-
tended into a smooth mapping on R3+d1+d2+2d ⊕X1.

Remark 2.6. As the subspaces X T,d1,e,d2,+,−
c,y are obtained as the translations of

X T,d1,e,d2,+,−
c , it is tempting to use the coordinate system

U =ψ(
(wc +wd1 +wd2 +w++w−+we )(·+ y)

)
where wα ∈ Xα

c and y ∈ R3. However, such translation parametrization is not
smooth in X1 because the differentiation in y causes a loss of one order reg-
ularity in D y we (· + y). This is one of the main issues in Nakanishi and Schlag
[42], where the authors constructed the center-stable manifolds of the manifold
of ground states for the Klein-Gordon equation. They introduced a nonlinear
“mobile distance” to overcome that difficulty. Instead, the above bundle coordi-
nate system (2.36), where V e ∈ X e

c,y is not directly parametrized by a translation
in y , represents a different framework based on the observation that, while the
parametrization by the spatial translation of y is not smooth in X1 with respect
to y , the vector bundles X T,d1,e,d2,+,−

c,y over M are smooth in y as given in Lemma
2.3. This approach was used also in [5]. While it avoids the loss of regularity
when differentiating in y , it will involve more geometric calculation.

2.5. An equivalent form of the GP equation near traveling waves. Let U (t , x)
be any solution to (2.7). If U (t , x) stays in a small neighborhood of M , then we
can express U in the coordinate system (2.36)

(2.37) U (t ) =Φ(
y(t ), a(t ),V e (t )

)
, (y, a,V e )(t ) ∈ B d1+d2+2d (δ)⊕X e (δ)

for some δ> 0. Substituting U (t ) and (2.37) into (2.17) and using (2.15), we ob-
tain

∂t y ·∇Uc (·+ y)+∂t V e + (
(∂t ad1)V d1

c + (∂t ad2)V d2
c + (∂t a+)V +

c

+ (∂t a−)V −
c

)
(·+ y)+ (

ad1∂t y · (∇V d1
c )+ad2∂t y · (∇V d2

c )

+a+∂t y · (∇V +
c )+a−∂t y · (∇V −

c )
)
(·+ y)

=JLc,y Kc,y Em⊥(y, a,V e )+G
(
c, y,∂t y,Em⊥(y, a,V e )

)
.

(2.38)

Starting with ∂t y , we identify the evolution equation of each coordinate com-
ponent. ApplyingΠT

c,y and using Lemma 2.3 and (2.25), we have

∂t y +〈ζT
c (·+ y),∂t V e〉+〈ζT

c , ∂t y ·∇(
ad1V d1

c +ad2V d2
c +a+V +

c +a−V −
c

)〉
=MT 1ad1 +MT 2ad2 −〈Lc,y JζT

c (·+ y),V e〉
+〈ζT

c (·+ y),G
(
c, y,∂t y,Em⊥(y, a,V e )

)〉.
Since V e ∈ X e

c,y implies 〈ζαc (·+ y),V e〉 = 0 all t , we have

(2.39) 〈ζαc (·+ y),∂t V e〉 =−〈(∂t y ·∇ζαc )(·+ y),V e〉, α ∈ {T,d1,d2,+,−}.
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Therefore ỹ = ∂t y satisfies the following equation

ỹ −〈(ỹ ·∇ζT
c )(·+ y),Πe

c,y Kc,y w〉+〈ζT
c , ỹ ·∇(

(I −ΠT
c,y −Πe

c,y )Kc,y w
)

=MT 1ad1 +MT 2ad2 −〈Lc,y JζT
c (·+ y),V e〉+〈ζT

c (·+ y),G
(
c, y, ỹ , w

)〉,
where w = Em⊥(y, a,V e ). We actually note that the above equation is well-
defined for any small w ∈ X1. From Lemma A.1 and the regularity of V α

c and
ζαc , when ‖w‖X1 is sufficiently small, one may solve for ỹ = ∂t y and obtain

(2.40) ∂t y = MT 1ad1 +MT 2ad2 −〈Lc,y JζT
c (·+ y),V e〉+GT (c, y, w),

where
w = Em⊥(y, a,V e ).

According to Lemma A.1 and the regularity of ζT,d1,d2,+,−
c , GT (c, y, w) is smooth

in y and w ∈ X1 when ‖w‖X1 ¿ 1. As we did not prove G ∈ X1 in Lemma A.1, we
used the extra regularity of ζαc ∈ H k ×(Ḣ−1∩H k ). Furthermore, there exists C > 0
such that, for any y ∈R3 and small w ∈ X1,

(2.41) |Dk
w D l

yGT (c, y, w)| ≤Cl ,k‖w‖max{2−k,0}
X1

.

Applying Παc,y , α ∈ {d1,d2,+,−,e}, to (2.38) and using the basis V α
c , Lemma

2.3, (2.25), (2.39) and (2.40), we obtain

(2.42) ∂t a± = M±a±+G±(c, y, w),

(2.43) ∂t ad1 = M1ad1 +M12ad2 −〈Lc,y Jζd1
c (·+ y),V e〉+Gd1(c, y, w),

(2.44) ∂t ad2 = M2ad2 +Gd2(c, y, w),

(2.45) Πe
c,y∂t V e = Ae (y)V e +ad2 Ae2(y)V d2

c (·+ y)+Ge (c, y, w), V e ∈ X e
c,y ,

where Ae2(y) =Πe
c,y JLc,yΠ

d2
c,y is smooth in y and

(2.46) w = Em⊥(y, a,V e ).

Much as in the derivation of GT , Gα is also well-defined for any small w ∈ X1,
α ∈ {d1,d2,+,−,e}. Like Kc,y and Lc,y , Gα is translation invariant,

Gα(c, y + z, w(·+ z)
)=Gα(c, y, w), α ∈ {T,d1,d2,+,−}

Ge (c, y + z, w(·+ z)
)=Ge (c, y, w)(·+ z)

(2.47)

for all z ∈R3. For ‖w‖X1 ¿ 1, Gα, α ∈ {T,d1,d2,e,+,−}, are quadratic in w . From

Lemma A.1 and the regularity of ζT,d1,d2,+,−
c , they are smooth in y and w and

satisfy

(2.48) |Dk
w D l

yGα(c, y, w)| ≤Cl ,k‖w‖max{2−k,0}
X1

, α ∈ {T,d1,d2,+,−}.

The multi-linear terms in Ge prevent it from belonging to X1 (see Lemma A.1).
However, due to the extra regularity of ζαc , projectionsΠαc,y , α ∈ {d1,d2,+,−}, act
on a larger class of functions than X1, from Lemma A.1, we have

(2.49) (I −Πe
c,y )Ge (c, y, w) = 0, Ge (c, y, w) ∈ X1 +W 1, 3

2 + (L
3
2 ∩Ẇ 1, 6

5 )
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and

(2.50) |Dk
w D l

yGe |
X1+W 1, 3

2 +L
3
2 ∩Ẇ 1, 6

5
≤Cl ,k‖w‖max{2−k,0}

X1
,

Transforming the V e equation. Before we end this section, we transform (2.45)
to an equivalent form. In fact, since (I −Πe

c,y )V e ≡ 0, we have

(2.51) (I −Πe
c,y )∂t V e = D yΠ

e
c,y (∂t y)V e .

Therefore, (2.45) implies

∂t V e =Ae (y)V e +F (c, y)(∂t y,V e )

+ad2 Ae2(y)V d2
c (·+ y)+Ge (c, y, w)

(2.52)

where
Ae (y) =Πe

c,y JLc,yΠ
e
c,y

was given in Lemma 2.3 and the bounded bilinear operator F (c, y) : R3 ⊗ X1 →
X1 is given by

(2.53) F (c, y)(z,V ) = D yΠ
e
c,y (z)

(
Πe

c,yV − (I −Πe
c,y )V

)
.

Here we can take the last part of F in the form of V −b(I−Πe
c,y )V for any b, which

would not change the validity of (2.53) for V ∈ X e
c,y . The above choice of F would

bring certain convenience in some calculation later. Using the smoothness of
Παc,y in y given in Lemma 2.3, we obtain

(2.54) ‖F (c, y)(z,V )‖X1 ≤C |z|‖V ‖X1

for some C > 0 independent of y . The bilinear operator F is a modification
of the second fundamental form of the bundle X e

c,y over R3 as a sub-bundle of

X1 = X e
c,y ⊕

(
(I −Πe

c,y )X1
)

over R3.
While (2.52) is deduced from (2.45), actually the opposite also holds if V (s) ∈

X e
c,y(s) for some s. To see this, applying I −Πe

c,y to (2.52) we obtain

∂t
(
(I −Πe

c,y )V
)= (I −Πe

c,y )D yΠ
e
c,y (∂t y)

(
Πe

c,yV − (I −Πe
c,y )V

)−D yΠ
e
c,y (∂t y)V.

DifferentiatingΠe
c,yΠ

e
c,y =Πe

c,y with respect to y we have

(2.55) D yΠ
e
c,y (·)Πe

c,y +Πe
c,y D yΠ

e
c,y (·) = D yΠ

e
c,y (·).

It follows that

(2.56) ∂t
(
(I −Πe

c,y )V
)=−D yΠ

e
c,y (∂t y)(I −Πe

c,y )V.

Since this is a well-posed homogeneous linear equation of (I −Πe
c,y )V , which is

finite dimensional, the solution has to vanish if we assume V (s) ∈ X e
c,y(s). There-

fore

(2.57) V (t ) ∈ X e
c,y(t ), ∀t , if V (s) ∈ X e

c,y(s) and V (t ) solves (2.52).

Finally (2.45) follows from applyingΠe
c,y to (2.52).

Compared to (2.45), equation (2.52) is more convenient as the latter may be
posed on the whole space X1. Along with the boundedness of F , it makes it
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easier to prove the local well-posedness and obtain estimates of (2.52) and thus
we will mainly work with (2.52).

In summary, in a neighborhood of M ⊂ X0, equation (GP) written in the bun-
dle coordinates (y, ad1, ad2, a+, a−,V e ) ∈ B d1+d2+2d (δ)⊕X e (δ) is equivalent to
the system consisting of (2.40), (2.42), (2.43), (2.44), and (2.52), along with (2.46).

3. LINEAR ANALYSIS

We first analyze the linear part of (2.52) whose unknown is valued in a vector
bundle X e

c,y over R3. However it is observed that (2.52) is well-posed with V e ∈
X1, we will consider this general situation as well as the case V ∈ X e

c,y . Relaxing
the restriction V ∈ X e

c,y would provide a little convenience in some estimates
later. Moreover since Ge does not necessarily belong to X1, we give a space-time
estimate which will be used to close the nonlinear estimates in later sections.
Consider the following more general form of (2.52)

(3.1) ∂t V =Πe
c,y JLc,yΠ

e
c,yV +F (c, y)(∂t y,V )+ f (t ).

Here we assume y(t ), −∞≤ t0 ≤ t ≤ t1 ≤∞ satisfy

(3.2) σ := |∂t y |
L∞

(
(t0,t1),R3

) ≤ 1, ∀t ∈ (t0, t1).

For the non-homogeneous term f = (
f1(t , x), f2(t , x)

)
, we need the norm

(3.3) ‖ f ‖X̂ p,q
(t0,t1)
, ‖ f1‖Lp

(t0,t1)B
1
q,2

+‖ f2‖Lp
(t0,t1)Ḃ

1
q,2

along with the associated spaces X̂ p,q
(t0,t1) and X̂ p,q

(t0,t1),loc , where B s
p,r and Ḃ q

p,r denote
the standard Besov space as well as the homogeneous Besov space, respectively.
In the standard terminology, an admissible Stritchartz pair (p, q) and conjugate
exponent p ′ of p ∈ [1,∞] are those satisfying

(3.4) p, q ∈ [2,∞], 2/p +3/q = 3/2; 1/p ′+1/p = 1.

Our main goal in this section is to prove the following proposition.

Proposition 3.1. Suppose (3.2) holds, (p, q) is a Stritchartz pair, and f ∈ X̂ p̃ ′,q ′

(t0,t1),loc
where p̃ ∈ [1, p]. Then for any s ∈ (t0, t1) and initial value V (s) ∈ X1, (3.1) has a
unique solution V (t ) ∈ X1. Moreover, there exists C > 0 independent of t0, t1, s,σ, y(·),
and f (·), such that for any t ∈ (t0, t1), and η>Cσ, we have

〈Lc,y(t )V
e (t ),V e (t )〉 1

2 ≤eCσ|t−s|〈Lc,y(s)V
e (s),V e (s)〉 1

2 +Cη−
1
p̃ ‖eη|t−·| f e‖

X̂ p̃′ ,q′
(s,t )

|V ⊥(t )| ≤eCσ|t−s||V ⊥(s)|+Cη−
1
p̃ ‖eη|t−·| f ⊥‖

Lp̃′
(s,t )

,

where

V e (t ) =Πe
c,y(t )V (t ), V ⊥(t ) = (I −Πe

c,y(t ))V (t ),

f e (t ) =Πe
c,y(t ) f (t ), f ⊥(t ) = (I −Πe

c,y(t )) f (t ),
(3.5)



INVARIANT MANIFOLD 21

satisfying

∂t V e =Πe
c,y JLc,yΠ

e
c,yV e +F (c, y)(∂t y,V e )+ f e (t ),

∂t V ⊥ =−D yΠ
e
c,y (∂t y)V ⊥+ f ⊥.

(3.6)

Here one keeps in mind that I −Πe
c,y may be applied to a larger class of func-

tions than X1 and its range is finite dimensional. The above decoupling of V ⊥
and V e is due to the choice (2.53) of F . From the positivity of of Lc,y on X e

c,y
(Lemma 2.3), we have

Corollary 3.2. There exists C > 0 independent of t0, t1, s, y(·), and f (·), such that
for any t ∈ (t0, t1) and η>Cσ, we have

‖V (t )‖X1 ≤C
(
eCσ|t−s|‖V (s)‖X1 +η−

1
p̃ ‖eη|t−·| f (·)‖

X̂ p̃′ ,q′
(s,t )

)
.

Moreover, V (t ) ∈ X e
c,y(t ), for almost all t ∈ (t0, t1), if V (s) ∈ X e

c,y(s) and

(3.7) (I −Πe
c,y(t )) f (t , ·) = 0, ∀ a.e. t ∈ (t0, t1).

The above estimates indicate that the linear equation (3.1) exhibits at most
weak exponential growth due to |∂t y |.

Based on the regularity of the nonlinearity given in Lemma A.1, we also con-
sider the space

X̃(t0,t1) , L2((t0, t1), X1
)+L2((t0, t1),W 1, 3

2
)+L2((t0, t1),L

3
2 ∩Ẇ 1, 6

5
)

and X̃(t0,t1),loc . The next proposition will be a simple consequence of Proposition
3.1.

Proposition 3.3. Suppose (3.2) holds and f ∈ X̃(t0,t1),loc . Then for any s ∈ (t0, t1)
and initial value V (s) ∈ X1, (3.1) has a unique solution V (t ) ∈ X1. Moreover, there
exists C > 0 independent of t0, t1, s,σ, y(·), and f (·), such that for any t ∈ (t0, t1),
and η ∈ (Cσ,1), we have

‖V e (t )‖X1 ≤C
(
eCσ|t−s|‖V e (s)‖X1 +η−

1
2 ‖eη|t−·| f e (·)‖X̃(s,t )

)
.

|V ⊥(t )| ≤C
(
eCσ|t−s||V ⊥(s)|+η− 1

2 |eη|t−·| f ⊥(·)|L2
(s,t )

)
where V e,⊥ and f e,⊥ are defined in defined in (3.5) which satisfy (3.6).

These two propositions and Corollary 3.2 will be proved in the rest of the sec-
tion.

Energy estimates of homogeneous linear equation. We start with the basic
well-posedness and energy estimates of the homogeneous equation of (3.1) based
on the uniform positivity of Le (y) = Lc,y |X e

c,y
.

Lemma 3.4. Assume f ≡ 0, then (3.1) defines a bounded solution map

S(t , s) ∈ L(X1, X1), ∀t , s ∈ [t0, t1],

with initial value given at t = s, which satisfies

(3.8) S(s, s) = I , S(t , t ′)S(t ′, s) = S(t , s), S(t , s) ∈ L(X e
c,y(s), X e

c,y(t )).
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Moreover there exists C > 0 independent of t1, t2, t , s, and y(·) such that

(3.9) 〈Lc,y(t )S(t , s)V ,S(t , s)V 〉 ≤ eCσ|t−s|〈Lc,y(s)V ,V 〉, ∀V ∈ X e
c,y(s).

As a consequence, the lemma implies that, under the assumption f ≡ 0, (3.1)
preserve the constraint V ∈ X e

c,y if it holds initially. Later we will show that this
holds for non-homogeneous equation as well. Furthermore the homogeneous
equation induces possible exponential growth only due to ‖∂t y‖L∞ . The coeffi-
cient 1 in front of the above exponential is important for future estimates.

Proof. From Lemma 2.5, Ae (y) = Πe
c,y JLc,yΠ

e
c,y is a bounded perturbation to

JLc,∞ on X1. This, along with the boundedness of F , implies that (3.1) is well-
posedness on X1 and thus the solution flow S(t , s) of bounded linear operators
is well-defined.

Since (I −Πe
c,y )X1 ⊂ D(JLc,∞), for any V ∈ X1, by direct computation using

(3.1), one finds that (I −Πe
c,y )V satisfies

∂t
(
(I −Πe

c,y )V
)= (I −Πe

c,y )D yΠ
e
c,y (∂t y)

(
Πe

c,yV − (I −Πe
c,y )V

)−D yΠ
e
c,y (∂t y)V.

Following the same procedure as in Subsection 2.5, we obtain exactly the same
equation as (2.56) which yields

(3.10) (I −Πe
c,y(t ))V (t ) = 0, ∀t , if (I −Πe

c,y(s))V (s) = 0.

Finally we prove inequality (3.9). Let V (t ) be a solution of (3.1) with V (s) ∈
X e

c,y(s)∩D(JLc,∞), which yields V (t ) ∈ X e
c,y(t )∩D(JLc,∞) for all t . By direct calcu-

lation using J∗ =−J = J−1, one has

∂t 〈Lc,yV ,V 〉 = 〈J−1D yQ̃(y)(∂t y)V ,V 〉+2〈∂t V ,Lc,yV 〉
=−〈JD yQ̃(y)(∂t y)V ,V 〉+2〈F (c, y)(∂t y,V ),Lc,yV 〉

where Q̃ was defined in (2.28). It follows from the bounds (2.54) and (2.29)
that

(3.11) |∂t 〈Lc,yV ,V 〉| ≤C |∂t y |‖V ‖2
X1

.

Recall from Lemma 2.3 that the bounded symmetric quadratic form 〈Lc,y ·, ·〉 sat-
isfies 〈Lc,yV ,V 〉 ≥ ε‖V ‖2

X1
for any V ∈ X e

c,y . This uniform lower bound of Lc,y on
X e

c,y , the above estimate, and the Gronwall inequality immediately imply (3.9)
when V (s) ∈ X e

c,y(s)∩D(JLc,∞). Since X e
c,y(s)∩D(JLc,∞) is dense in X e

c,y(s), a stan-

dard density argument yields (3.9) for general solution V (t ) ∈ X e
c,y(t ). The proof

of the lemma is complete. �

Space-time estimates of (3.1). Given initial data at t = s ∈ [t0, t1], the solution of
(3.1) can be written as

(3.12) V (t ) = S(t , s)V (s)+
∫ t

s
S(t ,τ) f (τ)dτ.

Since f (t ) is not assumed to be in X1, we first prove the following lemma.
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Lemma 3.5. Suppose (3.2) and (3.7) hold, (p̃, q̃) is an admissible pairs, and f ∈
X̂ p̃ ′,q̃ ′

(t0,t1),loc .
Then for any given s ∈ (t0, t1) and initial value V (s) ∈ X e

c,y(s), (3.12) has a unique

solution V (t ) satisfying V (t ) ∈ X e
c,y(t ), for almost all t ∈ (t0, t1). Moreover, for any

admissible pair (p, q), there exists T,C > 0 independent of f , t0, t1, and y(·) such
that, if t0 < t ′0 ≤ s ≤ t ′1 < t1 satisfy t ′1 − t ′0 ≤ T , then

‖V (t )‖X̂ p,q

(t ′0,t ′1)
≤C

(‖V (s)‖X1 +‖ f ‖
X̂ p̃′ ,q̃′

(t ′0,t ′1)

)
.(3.13)

In particular, if (p, q) = (∞,2), then it holds, for t ∈ (t ′0, t ′1)

〈Lc,y(t )V (t ),V (t )〉 1
2 ≤eCσ|t−s|〈Lc,y(s)V (s),V (s)〉 1

2 +C‖ f ‖
X̂ p̃′ ,q̃′

(t ′0,t ′1)

.(3.14)

Proof. We prove the lemma in several steps.

• Step 1. Change of variables and dispersive estimates of the constant coefficient
homogeneous linear equation. To make it more convenient to carry out the dis-
persive estimates, we first apply a similar transformation to diagonalize JLc=0,∞.
Let

P =
√

−∆(2−∆)−1, R =
√

−∆(2−∆), P =
[

P 0
0 1

]
, V =P Z .

Apparently,

(3.15) P is an isomorphism from Ḣ 1 to X1.

From (3.1), (2.27), and (2.28), it is straight to compute that Z satisfies

(3.16) Zt = J H Z +Q
(
y(t ),∂t y(t )

)
Z + f̃ (t ).

where

H =
[

R −c ·∇
c ·∇ R

]
, f̃ (t ) =P −1 f (t ),

Q(y, z) =P −1(Q̃(y)+F (c, y)(z, ·))P .

Let R =
(
R 0
0 R

)
. From(2.54), (2.29), (3.15), and our assumptions, we have

(3.17) ‖Q(y, z)Z‖Ḣ 1 ≤C (1+|z|)‖Z‖Ḣ 1 , f̃ ∈ Lp̃ ′

(t0,t1)Ḃ
1
q̃ ′,2

for some C > 0 independent of y .
It was proved in [28] that for any q ∈ [2,∞], one has

‖e t JRφ‖Ḃ r
q,2
. t−3( 1

2− 1
q )‖φ‖Ḃ r

q′ ,2
.

Furthermore, for any admissible pairs (p j , q j ), j = 1,2, it holds

‖e t JRφ‖Lp1 Ḃ r
q1,2
. ‖φ‖Ḣ r , ‖

∫ t

0
e(t−τ)JR f (τ)dτ‖Lp1 Ḃ r

q1,2
. ‖ f ‖

Lp′2 Ḃ r
q′2,2

.
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These estimates lead to

‖e t J Hφ‖Ḃ r
q,2
. t−3( 1

2− 1
q )‖φ‖Ḃ r

q′ ,2
, ‖e t J Hφ‖Lp1 Ḃ r

q1,2
. ‖φ‖Ḣ r ,

‖
∫ t

0
e(t−τ)J H g (τ)dτ‖Lp1 Ḃ r

q1,2
. ‖g‖

Lp′2 Ḃ r
q′2,2

.
(3.18)

In fact, since J H − JR = c ·∇ which commutes with JR, we have

e t J H Z = (e t JR Z )(·+ ct ) = e t JR(
Z (·+ ct )

)
.

The first two of the inequalities in (3.18) follow immediately due to the transla-
tion invariance of the Besov norms. To see the last one in (3.18),

‖
∫ t

0
e(t−τ)J H g (τ)dτ‖Lp1 Ḃ r

q1,2
= ‖

∫ t

0
e(t−τ)JR(

g (τ)(·+ c(t −τ))
)
dτ‖Lp1 Ḃ r

q1,2

=‖
∫ t

0
e(t−τ)JR(

g (τ)(·− cτ)
)
dτ‖Lp1 Ḃ r

q1,2
. ‖g (t )(·− ct )‖

Lp′2 Ḃ r
q′2,2

= ‖g‖
Lp′2 Ḃ r

q′2,2

.

• Step 2. Space-time estimate. In the next step, instead of (3.12), we will obtain
the space-time estimate of solutions of (3.16) based on (3.18) with

Z (t )−e(t−s)J H Z (s) =
∫ t

s
e(t−τ)J H [

Q
(
y(τ),∂t y(τ)

)
Z (τ)+ f̃ (τ)

]
dτ

=
∫ t−s

0
e(t−s−τ)J H [

Q
(
y(s +τ),∂t y(s +τ)

)
Z (s +τ)+ f̃ (s +τ)

]
dτ.

(3.19)

By (3.18), (2.29), (3.17), (3.15), and σ = |∂t y |L∞ ≤ 1, for admissible pairs (p, q),
(p̃, q̃) and (∞,2), and t0 < t ′0 ≤ s ≤ t ′1 < t1, we have

‖Z (t )−e(t−s)J H Z (s)‖Lp

(t ′0,t ′1)
Ḃ 1

q,2
≤C

(‖Z‖L1
(t ′0,t ′1)

Ḣ 1 +‖ f̃ ‖
Lp̃′

(t ′0,t ′1)
Ḃ 1

q̃′ ,2

)
≤C

(
(t ′1 − t ′0)‖Z‖L∞

(t ′0,t ′1)
Ḣ 1 +‖ f̃ ‖

Lp̃′
(t ′0,t ′1)

Ḃ 1
q̃′ ,2

)
.

(3.20)

Consider the standard splitting of Z (t ) into

Z (t ) = Zh(t )+Zi n(t ), V (t ) =P Zh(t )+P Zi n(t ),

where Zh(t ) satisfies the corresponding homogeneous equation of (3.16) (i.e.
without f̃ ) and Zh(s) = Z (s), and Zi n(t ) solves (3.16) and Zi n(s) = 0.

• Step 3. Non-homogeneous part Zi n . On the one hand, applying (3.20) to Zi n(t )
with the admissible pair (p =∞, q = 2), we obtain that there exists T > 0 inde-
pendent of t0, t1, t ′0, t ′1, and y(t ) such that, if t ′1 − t ′0 ≤ T , it holds

‖Zi n‖L∞
(t ′0,t ′1)

Ḣ 1 ≤C‖ f̃ ‖
Lp̃′

(t ′0,t ′1)
Ḃ 1

q̃′ ,2
.

Substituting this back into (3.20), we have that for any t ′1− t ′0 ≤ T and admissible
pairs (p, q),

(3.21) ‖Zi n‖Lp

(t ′0,t ′1)
Ḃ 1

q,2
≤C‖ f̃ ‖

Lp̃′
(t ′0,t ′1)

Ḃ 1
q̃′ ,2

.
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We claim that (I −Πe
c,y(t )) f (t ) = 0 implies

(3.22) P Zi n(t ) =
∫ t

s
S(t ,τ) f (τ)dτ ∈ X e

c,y(t ), a.e. t ∈ (t ′0, t ′1).

In fact, let

Y = {
g̃ ∈ Lp̃ ′

(t ′0,t ′1)
Ḃ 1

q̃ ′,2 | (I −Πe
c,y(t ))P g (t ) = 0, ∀t ∈ (t ′0, t ′1)

}⊂ Lp̃ ′

(t ′0,t ′1)
Ḃ 1

q̃ ′,2.

Since ζαc ∈ H k × (H k ∩ H−1), for any k ≥ 1 and α ∈ {T,d1,d2,+,−}, I −Πe
c,y

actually applies to P g (t ) ∈ B 1
q̃ ′,2 × Ḃ 1

q̃ ′,2. Consider the mapping Γ

W (t ) = (Γg )(t ),
∫ t

s
S(t ,τ)P g̃ (τ)dτ.

Inequality (3.21) and the definition of P imply that Γ : Lp̃ ′

(t ′0,t ′1)
Ḃ 1

q̃ ′,2 → L∞
(t ′0,t ′1)

X1 is

a bounded operator, and thus also bounded when restricted to Y . Since Lemma
3.4 implies

(I −Πe
c,y(t ))(Γg )(t ) = 0, ∀t ∈ (t ′0, t ′1) if g ∈ Y ∩L∞

(t ′0,t ′1)X1

and Y ∩L∞
(t ′0,t ′1)

X1 is dense in Y , we obtain that (I−Πe
c,y(t ))Γ vanishes on Y . There-

fore P Zi n(t ) ∈ X e
c,y(t ) for almost all t ∈ (t ′0, t ′1).

• Step 4. Homogeneous part and the completion of the proof of the lemma. On
the other hand, it is clear

Zh(t ) =P −1S(t , s)V (s), P Zh(t ) ∈ X e
c,y(t ),

which also implies V (t ) = P Zh(t )+P Zi n(t ) ∈ X e
c,y(t ) for almost all t ∈ (t ′0, t ′1).

Applying Lemma 3.4 to the ‖ ·‖L∞Ḣ 1 on the right side of (3.20) for Zh , we have

‖Zh −e(t−s)J H Z (s)‖Lp

(t ′0,t ′1)
Ḃ 1

q,2
≤C (t ′1 − t ′0)‖V (s)‖X1

for t ′0 < s < t ′1 < t ′0 +T . From (3.18), we obtain

‖Zh‖Lp

(t ′0,t ′1)
Ḃ 1

q,2
≤C‖V (s)‖X1

and inequality (3.13) follows immediately from the above estimates.
To derive (3.14) in the case of (p =∞, q = 2), we apply (3.9) instead, along with

(3.21), (3.22), and (3.15) and the uniform positivity of Lc,y on X e
c,y , to compute,

for t ∈ (t ′0, t ′1),

〈Lc,y(t )V (t ),V (t )〉 = 〈Lc,y(t )S(t , s)V (s),S(t , s)V (s)〉
+2〈Lc,y(t )S(t , s)V (s),P Zi n(t )〉+〈Lc,y(t )P Zi n(t ),P Zi n(t )〉

≤(〈Lc,y(t )S(t , s)V (s),S(t , s)V (s)〉 1
2 +〈Lc,y(t )P Zi n(t ),P Zi n(t )〉 1

2
)2

≤(
eCσ|t−s|〈Lc,y(s)V (s),V (s)〉 1

2 +C‖ f̃ ‖
Lp̃′

(t ′0,t ′1)
Ḃ 1

q̃′ ,2

)2.
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This implies (3.14). Finally as T is independent of f and y(t ), a standard contin-
uation argument extends of solutions on (t0, t1) and thus completes the proof of
the lemma. �

In the next step, we iterate the above small time estimates.

Lemma 3.6. Suppose (3.2) and (3.7) hold, (p, q) is an admissible pairs, and f ∈
X̂ p̃ ′,q ′

(t0,t1), where p̃ ∈ [1, p]. Then there exists C > 0 independent of f , t0, t1, s, t , such
that for any η>Cσ, every solution V (t ) to (3.12) satisfies

〈Lc,y(t )V (t ),V (t )〉 1
2 ≤ eCσ|t−s|〈Lc,y(s)V (s),V (s)〉 1

2 +Cη−
1
p̃ ‖eη|t−·| f ‖

X̂ p̃′ ,q′
(s,t )

for any t0 < t , s < t1.

Proof. We only prove the estimates for t > s, the estimates for negative time can
be obtained similarly. Suppose t = s + kT + t ′ where t ′ ∈ [0,T ), we use (3.14)
repeatedly to compute

〈Lc,y(t )V (t ),V (t )〉 1
2 ≤ eCσt ′(〈Lc,y(τ)V (τ),V (τ)〉|τ=s+kT

) 1
2 +C‖ f ‖

X̂ p′ ,q′
(s+kT,t )

≤eCσ(t−s)〈Lc,y(s)V (s),V (s)〉 1
2 +C

(‖ f ‖
X̂ p̃′ ,q′

(s+kT,t )

+
k∑

j=1
eCσ(t−s− j T )‖ f ‖

X̂ p̃′ ,q′
(s+( j−1)T,s+ j T )

)
≤eCσ(t−s)〈Lc,y(s)V (s),V (s)〉 1

2 +C (
k∑

j=0
e p̃(Cσ−η)(t−s− j T ))

1
p̃ ‖eη(t−·) f ‖

X̂ p̃′ ,q′
(s,t )

.

Summing up the exponentials completes the proof of the lemma. �

Finally we drop the assumption (3.7).

Proof of Proposition 3.1. We split (3.1) into the X e
c,y component and its com-

plementary component as in (3.5). Much as the calculation in the derivation of
(2.56), we have that V ⊥ satisfies (3.6).

The remaining estimate of V ⊥(t ) is similar to the above. In fact, for t > s,

|V ⊥(t )| ≤eCσ(t−s)|V ⊥(s)|+
∫ t

s
eCσ(t−τ)| f ⊥(τ)|dτ

≤eCσ(t−s)|V ⊥(s)|+
∫ t

s
e(Cσ−η)(t−τ)eη(t−τ)| f ⊥(τ)|dτ)

which implies the desired estimate on V ⊥(t ).
Due to the choice of F , it is straight forward to compute that V e (t ) = V (t )−

V ⊥(t ) satisfies (3.1) with the non-homogeneous term f (t ) replaced by f e (t ).
Lemma 3.6 implies the estimate on V e (t ) which completes the proof of the propo-
sition. ä

Finally, we apply Lemma 3.6 to prove Proposition 3.3.
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Proof of Proposition 3.3. We first decompose f ∈ X̃(t0,t1),loc into the sum of sev-
eral terms satisfying the assumptions in Lemma 3.6. In fact, by the definition of
X̃ , we can write

f =φ+ψ+γ
where

φ ∈ L2
l ocW 1, 3

2 ⊂ L2
loc B 1

3
2 ,2

⊂ X̂
2, 3

2

(t0,t1),loc , γ ∈ L2
l oc (H 1 × Ḣ 1) ⊂ X̂ 2,2

(t0,t1),loc ,

and
ψ ∈ L2

loc (L2 ∩L
3
2 ), ∇ψ ∈ L2

l oc L
6
5 .

Let χ be the same smooth cut-off function used in Subsection 2.1. Clearly

χ(D)ψ ∈ L2
l ocW 1, 3

2 ⊂ L2
loc B 1

3
2 ,2

⊂ X̂
2, 3

2

(t0,t1),loc , and ∇(
1−χ(D)

)
ψ ∈ L2

l oc L
6
5 .

Moreover, since the inverse Fourier transform of 1−χ(|ξ|)
|ξ| is in L1, we have(

1−χ(D)
)
ψ= 1−χ(D)

|D| |D|ψ ∈ L2
l oc L

6
5

and thus
(
1−χ(D)

)
ψ ∈ X̂

2, 6
5

(t0,t1),loc .
The desired estimate follows immediately from applying Proposition 3.6 to

each of these terms. ä
4. CONSTRUCTION OF LIPSCHITZ LOCAL INVARIANT MANIFOLDS OF M

Based on the space-time estimates developed in Section 3, we construct the
center-unstable manifold W cu(M ) of M , while the center-stable manifold W cs(M )
can be constructed similarly. The intersection of the center-unstable and the
center-stable manifolds yields the center manifold of M .

4.1. Outline of the construction of the center-unstable manifold of M . Our
construction roughly follows the procedure in [13]. The codim-d local center-
unstable manifold are over the directions of X d1

c,y ⊕X e
c,y ⊕X d2

c,y ⊕X +
c,y along M . In

coordinate system (2.36) W cu(M ) is represented as the graph of some mapping
hcu

W cu(M ) =Φ({
a− = hcu(y, ad1, ad2, a+,V e ) |
(y, ad1, ad2, a+,V e ) ∈ B d1+d2+d (δ)⊕X e (δ)

})(4.1)

where the above sets are defined in (2.32). Even though W cu(M ) is local, by us-
ing a standard cut-off technique, we will carry out the construction onRd1+d2+d⊕
X e (δ). Moreover, for technical convenience, we shall work with h(y, ad1, ad2, a+,V )
defined on R3+d1+d2+d × X1(δ) to avoid the non-flat bundle. However, only the
value of h on Rd1+d2+d ⊕X e (δ) matters.

Let

X cu =R3+d1+d2+d ×X1, X cu(δ) = {(y, ad1, ad2, a+,V ) ∈ X cu : ‖V ‖X1 < δ}.

The following projection Π̃e , linear except in y , will be used often

(4.2) Π̃e (y, ad1, ad2, a+,V ) = (y, ad1, ad2, a+,Πe
c,yV ) ∈Rd1+d2+d ⊕X e .
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We shall modify equations (2.40), (2.42), (2.43), (2.44), and (2.52), along with
(2.46), into a system defined on X cu ×Rd . As a standard technique in local anal-
ysis, we first cut-off the nonlinearities as well as the off-diagonal linear terms in
the direction transversal to M . Take a cut-off function

(4.3) γ ∈C∞
0 (R), s. t. γ(x) = 1, ∀|x| ≤ 1, γ(x) = 0, ∀|x| ≥ 3, |γ′|C 0(R) ≤ 1

and for δ> 0, a− ∈Rd , and W = (y, ad1, ad2, a+,V ) ∈ X cu , let

γδ(W, a−) = γ(
3δ−1(|ad1|+ |ad2|+ |a+|+ |a−|+‖V ‖X1 )

)
.

For a− ∈Rd and W ∈ X cu , let

Ĝα(W, a−) =γδ(W, a−)Gα(c, y, w), α ∈ {+,−,d2}

Ĝd1(W, a−) =γδ(W, a−)
(〈ζd1

c (·+ y), A1e (y)Kc,y w〉+M12ad2 +Gd1(c, y, w)
)

ĜT (W, a−) =γδ(W, a−)
(〈ζT

c (·+ y), ATe (y)Kc,y w〉+MT 1ad1 +MT 2ad2

+GT (c, y, w)
)

Ĝe (W, a−) =γδ(W, a−)
(

Ae2(y)Kc,y w +Ge (c, y, w)
)

where functions ζT
c = (ζT

c,1,ζT
c,2,ζT

c,3), ζd1
c = (ζd1

c,1, . . . ,ζd1
c,d1

), and operators A1e , Ae2,
and ATe are given in Lemma 2.3, matrices M12, MT 1, MT 2 in (2.25), and

w =Λ(W, a−), Em⊥(
y, ad1, ad2, a+, a−,Πe

c,yV
)

=K −1
c,y

(
(ad1V d1

c +ad2V d2
c +a+V +

c +a−V −
c )(·+ y)+Πe

c,yV
)
.

(4.4)

From the definitions of Ĝα, it clearly holds that they are independent of the
extra component (I − Π̃e )W added to avoid the non-flat bundle Rd1+d2+d ⊕X e .
In particular, Ĝe satisfies

(4.5) (I −Πe
c,y )Ĝe = 0, Ĝe ∈ X̃ = X1 +W 1, 3

2 + (L
3
2 ∩Ẇ 1, 6

5 ).

Denote

X̃ cu =R3+d1+d2+d × X̃ , X̃ cu(δ) = {(y, ad1, ad2, a+,V ) ∈ X̃ cu : ‖V ‖X̃ < δ},

Ĝcu(W, a−) = (ĜT ,Ĝd1,Ĝd2,Ĝ+,Ĝe )(W, a−),

Acu(y, ỹ) = di ag
(
0, M1, M2, M+,Πe

c,y JLc,yΠ
e
c,y +F (c, y)(ỹ , ·)).

We shall consider, for W = (y, ad1, ad2, a+,V ) ∈ X cu and a− ∈Rd ,

(4.6a) ∂t W = Acu(
y,ĜT (W, a−)

)
W +Ĝcu(W, a−)

(4.6b) ∂t a− = M−a−+Ĝ−(W, a−)

which, for ‖w‖X1 ≤ δ, coincides with the system consisting of equations (2.40),
(2.42), (2.43), (2.44), and (2.52), along with (2.46), the representation of (GP) in
the local coordinate system near M .

As the off-diagonal linear blocks in JLc,y are incorporated into Ĝcu , the lat-
ter does not have small Lipschitz constants, which is often a necessity in con-
structing local invariant manifolds. Accordingly, we introduce metrics involving
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a scale constant Q > 1

‖(y, ad1, ad2, a+,V )‖X1,Q , |y |+Q|ad1|+Q3|ad2|+ |a+|+Q2‖V ‖X1 ,

‖(y, ad1, ad2, a+,V )‖X̃ ,Q , |y |+Q|ad1|+Q3|ad2|+ |a+|+Q2‖V ‖X̃

(4.7)

to make Lipschitz constants of Ĝcu,− small (Lemma 4.3).
We shall construct the local center-unstable manifold W cu(M ) as the graph

{a− = hcu(W )} of some h : X cu(δ) → Rd . Since W cu(M ) is expect to be transla-
tion invariant, we will only consider translation invariant mappings h : X cu(δ) →
Rd , which satisfy, for any z ∈R3,

(4.8) h
(
y + z, ad1, ad2, a+,V (·+ z)

)= h(y, ad1, ad2, a+,V ).

Fix constants Q,δ,µ such that

(4.9) δ< 1, Q > 1, µ< 1

5
,

whose additional assumptions will be given later. Let

Γµ,δ = {h : X cu(δ) →Rd | h(y,0,0,0,0) = 0, ‖h‖C 0 ≤ δ/15,

h satisfies (4.8), and Li p‖·‖X1,Q ≤µ.}.
(4.10)

Here h(y,0,0,0,0) = 0 is required as W cu(M ) should contain M . Clearly Γµ,δ

equipped with ‖ ·‖C 0 is a complete metric space.
We will define a transform on Γµ,δ based on (GP). For any h ∈ Γµ,δ and W̄ ∈

X cu(δ), consider the solution W (t ) = (y, ad1, ad2, a+,V )(t ) ∈ X cu of

(4.11) ∂t W = Acu(
y,ĜT (W,h(W )

))
W +Ĝcu(

W,h(W )
)
, W (0) = W̄ .

Remark 4.1. Even though h is defined only on X cu(δ), due to the cut-off function
γδ, for any h ∈ Γµ,δ, α ∈ {T,d1,d2,±,e}, it holds Ĝα

(
W,h(W )

)= 0 whenever W ∈
X cu\X cu(δ). Consequently, the right side of (4.11) is well-defined for all W ∈
X cu .

We define h̃(W̄ ) as

(4.12) h̃(W̄ ) = ā− =
∫ 0

−∞
e−t M−Ĝ−(

W (t ),h(W (t ))
)
d t .

We denote this transformation h → h̃ as

T (h) = h̃.

In order to construct the center-unstable manifold, in the following subsec-
tions, under suitable assumptions on Q, δ, and µ we will show h̃ ∈ Γµ,δ is well-
defined and that T is a contraction on Γµ,δ. The graph of the unique fixed point,
restricted to the set

B d1+d2+d (δ)⊕X e (δ) = {(y, ad1, ad2, a+,V ) ∈ X cu(δ) | |(ad1, ad2, a+)| < δ, V ∈ X e
c,y }

would be the desired center-unstable manifold W cu(M ). To end this subsection,
we give the following lemma to show that working on systems (4.6) or (4.11) on
the expanded domain X cu , only to avoid the non-flat bundle Rd1+d2+d ⊕X e ,
does not change the local invariant manifolds.
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Lemma 4.2. The following statements hold.

(1) Suppose W (t ) satisfies (4.6a) on [t1, t2] for some a− ∈ C 0([t1, t2],Rd ) and
Π̃eW (t0) = W (t0) for some t0 ∈ [t1, t2], then Π̃eW (t ) = W (t ) for all t ∈
[t1, t2].

(2) Assume h j ∈ Γµ,δ, j = 1,2, satisfy h1(W ) = h2(W ) for all W ∈ X cu(δ) with
Π̃eW =W . Then h̃ j , j = 1,2, defined in (4.12) satisfy the same property.

Proof. For the first statement, we observe that a direct consequence of (4.5),
(3.6), and our assumption is (I − Π̃e )W (t ) = 0, for all t ≤ [t1, t2], which implies
W (t ) = Π̃eW (t ). The second statement of the lemma is just a simple corollary of
part (1) and the definition of h̃. �

4.2. Apriori Estimates. Following the construction outlined in Subsection 4.1,
in order to prove that h̃ ∈ Γµ is well-defined for any given h ∈ Γµ,δ, we start with
the following preliminary estimates.

Lemma 4.3. Ĝcu,− : X cu ×Rd → X̃ cu ×Rd are smooth, Ĝcu,−(y,0,0,0,0,0) = 0.
Moreover, there exists C > 0 independent of Q and δ such that

‖DĜcu‖LQ (X cu×Rd ,X̃ cu ) ≤C (Q−1 +δQ3), ‖DĜ−‖L(X cu×Rd ,Rd ) ≤Cδ

where ‖ ·‖LQ (X cu×Rd ,X̃ cu ) denote the operator norm when evaluated in ‖ ·‖X1,Q and
‖ ·‖X̃ ,Q .

Proof. From the definitions of Ĝcu,− and (2.48) and (2.50) which in turn are de-
rived from Lemma A.1, the smoothness of Ĝcu,− and Ĝcu,−(y,0,0,0,0,0) = 0 fol-
lows immediately. Moreover, it is straight forward to obtain the following esti-
mates. Firstly, for l ,k ≥ 0,

‖Dk
(ad1,ad2,a+,a−,V )

D l
y (Ĝcu ,Ĝ−)(W, a−)‖ ≤Ck,lδ

1−k(4.13)

for some Ck,l > 0. When we exclude the off-diagonal terms in Ĝcu , the estimates
may be improved to

|Dk
(ad1,ad2,a+,a−,V )

D l
yĜd2,+,−|+ |Dk

(a+,a−)D
l
yĜT |

+‖Dk
(ad1,a+,a−,V )

D l
yĜe‖+|Dk

(ad1,a+,a−)
D l

yĜd1| ≤Ck,lδ
2−k ,

(4.14)

for some Ck,l > 0. In the above Ĝe is always evaluated in the ‖ · ‖X̃ norm. The
desired estimates on DĜcu,− follows from straight forward calculations based
on the above inequalities. �

The following lemma is a simple corollary of Proposition 3.1.

Lemma 4.4. There exists C > 0 such that, for any y ∈ C 1
(
(−∞,0],R

)
satisfying

|∂t y |L∞ ≤ σ, f ∈ L2
(
(−∞,0], X̃ cu), Q > 1, η ∈ (Cσ,1), and W (t ), t ∈ (−∞,0], solv-

ing
∂t W = Acu(y,∂t y)W + f ,

we have

‖W (t )‖2
X1,Q ≤Cη−2d1 e−ηt‖W (0)‖2

X1,Q +Cη−2d1−1
∫ 0

t
eη(τ−t )‖ f (τ)‖2

X̃ ,Q
dτ.
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Proof. Since Acu takes a diagonal form, we may consider each component indi-
vidually. For the ad1,d2 and y components, in addition to applying (2.26) we also
use

|e t M1 |+ |e t M2 | ≤C (1+|t |)d1 ≤Cη−d1 e
η

3 |t |

and the following estimate based on the Cauchy-Schwartz inequality

|
∫ 0

t
e
η

3 (τ−t )g (τ)dτ|2 ≤Cη−1
∫ 0

t
eη(τ−t )|g (τ)|2dτ

to obtain the desired inequality. The estimate on the V component is a direct
consequence of Proposition 3.1 and the estimate of the a+ and y component
trivially follows from (2.26). �

Proposition 4.5. Let η ∈ (0,1), T ∈ [−∞,0), h ∈ Γµ,δ, and ã−
2 (·) ∈ C 0

(
[T,0],Rd ).

Suppose W1(t ) = (y1, ad1
1 , ad2

1 , a+
1 ,V1)(t ) ∈ X cu is a solution to (4.11) and W2 =

(y2, ad1
2 , ad2

2 , a+
2 ,V2)(t ) ∈ X cu solves

(4.15) ∂t W = Acu(
y,ĜT (W, ã−

2 )
)
W +Ĝcu(W, ã−

2 ),

with initial values W̄ j = (ȳ j , ād1
j , ād2

j , ā+
j ,V̄ j ) ∈ X cu(δ), j = 1,2. Then these solu-

tions exist for all t ∈ [T,0] and there exists C > 0 independent of µ,T,η,Q, and δ,
such that if (4.9) is satisfied and

(4.16) Cη−(1+d1)(Q−1 +Q3δ) < 1

then W j (t ) ∈ X cu(Cδ) for all t ∈ [T,0] and

‖(W2 −W1)(t )‖2
X1,Q ≤Cη−2d1

(
e−2ηt‖(W2 −W1)(0)‖2

X1,Q

+η−1Q6δ2
∫ 0

t
e2η(τ−t )|(ã−

2 −h(W2)
)
(τ)|2dτ

)
.

Proof. To analyze solutions to (4.11) and (4.15), we first note

ĜT (W, a−) = 0, Ĝe (W, a−) = 0, if ‖V ‖X1 ≥ δ.

Therefore if ‖V j‖X1 ≥ δ, (3.11), (4.11), and decomposition (3.6) yield

∂t y j = 0, ∂t 〈Lc,y jΠ
e
c,y j

V j ,Πe
c,y j

V j 〉 = 0, ∂t (I −Πe
c,y j

)V j = 0,

which along with the initial condition and Lemma 2.3 yield

(4.17) ‖V j (t )‖X1 ≤Cδ, ∀t ∈ [T,0].

To estimate the difference, let

B(t ) =F (c, y2)
(
ĜT (W2, ã−

2 ), ·)−F (c, y1)
(
ĜT (W1,h(W1)), ·)+ Ae (y2)− Ae (y1)

B cu(t ), Acu(
y2,ĜT (W1, ã−

2 )
)− Acu(

y1,ĜT (W1,h(W1))
)

= di ag
(
0,0,0,0,B(t )

)
.

The cut-off in the definition of ĜT , (4.11), and (4.13) imply

|∂t y j | = |ĜT | ≤Cδ.
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From Lemma 2.3, Lemma 2.5, (4.13), (4.17), and (4.17), we can estimate

‖B cu(t )W2(t )‖X1,Q =Q2‖B(t )V2(t )‖X1

≤CδQ2(|y2 − y1|
(
1+|ĜT (W1,h(W1))|)+|ĜT (W2, ã−

2 )−ĜT (W1,h(W1))|)
≤CδQ2(‖W2 −W1‖X cu +|ã−

2 −h(W1)|).

From the definitions of W j , j = 1,2, and decomposition (3.6), we have

∂t (W2 −W1) =Acu(
y1,ĜT (W1,h(W1))

)
(W2 −W1)+B cuW2

+Ĝcu(W2, ã−
2 )−Ĝcu(

W1,h(W1)
)
.

Applying Lemma 4.4 we obtain

‖(W2 −W1)(t )‖2
X1,Q ≤Cη−2d1 e−ηt‖(W2 −W1)(0)‖2

X1,Q

+η−2d1−1
∫ 0

t
eη(τ−t )(‖(B cuW2)(τ)‖2

X̃ ,Q

+‖(Ĝcu(W2, ã−
2 )−Ĝcu(

W1,h(W1)
))

(τ)‖2
X̃ ,Q

)
dτ.

The above estimate on B cu and Lemma 4.3 including (4.14)
imply

‖(W2−W1)(t )‖2
X1,Q ≤Cη−2d1 e−ηt‖(W2 −W1)(0)‖2

X1,Q +η−2d1−1
∫ 0

t
eη(τ−t )

× (
(Q−1 +δQ3)2‖(W e

2 −W e
1 )(τ)‖2

X1,Q +δ2Q6|(ã−
2 −h(W1)

)
(τ)|2)dτ.

Since h is Lipschitz with Lipschitz constant µ< 1, we obtain

eηt‖(W2 −W1)(t )‖2
X1,Q ≤Cη−2d1‖(W2 −W1)(0)‖2

X1,Q +η−2d1−1
∫ 0

t
eητ

× (
(Q−1 +δQ3)2‖(W2 −W1)(τ)‖2

X1,Q +δ2Q6|(ã−
2 −h(W2)

)
(τ)|2)dτ.

The estimate on W2 −W1 follows from the Gronwall inequality. �

Remark 4.6. It is worth pointing out that the F term in the equation of ∂t V can
not be cut off as it ensures V ∈ X e

c,y if this holds initially. In the proof of the above
proposition, this term was under control since it vanishes when ‖V ‖X1 = Cδ
which implies ∂t y = 0. Seemingly this argument heavily depends on the lack
of growth of e t Ae (y) for any fixed y . If e t Ae (y) indeed induces some weak expo-
nential growth backward in t , instead of the cut-off applied to the V equation,
a standard trick is to add a bump function to modify the V equation so that it
is actually slightly inflowing/decaying backward in t for ‖V ‖X1 ≥ Cδ. The same
estimates could be obtained subsequently.

4.3. Lipschitz center-unstable manifold. In this subsection, we will show that
the transformation outlined in Subsection 4.1 is well-defined and is a contrac-
tion on Γµ,δ for appropriate µ,Q, and δ, which would imply the existence of a
fixed point and thus a center-unstable manifold. For any h ∈ Γµ,δ, recall we at-

tempted to define a new mapping h̃ = T (h) whose value h̃(W ) = ā− at W =
(ȳ , ād1, ād2, ā+,V̄ ) is given by (4.12).
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Lemma 4.7. Fix η ∈ (0,1)∩ (0,λ). There exists C > 0 independent of Q,µ,δ and η,
such that if (4.9), (4.16), and

(4.18) C (λ−η)−1η−(d1+1)Q3δ2 < 1, C (λ−η)−1η−d1δ<µ,

are satisfied, then T is a contraction on Γµ,δ.

Proof. We first prove that h̃ ∈ Γµ,δ . Since h(y,0) = 0 and Ĝcu,−(y,0) = 0, if its ini-
tial data W̄ = (ȳ ,0), then the solution to (4.11) apparently is W (t ) = (ȳ ,0). There-
fore h̃(ȳ ,0) = 0. From (4.14) and (2.26), it is easy to estimate

‖h̃‖C 0 ≤Cλ−1δ2 ≤ δ/15,

where (4.18) is used.
From (2.47), (4.8), and that ‖ ·‖X1 is translation invariant, the cut-off is not af-

fected by any spatial translation. Therefore
(
y(t )+z, ad1(t ), ad2(t ), a+(t ),V (t , ·+

z)
)

is a solution to (4.11) for any z ∈ R3 and any solution (y, ad1, ad2, a+,V )(t ) to
(4.11). Therefore the definition of h̃ implies that it also satisfies (4.8).

Finally, we show the Lipschitz property for h̃. For any W̄ j ∈ X cu(δ), let W j (t ),
t ≤ 0, be the corresponding solutions to (4.11) and ā−

j be given as in (4.12), for
j = 1,2. Applying Proposition 4.5 to these two solutions, we have, for any t ≤ 0,

‖(W2 −W1)(t )‖X1,Q ≤Cη−d1 e−ηt‖W̄2 −W̄1‖X1,Q .

Therefore, we obtain from (4.12), (2.26), and (4.14) that

|ā−
2 − ā−

1 | ≤Cδ
∫ 0

−∞
eλτ‖(W2 −W1)(τ)‖X1,Q dτ≤ Cη−d1δ

λ−η ‖W̄2 −W̄1‖X1,Q .

The desired Lipschitz property of h̃ follows immediately from (4.18) and thus
h̃ ∈ Γµ,δ.

To see the transformation h → h̃ is a contraction, given any h1,h2 ∈ Γµ,δ and
initial value W ∈ X cu(δ), let W j (t ), t ≤ 0, j = 1,2, be the solutions to (4.11) asso-
ciated to h j , with the initial value W . In applying Proposition 4.5, we notice the
corresponding

|(a2 −h1(W ))(t )| ≤ ‖h2 −h1‖C 0 , (W1 −W2)(0) = 0,

and thus, for any t ≤ 0,

‖(W2 −W1)(t )‖X1,Q ≤Cη−d1−1Q3δe−ηt‖h2 −h1‖C 0 .

Therefore (4.12), (2.26), and (4.14) again imply

|ā−
2 − ā−

1 | ≤Cη−(1+d1)Q3δ2
∫ 0

−∞
e(λ−η)τdτ‖h2 −h1‖C 0 .

Therefore (4.18) implies the contraction property. �

Under conditions (4.9), (4.16), and (4.18), which can apparently be satisfied
by choosing µ,δ,Q, and η carefully, Lemma 4.7 implies

∃|hcu ∈ Γµ,δ, s. t. T (hcu) = hcu .
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We are only concerned with hcu restricted to Rd1+d2+d ⊕X e (δ). Let

W cu = g r aph(hcu) = {
(y, ad1, ad2, a+, a−,V e ) |

a− = hcu(y, ad1, ad2, a+,V e ), (y, ad1, ad2, a+,V e ) ∈Rd1+d2+d ×X e (δ)
}

and an even small submanifold for (2.7) and (GP)

W cu(M ) =Φ({
(y, ad1,ad2, a+, a−,V e ) ∈W cu |

|ad1|, |ad2|, |a+|,‖V e‖X1 < δ/15
})

.
(4.19)

W cu is a Lipschitz manifold due to the Lipschitz property of hcu ∈ Γµ,δ.

For any ā− = hcu(W̄ ), W̄ = (ȳ , ād1, ād2, ā+,V̄ e ) ∈Rd1+d2+d⊕X e (δ) correspond-
ing to a point on W cu , let W (t ) = (y, ad1, ad2, a+,V e )(t ) be the corresponding
solution of (4.11) where V e (t ) ∈ X e

c,y(t )(Cδ) due to Lemma 4.2 and Proposition

4.5. Let a−(t ) = hcu
(
W (t )

)
whenever t satisfies V e (t ) ∈ X e

c,y(t )(δ). We can extend

a−(t ) to be a bounded function for t ∈R. For any |t0|¿ 1 such that W̃ =W (t0) ∈
X cu(δ), since (4.11) is autonomous, W (t + t0) is its solution with initial value W̃ .
Since T (hcu) = hcu , we can compute ã− = a−(t0) = hcu

(
W̃

)
satisfies

ã− =
∫ 0

−∞
e−τM−Ĝ−(

(W, a−)(t0 +τ)
)
dτ=

∫ t0

−∞
e−(τ−t0)M−Ĝ−(

(W, a−)(τ)
)
dτ

=e t0M− ā−+
∫ t0

0
e(t0−τ)M−Ĝ−(

(W, a−)(τ)
)
dτ.

As in Remark 4.1, the above equality does not depend on the extension of a−(t )
as Ĝ−(W, a−) = 0 whenever W ∈ X cu\X cu(δ). Therefore (W, a−)(t ) = (

W (t ),hcu(W (t ))
)

is a solution to (4.6). Along with the translation invariance (4.8) of hcu , we have
proved the local invariance of W cu under (4.6). Since hcu is translation invari-
ant, we obtain

Lemma 4.8. W cu is locally invariant under (4.6), i.e. if w(t ) is a solution to (4.6)
and w(0) ∈W cu , then exists ε> 0 such that w(t ) ∈W cu for all t ∈ (−ε,ε). Moreover
W cu satisfies, for any z ∈R3,

w(·+ z) ∈W cu if w ∈W cu .

Solutions starting on W cu might leave W cu through its boundary hcu
(
X cu(δ)

)
\hcu

(
X cu(δ)

)
.

Since (4.6) coincides with the original system (2.40), (2.42), (2.43), (2.44), and
(2.52) when

|ad1|+ |ad2|+ |a+|+ |a−|+‖V e‖X1 ≤ δ/3,

W cu is a locally invariant manifold of (2.7) and (GP). Namely

Proposition 4.9. If U (t ) =Φ(
w(t )

)
solves (2.7), satisfies U (0) ∈ W cu , and w(t ) ∈

B d1+d2+2d ( δ15 )⊕X e ( δ15 ) for all t ∈ [−T,T ], T > 0, then U (t ) ∈W cu , t ∈ [−T,T ].

4.4. Local dynamics related to the center-unstable manifold. We start with the
local stability of the center-unstable manifold, which means that if a solution to
(2.7) stays in a δ0-neighborhood of M over a time interval, then its distance to
W cu shrinks exponentially. Since (2.7) is equivalent to (4.6) for U near M , we
only need to work with (4.6). More precisely,
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Lemma 4.10. There exists C > 0 independent of Q,µ,δ and η, such that if (4.9),
(4.16), (4.18), and

(4.20) C
(
η−(2d1+1)Q6δ2 +δ2η−1 +η−2(d1+1)Q6δ4(λ−2η)−1)< η

are satisfied, then for any T > 0 and solution (W, a−)(t ) = (y, ad1, ad2, a+, a−,V e )(t ) ∈
Rd1+d2+2d ⊕X e (δ), t ∈ [0,T ], to (4.6), we have

|a−(t )−hcu(
W (t )

)| ≤Ce−(λ−2η)t |a−(0)−hcu(
W (0)

)|
for any t ∈ [0,T ].

Proof. Let

W1(t ) =W (t ), ã−
1 (t ) = a−(t ), ∆−(t ) = a−(t )−hcu(

W (t )
)
.

Fix t ∈ (0,T ] and let
(
(W2, ã−

2 )(τ)
)

be the solution to (4.6) with initial value
(
W (t ),hcu(W (t ))

)
at τ= t . The invariance of W cu under (4.6) implies that, for all τ≤ t ,

ã−
2 (τ) = hcu(

W2(τ)
)
, ∆−(t ) = ã−

1 (t )− ã−
2 (t ),

where note the latter holds at τ= t only. Denote

l (τ) =‖(W2 −W1)(τ)‖X1,Q .

Lemma 4.2 implies Π̃eW j (τ) = W j (τ) for τ ≤ t , j = 1,2, since it holds at τ = t .
From Proposition 4.5, we have, for any τ≤ t ,

(4.21) l (τ)2 ≤Cη−(2d1+1)Q6δ2
∫ t

τ
e2η(τ′−τ)|∆−(τ′)|2dτ′.

Using the variation of parameter formula, we have

∆−(t ) = (ã−
1 − ã−

2 )(t )

=e t M−(ã−
1 − ã−

2 )(0)+
∫ t

0
e(t−τ)M−

(
Ĝ−(

(W1, ã−
1 )(τ),

)−Ĝ−(
(W2, ã−

2 )(τ)
))

dτ

It follows from (2.26) and (4.14) that

|∆−(t )| ≤Ce−λt |(ã−
1 − ã−

2 )(0)|+Cδ
∫ t

0
e−λ(t−τ)(l (τ)+|(ã−

1 − ã−
2 )(τ)|)dτ.

Since

|(ã−
1 − ã−

2 )(τ)| ≤ |∆−(τ)|+µl (τ),

we obtain

|∆−(t )| ≤Ce−λt (l (0)+|∆−(0)|)+Cδ
∫ t

0
e−λ(t−τ)(l (τ)+|∆−(τ)|)dτ.
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We use (4.21) to proceed

|∆−(t )|2 ≤Ce−2(λ−η)t |∆−(0)|2 +Cη−(2d1+1)Q6δ2e−2λt
∫ t

0
e2ητ|∆−(τ)|2dτ

+Cδ2(∫ t

0
e−λ(t−τ)|∆−(τ)|dτ)2 +Cη−(2d1+1)Q6δ4

×
(∫ t

0
e−λ(t−τ)(∫ t

τ
e2η(τ′−τ)|∆−(τ′)|2dτ′

) 1
2 dτ

)2

,Ce−2(λ−η)t |∆−(0)|2 + I1 + I2 + I3.

The above integrals are estimated by Cauchy-Schwartz inequality. Firstly,

I2 ≤Cδ2
∫ t

0
e−2η(t−τ)dτ

∫ t

0
e−2(λ−η)(t−τ)|∆−(τ)|2dτ

≤Cδ2η−1
∫ t

0
e−2(λ−η)(t−τ)|∆−(τ)|2dτ.

Secondly,

I3 ≤Cη−(2d1+1)Q6δ4e−2λt
∫ t

0
e2ητdτ

∫ t

0

∫ t

τ
e2(λ−η)τ+2η(τ′−τ)|∆−(τ′)|2dτ′dτ

≤Cη−2(d1+1)Q6δ4e−2(λ−η)t
∫ t

0
|∆−(τ′)|2

∫ τ′

0
e2ητ′+2(λ−2η)τdτdτ′

≤Cη−2(d1+1)Q6δ4(λ−2η)−1
∫ t

0
e−2(λ−η)(t−τ)|∆−(τ)|2dτ.

Finally, it is also easy to see

I1 ≤Cη−(2d1+1)Q6δ2
∫ t

0
e−2(λ−η)(t−τ)|∆−(τ)|2dτ.

Therefore we obtain

|∆−(t )|2 ≤Ce−2(λ−η)t |∆−(0)|2 +η
∫ t

0
e−2(λ−η)(t−τ)|∆−(τ)|2dτ

where assumption (4.20) was used. The desired estimates follows immediately
from the Gronwall inequality and the proof is complete. �

Remark 4.11. The proof of the local asymptotic stability of the center-unstable
manifold could have been much simpler if hcu had been smooth, which will be
proved in the next section. In that case, one could obtain the decay estimate
using certain property derived by differentiating the invariance equation of hcu .
In this subsection, even though we went a greater length to obtain the result, it
has the benefit to show that the local asymptotic stability still holds even if hcu

is only Lipschitz, which is the case when G is only Lipschitz.

A direct corollary of Lemma 4.10 is that the following condition for a point to
belong to W cu .

Lemma 4.12. There exists C > 0 such that if η ∈ (Cδ,1) and Q,µ,δ satisfy (4.9),
(4.16), (4.18), and (4.20), then a solution of (4.6) (W, a−)(t ) = (y, ad1, ad2, a+, a−,V e )(t ) ∈
W cu if (W, a−)(t ) ∈Rd1+d2+2d⊕X e (δ) for all t ≤ 0 and satisfies supt≤0 |a−(t )| <∞.
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Since (GP), or equivalently (2.7), is equivalent to (4.6) in a neighborhood of
M , we have

Corollary 4.13. If U (t ) =Φ(
w(t )

)
is a solution of (2.7) satisfying w(t ) ∈ B d1+d2+2d ( δ15 )⊕

X e ( δ15 ) for all t ≤ 0, then U (t ) ∈W cu , t ≤ 0.

Remark 4.14. Note that the assumption in the above lemma is satisfied if a solu-
tion stays in a neighborhood of M for all t ≤ 0, which is the case of neighboring
traveling waves.

More precisely, consider another travel wave Uc̃ = (uc̃ , v c̃ ) =ψ(w c̃ ) with trav-
eling velocity c̃ ∈R3. Here we recall ψ and ψ−1 is given in (2.2) and (2.3), respec-
tively.

Lemma 4.15. There exists δ0 > 0 such that

(1) if c̃ ∧ c = 0, ‖w c̃ −wc‖X1 < δ0, then Uc̃ ∈W cu ;
(2) or without c̃∧c = 0, but instead with the additional ‖x∇(w c̃−wc

)‖X1 < δ0

and that the angel between c and c̃ is bounded by δ0, then uc̃ ∈W cu .

Proof. The solution to (2.17) corresponding to Uc̃ is given by w c̃ (x − c̃ t ). If c̃ and
c are parallel, then wc (·− c̃ t ) ∈ψ−1(M ) and ‖w c̃ (·− c̃ t )−wc (·− c̃ t )‖X1 < δ0 for all
t ≤ 0, then Uc̃ ∈W cu by Corollary 4.13.

In the general case, there exists a near identity orthogonal matrix O3×3 such
that Oc̃ = |c̃||c|−1c. It is easy to verify that wc

(
O(x − c̃ t )

)
is a traveling wave of

(2.17) with traveling velocity |c̃||c|−1c. |O − I | ¿ 1 yields that wc
(
Ox) is close to

wc satisfying the assumption of case (1), therefore Uc (Ox) ∈ W cu . Our assump-
tions imply ‖w c̃ −w(O·)‖X1 ¿ 1 and thus Corollary 4.13 implies Uc̃ ∈W cu . �

4.5. Construction of Local Center-Stable Manifolds. Basically by reversing the
time in the previous procedure, we can construct a local Lipschitz center-stable
manifold W cs of M . It is given by the graph of a function hcs : B d1+d2+d (δ)⊕
X e (δ) →Rd ,

W cs(M ) =Φ({
a+ = hcs(y, ad1, ad2, a−,V e ) |
(y, ad1, ad2, a−,V e ) ∈ B d1+d2+d (δ)⊕X e (δ)

})
.

We briefly outline the steps here. Let X cs = R3+d1+d2+d × X1 be same as X cu

and equipped with the same ‖ ·‖X1,Q metric as in (4.7). The set Γcs
µ,δ of mappings

h : X cs(δ) →Rd also takes the same form as Γcu
µ,δ.

On X cs ×Rd , we rewrite (4.6) as

(4.22a) ∂t W = Acs(y,ĜT (W, a+)
)
W +Ĝcs(W, a+)

(4.22b) ∂t a+ = M+a++Ĝ+(W, a+)

where Ĝcs = (ĜT ,Ĝd1,Ĝd2,Ĝ−,Ĝe ) are as defined in Subsection 4.1 and

Acs(y, ỹ) = di ag
(
0, M1, M2, M−,Πe

c,y JLc,yΠ
e
c,y +F (c, y)(ỹ , ·)).
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For any h and W̄ ∈ X cs(δ), let W (t ), t ≥ 0, be the solution to

∂t W = Acs(y,ĜT (W,h(W )
)
W +Ĝcs(W,h(W )

)
, W (0) = W̄ .

and define h̃(W̄ ) as

h̃(W̄ ) = ā+ =−
∫ ∞

0
e−τM+Ĝ+(

W (t ),h(W (t ))
)
d t

and T cs(h) = h̃. Following exactly the same procedure, one proves that this
defines a contraction mapping onΓcs

µ,δ, the graph of whose fixed point, restricted

to Rd1+d2+d ( δ15 )⊕X e ( δ15 ), leads to the locally invariant Lipschitz center stable
manifold of M .

Proposition 4.16. There exist δ> 0 such that there exists hcs ∈ Γcs
µ,δ and

(1) the center-stable manifold

W cs =Φ(
{(W, a+) ∈W cs |W ∈ B d1+d2+d (δ/15)⊕X e (δ/15)}

)
is locally invariant under (2.7), where

W cs = g r aph(hcs) = {
a+ = hcs(W ) |W ∈Rd1+d2+d ⊕X e (δ)

}
,

locally invariant under (4.22).
(2) There exists C > 0 independent of Q,µ,δ and η ∈ (0,1), such that if (4.9),

(4.16), (4.18), and (4.20) are satisfied, then for any T > 0 and any solution
U (t ) =Φ(

(W, a+)(t )
)

to (4.22) with (W, a+)(t ) ∈Rd1+d2+2d ⊕X e (δ/15), t ∈
[0,T ], we have

|a+(t )−hcs(W (t )
)| ≥Ce(λ−2η)t |a+(0)−hcs(W (0)

)|
for any t ∈ [0,T ].

(3) A solution of (2.7)Φ
(
(W, a+)(t )

) ∈W cs for all t ≥ 0 if (W, a+)(t ) ∈ B d1+d2+2d (δ/15)⊕
X e (δ/15) for all t ≥ 0.

The estimate in part (2) on the growth of a+(t ), t > 0, for any solution follows
directly from the decay estimate of a+(t ), t < 0, which is parallel to Lemma 4.10
for W cu in the opposite time evolution direction.

Remark 4.17. The local invariance of W cs is in the same sense as in Proposition
4.9.

Like W cu , W cs is translation invariant in the sense as in Lemma 4.8, and W cs

is Lipschitz. As in Lemma 4.15, all neighboring traveling waves belong to W cs

under the same assumptions.

Remark 4.18. The above statement (2) implies that, if the initial value is not
on the center-stable manifold, then the solution would eventually leave the δ

15 -
neighborhood of M , and thus M is orbitally unstable.
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4.6. Local Center Manifolds. A center manifold W c =Φ(W c ) is given by the in-
tersection of a center-unstable and a center-stable manifold, and thus it is also
locally invariant and extends in the directions of the center subspace X T

c,y⊕X d1
c,y⊕

X d2
c,y⊕X e

c,y at any y . For 0 < δ¿ 1, (y, ad1, ad2, a+, a−,V e ) ∈Rd1+d2+2d⊕X e (δ) be-
longs to W c if and only if

(4.23) a− = hcu(y, ad1, ad2, a+,V e ), a+ = hcs(y, ad1, ad2, a+,V e ).

The
Lipschitz property implies that (4.23) is equivalent to that (a+, a−) is the fixed

point of a contraction (hcu ,hcs) with Lipschitz constant µ. Therefore we obtain

Proposition 4.19. There exists C > 0 independent of Q,µ,δ and η ∈ (0,1), such
that if (4.9), (4.16), (4.18), and (4.20) are satisfied, then there exists hc : Rd1+d2 ⊕
X e (δ) →R2d such that

(1) the center manifold

W c =Φ(
{(y, ad1, ad2, a+, a−,V e ) ∈W c |
(y, ad1, ad2,V e ) ∈ B d1+d2 (δ/15)⊕X e (δ/15)}

)
is locally invariant under (2.7), where

W c = g r aph(hc ) =g r aph(hcu)∩ g r aph(hcs) = {
(y, ad1, ad2, a+, a−,V e )

∈Rd1+d2+2d ⊕X e (δ) | (a+, a−) = hc (y, ad1, ad2,V e )},

locally invariant under (4.22) (and equivalently (4.22)).
(2) hc satisfies (4.8), hc (y,0,0,0) = 0, and

|hc (y2, ad1
2 , ad2

2 ,V e
2 )−hc (y1, ad1

1 , ad2
1 ,V e

1 )|
≤ µ

1−µ
(|y2 − y1|+Q|ad1

2 −ad1
1 |+Q3|ad2

2 −ad2
1 |+Q2‖V e

2 −V e
1 ‖X1

)
.

(3) a solution Φ
(
(y, ad1, ad2,V , a+, a−)(t )

) ∈ W c if (y, ad1, ad2, a+, a−,V )(t ) ∈
B d1+d2+2d (δ/15)⊕X e (δ/15) forall t ∈R.

(4) There exists δ > 0 such that any traveling wave solution satisfying as-
sumptions in Lemma 4.15 belongs to W c .

The following lemma states that, as a submanifold, the center manifold at-
tracts orbits on the center-unstable and center-stable manifolds.

Lemma 4.20. There exists C > 0 independent of Q,µ,δ and η ∈ (0,1), such that if
(4.9), (4.16), (4.18), and (4.20) are satisfied, then for any T > 0 the following hold.

(1) Let U (t ) =Φ(
(W, a+, a−)(t )

) ∈W cs be a solution to (2.7), where W = (y, ad1, ad2,V e ),
satisfying (W, a+, a−)(t ) ∈ B d1+d2+2d (δ/15)⊕X e (δ/15), t ∈ [0,T ], then we
have

|(a+, a−)(t )−hc(W (t )
)| ≤Ce−(λ−2η)t |(a+, a−)(0)−hc(W (0)

)|
for any t ∈ [0,T ].
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(2) Let U (t ) =Φ(
(W, a+, a−)(t )

) ∈W cu be a solution to (2.7), where W = (y, ad1, ad2,V e ),
satisfying (W, a+, a−)(t ) ∈ B d1+d2+2d (δ/15)⊕X e (δ/15), t ∈ [−T,0], then
we have

|(a+, a−)(t )−hc(W (t )
)| ≤Ce(λ−2η)t |(a+, a−)(0)−hc(W (0)

)|
for any t ∈ [−T,0].

Proof. Let us denote the components of hc by hc = (hc+,hc−). From (4.23), we
have

(4.24) hc
−(W ) = hcu(

W,hc
+(W )

)
, hc

+(W ) = hcu(
W,hc

−(W )
)

We shall only prove part (1) of the lemma, where a+ = hcs(W, a−), as part (2) is
verbatim. One may compute

|a−−hc
−(W )| =|a−−hcu(

W,hc
+(W )

)| ≤ |a−−hcu(W, a+)|+µ|a+−hc
+(W )|

and

|a+−hc
+(W )| = |hcs(W, a−)−hcs(W,hc

−(W )
)| ≤µ|a−−hc

−(W )|.
Therefore

|(a+, a−)(t )−hc(W (t )
)| ≤ (1−µ)−1|a−−hcu(W, a+)|

which along with Lemma 4.10 implies the desired estimates. �

5. SMOOTHNESS OF THE CENTER-UNSTABLE MANIFOLD

We will prove the smoothness of the local center-unstable/center-stable/center
manifolds roughly following the approach in [18].

Proposition 5.1. For any k > 0, there exists C > 0 such that if η ∈ (Cδ,1) and
Q,µ,δ satisfy (4.9), (4.16), (4.18), (4.20), (5.18), and (5.25), then hcu ,hcs ,hc ∈ C k

and Dhcu(y,0,0,0,0), Dhcs(y,0,0,0,0), and Dhc (y,0,0,0,0) are equal to 0.

Unlike in [18], however, Acu in (4.6) depends on the unknowns and extra care
has to be taken. Without loss of generality, we will work on hcu ∈ Γµ,δ, which is
defined on X cu(δ), and the proof of hcs is verbatim. The smoothness of the cen-
ter manifold, as the intersection of the center-unstable and center-stable mani-
folds, follows subsequently.

5.1. Outline of the framework of the smoothness proof. We first introduce some
notations to simplify the presentations. Consider (4.11) with h = hcu . For t ≤ 0,
let

Ψ(t ,W ) = (y, ad1, ad2, a+,V )(t ), W = (y, ad1, ad2, a+,V ) ∈ X cu(δ),

be the solution with initial value W . We have from Lemma 4.2 that

(5.1) Π̃eΨ(t ,W ) =Ψ(t ,W ), ∀t ≤ 0 if Π̃eW =W.

Moreover, assuming (4.9) and (4.16), Proposition 4.5 implies, for all t ≤ 0,

(5.2) Li p‖·‖X1,QΨ(t , ·) ≤Cη−d1 e−ηt , Ψ(t ,W ) ∈ X cu(Cδ), ∀W ∈ X cu(δ).
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As the fixed point of the transformation T , hcu satisfies

(5.3) hcu(W ) =
∫ 0

−∞
e−t M−Ĝ−

(
Ψ(t ,W ),hcu(

Ψ(t ,W )
))

d t .

Since (4.11) is autonomous, a time translation of (5.3) implies, for t ≤ 0,

(5.4) hcu(
Ψ(t ,W )

)= ∫ t

−∞
e(t−τ)M−Ĝ−

(
Ψ(τ,W ),hcu(

Ψ(τ,W )
))

dτ.

By differentiating (5.3) formally, we obtain, for any W̃ ∈ X cu ,

Dhcu(W )W̃ =
∫ 0

−∞
e−t M−

(
Da−Ĝ−(

Ψ(t ,W ),hcu(
Ψ(t ,W )

))
Dhcu(

Ψ(t ,W )
)

+DW Ĝ−(
Ψ(t ,W ),hcu(

Ψ(t ,W )
)))

DΨ(t ,W )W̃ d t .

Here DΨ also depends on Dhcu as it solves the following system of equation
derived by differentiating (4.11)

(5.5) ∂t DΨ= Acu(
y(t ),ĜT )

DΨ+G1(Ψ)DΨ+ G̃1(Ψ)DhcuDΨ,

whereΨ and DΨ are evaluated at (t ,W ), Ĝcu at (Ψ,hcu), hcu and Dcuh atΨ. In
the above G1 ∈C k

(
X cu ,L(X cu)

)
and G̃1 ∈C k

(
X cu ,L(Rd , X cu)

)
are given by

G̃1(W )ã− =Da−
(

Acu(
y,GT (W, a−)

))|a−=hcu (W )(ã−)W +Da−Ĝcu(ã−)

=
(
0,0,0,0,F

(
c, y

)(
Da−ĜT (ã−),V

))+Da−Ĝcu(ã−),
(5.6)

G1(W )W̃ =DW
(

Acu(
y,GT (W, a−)

))|a−=hcu (W )(W̃ )W +DW Ĝcu(W̃ )

=
(
0,0,0,0,

(
D y Ae (y)ỹ

)
V +F

(
c, y

)(
DW ĜT (W̃ ),V

)
+ (

D yF (c, y)(ỹ)
)
(ĜT ,V )

)
+DW Ĝcu(W̃ )

(5.7)

where W = (y, ad1, ad2, a−,V ), W̃ = (ỹ , ãd1, ãd2, ã−,Ṽ ) ∈ X cu and Ĝcu are evalu-
ated at

(
W,hcu(W )

)
.

Motivated by the above formally derived the equations, we define a linear
transformation T1 on

Y1 =C 0(X cu(δ),L(X cu ,Rd )
)

as, for any H ∈ Y1, W ∈ X cu(δ), and W̃ ∈ X cu ,

(T1H )(W )W̃ =
∫ 0

−∞
e−t M−

(
DW Ĝ−(

Ψ,hcu(Ψ)
)

+Da−Ĝ−(
Ψ,hcu(Ψ)

)
H

(
Ψ

))
Ψ1(t )W̃ d t

(5.8)

whereΨ is evaluated at (t ,W ). OperatorΨ1(t ) ∈ L(X cu) satisfiesΨ1(0) = I and

(5.9) ∂tΨ1 = Acu(
y(t ),ĜT )

Ψ1 +G1(Ψ)Ψ1 + G̃1(Ψ)H (Ψ)Ψ1,

where G and G1 are given in (5.7), Ĝcu is evaluated at
(
Ψ,hcu(Ψ)

)
, and H at

Ψ(t ,W ). Just as in Remark 4.1, the right side of (5.9) and the integrand in (5.8)
are well-defined. Since (4.11) is autonomous, when W is shifted toΨ(t0,W ), the
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principle fundamental solution to the associated (5.9) becomesΨ1(t+t0)Ψ1(t0)−1.
Therefore we obtain

(T1H )
(
Ψ(t0,W )

)
Ψ1(t0)W̃ =

∫ t0

−∞
e(t0−t )M−

(
DW Ĝ−(

Ψ,hcu(Ψ)
)

+Da−Ĝ−(
Ψ,hcu(Ψ)

)
H

(
Ψ

))
Ψ1(t )W̃ d t ,

(5.10)

whereΨ is still evaluated at (t ,W ) andΨ1 defined for W .
If hcu ∈ C 1, then Dhcu must be the fixed point of T1. Therefore, our strategy

to prove hcu ∈ C 1 is to show 1.) T1 is a well-defined contraction and 2.) the
fixed point of T1 is indeed Dhcu (Subsection 5.2). In the proof of the C k and
higher order C k smoothness of hcu we shall need the following spaces Yk , k ≥ 1,
of symmetric k-linear transformations depending smoothly on the base points,

Yk =
(
C 0(X cu(δ),L(⊗k

s ym(X cu),Rd )
))

, k ≥ 0.

We equip Yk with the norm

‖H ‖Yk = sup{‖H (W )‖Lk
Q

: W ∈ X cu(δ)},

‖H (W )‖Lk
Q
= sup{

|H (W )(W̃1, . . . ,W̃k )|
‖W̃1‖Q . . .‖W̃k‖Q

: W̃1, . . . ,W̃k ∈ X cu\{0}}.
(5.11)

We also use the ‖·‖Lk
Q

norm of multilinear transformations in L(⊗k
s ym(X cu), X cu)

where ‖ ·‖X1,Q is used in both the domain and the range.
Formally differentiate (5.3) twice, we see D2hcu is a fixed point of the follow-

ing affine transformation T2 on the space Y2 of symmetric k-linear (with k = 2)
transformations depending continuously on the base points,

Yk =
(
C 0(X cu(δ),L(⊗k

s ym(X cu),Rd )
))

Here for any H ∈ Y2, W ∈ X cu(δ), and W̃1,W̃2 ∈ X cu ,

(T2H )(W )(W̃1,W̃2) =
∫ 0

−∞
e−t M−

((
Da−Ĝ−H (Ψ)+DW W Ĝ−

)
(
DΨW̃1,DΨW̃2

)+Da−a−Ĝ−(DhcuDΨW̃1,DhcuDΨW̃2)

+2DW a−Ĝ−(DΨW̃1,DhcuDΨW̃2)

+ (Da−Ĝ−Dhcu +DW Ĝ−)Ψ2(t )(W̃1,W̃2)
)
d t ,

(5.12)

where Ψ and DΨ are evaluated at (t ,W ), hcu and Dhcu at Ψ, Ĝ− and DĜ− at
(Ψ,hcu), and the symmetric bilinear transformation Ψ2(t ) ∈ L(⊗2

s ym X cu , X cu)
satisfiesΨ2(0) = 0 and

∂tΨ2 =
(

Acu(
y(t ),ĜT )+G1(Ψ)+ G̃1(Ψ)Dhcu

)
Ψ2

+ G̃1(Ψ)H (Ψ)(DΨ,DΨ)+G2(Ψ,DΨ,Dhcu).
(5.13)
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Here G2(Ψ,DΨ,Dhcu) ∈ L(⊗2
s ym X cu , X cu) is given by

G2(Ψ,DΨ,Dhcu)(W̃1,W̃2) =DW
(

Acu(y,GT )+G1(Ψ)
)
(W̃1)

(
DΨ(W̃2)

)
+DW

(
G̃1(Ψ)

)
(W̃1)DhcuDΨ(W̃2).

In order to prove hcu ∈ C 2, we shall 1.) show that T2 is a well-defined affine
contraction and 2.) its fixed point is D2hcu .

The general C k smoothness of hcu (Subsection 5.3) follows much as hcu ∈C 2

by 1.) differentiating (5.3) repeatedly to obtain an affine operator on the space Yk

of multilinear transformations, and 2.) proving its fixed point is indeed Dk hcu .

Remark 5.2. A possible alternative adopted approach to prove the C k , k ≥ 1,
smoothness of hcu is to prove that iteration sequences of the transformation T

defined in (4.11) and (4.12) actually converge in C k topology. That proof usually
required the C k,1 bound on nonlinearity. Even though Ĝ is indeed smooth in our
problem, this proof in Section 5 shows that the C k smoothness holds as long as
Ĝ ∈C k .

5.2. C 1 smoothness of hcu . We first prove the following estimate on equation
(5.9) whereΨ=Ψ(t ,W ), W ∈ X cu(δ).

Lemma 5.3. There exists C > 0 such that, if η ∈ (Cδ,1) and µ,δ,Q satisfy (4.9)
and (4.16), then for any B ∈C 0

(
[T,0],L(X cu ,Rd )

)
with ‖B‖C 0

t L1
Q
≤ 1, any solution

W̃ (t ) ∈ X cu of

∂t W̃ = (
Acu(

y(t ),ĜT )+G1(Ψ)+ G̃1(Ψ)B
)
W̃ + f (t ),

satsfies

‖W̃ (t )‖2
X1,Q ≤Cη−2d1 e−2ηt‖W (0)‖2

X1,Q +Cη−2d1−1
∫ 0

t
e2η(τ−t )‖ f (τ)‖2

X̃ ,Q
dτ.

Proof. From Lemma 2.5, (2.53), (4.13), and (4.14), we have, for any W = (y, ad1, ad2, a+,V ),
W̃ = (y, ad1, ad2, a+,V ) ∈ X cu , and

‖G̃1(W )ã−‖X̃ ,Q ≤Cδ(1+‖V ‖X1 )|ã−|,(5.14)

‖G1(W )W̃ ‖X̃ ,Q ≤C (‖V ‖X1 +Q−1 +Q3δ)‖W̃ ‖X1,Q .(5.15)

Lemma 4.4, (5.2), and the above inequalities imply that, for any t ∈ [T,0],

‖W̃ (t )‖2
X1,Q ≤Cη−2d1 e−ηt

(
‖W̃ (0)‖2

X1,Q

+η−1
∫ 0

t
eητ

(
(Q−1 +Q3δ)2‖W̃ (τ)‖2

X1,Q +‖ f (τ)‖2
X̃ ,Q

)
dτ

)
.

The lemma follows from the Gronwall inequality. �

Recall the Lipschitz constantµ in the definition ofΓµ,δ, which naturally should
be an upper bound of ‖Dhcu‖L1

Q
.

Lemma 5.4. There exists C > 0 such that, if η ∈ (Cδ,1) and µ,δ,Q satisfy (4.9),
(4.16), (4.18), and (4.20), then T1 defines a mapping on the closed µ-ball Y1(µ) =
{H ∈ Y1 : ‖H ‖Y1 ≤µ} with Lipschitz constant Cδη−d1 (λ−2η)−1.
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Proof. Let H ∈ Y1(µ). Lemma 5.3 implies that, for any W ∈ X cu(δ), t ≤ 0, the
Ψ1(t ) defined in (5.9) satisfies

(5.16) ‖Ψ1(t )‖LQ (X cu ) ≤Cη−d1 e−ηt .

Therefore (2.26), definition (5.8) of H1, and (4.13) imply

(5.17) ‖T1(H )‖Y1 ≤Cδη−d1

∫ 0

−∞
e(λ−η)t d t =Cδη−d1 (λ−η)−1 ≤µ

due to (4.18). To prove T1(H ) ∈ Y1, it remains to show H (W ) is continuous in
W . In fact, the above estimate implies that T (n)

1 (H ) →T1(H ) uniformly, where(
T (n)

1 (H )
)
(W )W̃ =

∫ 0

−n
e−t M−

(
DW Ĝ−(

Ψ,hcu(Ψ)
)

+Da−Ĝ−(
Ψ,hcu(Ψ)

)
H

(
Ψ

))
Ψ1(t )W̃ d t .

From the continuity of DĜcu,−, it is easy to verify that
(
T (n)

1 (H )
)
(W ) is C 0 in W .

Therefore T1(H ) is also continuous and thus T1(H ) ∈ Y1(µ).
In the following we estimate the Lipschitz constant of T1. Let H j ∈ Y1(µ) and

Ψ1, j (t ) be defined in (5.9) for H j , j = 1,2, which satisfy

∂t (Ψ1,2 −Ψ1,1) =(
Acu(y,GT )−G1(Ψ)− G̃1(Ψ)H1

)
(Ψ1,2 −Ψ1,1)

+ G̃1(Ψ)(H2 −H1)(Ψ)Ψ1,2

and (Ψ1,2 −Ψ1,1)(0) = 0. Using Lemma 5.3 and (5.6), we obtain

‖(Ψ1,2 −Ψ1,1)(t )‖LQ (X cu ) ≤Cη−2d1− 1
2δ|t | 1

2 e−ηt‖H2 −H1‖Y1 .

From the definition of T1, we have, for any W ∈ X cu(δ),(
T1(H1)−T1(H2)

)
(W ) =

∫ 0

−∞
e−t M−

(
Da−Ĝ−(H2 −H1)Ψ1,2(t )

+ (DW Ĝ−+Da−G−H1)(Ψ1,2 −Ψ1,1)(t )
)
d t ,

where DĜ is evaluated at
(
Ψ,hcu(Ψ)

)
, H j at Ψ, and Ψ at (t ,W ). Using (2.26),

(4.14), and the above estimates onΨ1, j andΨ1,2 −Ψ1,1, it follows that

‖T1(H1)−T1(H2)‖Y1 ≤Cδ
∫ 0

−∞
e(λ−η)tη−d1 (1+η−d1− 1

2δ|t | 1
2 )d t‖H2 −H1‖Y1

≤Cδη−d1 (λ−2η)−1‖H2 −H1‖Y1 .

The proof of the lemma is complete. �

Assume

(5.18) Cδη−d1 (λ−2η)−1 < 1,

then T1 is a contraction mapping on Y1(µ). Let H cu ∈ Y1(µ) be the unique fixed
point of T1. In the rest of this subsection, we will prove

Lemma 5.5. There exists C > 0 such that if η ∈ (Cδ,1) and Q,µ,δ satisfy (4.9),
(4.16), (4.18), (4.20), and (5.18), then hcu ∈C 1(X cu ,Rd ) and Dhcu(W ) =H cu(W )
for any W ∈ X cu .
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Proof. Since H (W ) is continuous in W , it suffices to show Dhcu(W0)W̃ = DH (W0)W̃
at any fixed W0 ∈ X cu(δ) and W̃ ∈ X cu\{0}. Let Ψ1(t ) be defined as in (5.9) asso-
ciated to H cu and W0 and

RΨ(t ) =Ψ(t ,W0 +W̃ )−Ψ(t ,W0)−Ψ1(t )W̃ ,

Rh(t ) = hcu(
Ψ(t ,W0 +W̃ )

)−hcu(
Ψ(t ,W0)

)−H cu(
Ψ(t ,W0)

)
Ψ1(t )W̃ .

According to (5.2), (5.16), ‖H cu‖Y1 ≤ µ, and the Lipschitz property of hcu , Rψ

and Rh satisfy the rough estimates

(5.19) ‖RΨ(t )‖X1,Q +|Rh(t )| ≤Cη−d1 e−ηt‖W̃ ‖X1,Q ,

for t ≤ 0. Our goal is to show ‖RΨ(0)‖X1,Q /‖W̃ ‖X1,Q → 0 as ‖W̃ ‖X1,Q → 0.
To analyze Rh and RΨ, denote

W (s, t ) = (1− s)Ψ(t ,W0)+ sΨ(t ,W0 +W̃ ),

a−(s, t ) = (1− s)hcu(
Ψ(t ,W0)

)+ shcu(
Ψ(t ,W0 +W̃ )

)
.

and for α ∈ {T,d1,d2,±,V ,cu}, let

Rα(t ) =Ĝα
(
W (1, t ), a−(1, t )

)− [
Ĝα+DW Ĝα

(
W (1, t )−W (0, t )

)
+Da−Ĝα

(
a−(1, t )−a−(0, t )

)]
where Ĝα and DĜα in the brackets [. . .] are evaluated at

(
W (0, t ), a−(0, t )

)= (
Ψ(t ,W0),hcu

(
Ψ(t ,W0)

))
.

From (5.16), we have

(5.20) ‖Rcu(t )‖X̃ ,Q +|R−(t )| ≤ r (t )‖W̃ ‖X1,Q

where r (t ) > 0 satisfies

(5.21) r (t ) ≤Cη−d1 e−ηt , ‖r‖C 0([t1,t2],R) → 0 as ‖W̃ ‖X1,Q → 0

for any t1 ≤ t2 ≤ 0 1

From (5.3) and T1(H cu) =H cu , we have

Rh(0) =
∫ 0

−∞
e−t M−

(
R−(t )+DW Ĝ−RΨ(t )+Da−Ĝ−Rh(t )

)
d t

Moreover, using (5.3) and (5.10) instead, we obtain

(5.22) Rh(t ) =
∫ 0

−∞
e−τM−(R−+DW Ĝ−RΨ+Da−Ĝ−Rh)|τ+t dτ, t ≤ 0,

where again the above DĜ− are evaluated at
(
Ψ(t +τ,W0),hcu

(
Ψ(t +τ,W0)

))
.

From (4.11), RΨ(t ) satisfies RΨ(0) = 0 and

∂t RΨ =A cu
0 (t )RΨ+A −

0 (t )Rh +Rcu +DW ĜcuRΨ+Da−ĜcuRh +
∫ 1

0
(A cu

s

−A cu
0 )(t )

(
W (1, t )−W (0, t )

)+ (A −
s −A −

0 )(t )
(
a−(1, t )−a−(0, t )

)
d s

1Here we only need some uniform continuity of DĜ , instead of Ĝ ∈C 2 or C 1,1.
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where DĜcu is evaluated at
(
W (0, t ), a−(0, t )

)
, operators A cu

s (t ) ∈ L(X cu) and
A −

s (t ) ∈ L(Rd , X cu) are given by

A cu
s (t )W̃ =Acu

(
y(s, t ),GT (

W (s, t ), a−(s, t )
))

W̃

+DW

(
Acu(

y,GT (W, a−)
))|(

W (s,t ),a−(s,t )
)(W̃ )W (s, t )

A −
s (t )ã− =Da−

(
Acu(

y,GT (W, a−)
))|(

W (s,t ),a−(s,t )
)(ã−)W (s, t )

with W (s, t ) and a−(s, t ) defined in the above and y(s, t ) being the y component
of W (s, t ) (so the DW also acts on the y component in Acu). Note D Acu acts only
on the V component of W̃ . From Lemma 2.5, (5.2), (5.6), (5.7), (5.14), (5.15), and
(5.20), it is straight forward to obtain

‖∂t RΨ− (Acu +G1)Rψ‖X̃ ,Q = ‖∂t RΨ−A cu
0 Rψ−DW ĜcuRΨ‖X̃ ,Q

≤Cδ|Rh |+‖Rcu‖X̃ ,Q + r (t )‖W̃ ‖X1,Q ≤Cδ|Rh |+ r (t )‖W̃ ‖X1,Q

where where Acu and G1 are evaluated based onΨ(t ,W0) and r (t ) satisfies (5.21).
Lemma 5.3 implies

(5.23) ‖RΨ(t )‖2
X1,Q ≤Cδ2η−2d1−1

∫ 0

t
e2η(τ−t )|Rh(τ)|2dτ+ r1(t )‖W̃ ‖2

X1,Q

where Acu and G1 are evaluated based onΨ(t ,W0) and r1(t ) satisfies

(5.24) r1(t ) ≤Cη−4d1−2(1+|t |)e−2ηt , ‖r1‖C 0([t1,t2],R) → 0 as ‖W̃ ‖X1,Q → 0

for any t1 ≤ t2 ≤ 0.
Finally, let

R̃h = sup
t≤0

e2ηt |Rh(t )|
‖W̃ ‖X1,Q

, R̃Ψ = sup
t≤0

e2ηt ‖RΨ(t )‖X1,Q

‖W̃ ‖X1,Q
.

Inequality (5.19) implies R̃h , R̃Ψ <∞. We will prove R̃h , R̃Ψ→ 0 as ‖W̃ ‖X1,Q → 0.
In fact, (5.23) and (5.22) along with (5.20) and Lemma 4.3 imply

R̃Ψ ≤Cδη−d1−1R̃h + sup
t≤0

r1(t )
1
2 e2ηt

and

R̃h ≤C
∫ 0

−∞
δe(λ−2η)τ(R̃Ψ+ R̃h)+eλτ+2ηt r (t +τ)dτ

≤C (λ−2η)−1(δ(R̃Ψ+ R̃h)+ sup
τ≤0

r (τ)e2ητ).

Therefore
R̃Ψ+ R̃h ≤C

(
sup
t≤0

r1(t )
1
2 e2ηt + sup

τ≤0
r (τ)e2ητ).

From (5.21) and (5.24), we obtain that R̃h , R̃Ψ→ 0 as ‖W̃ ‖X1,Q → 0. Consequently
Dhcu(W0) =H (W0) and DΨ(t ,W0) =Ψ1(t ,W0). �

Finally we prove that, at any traveling wave, the center-unstable manifold is
tangent to the center-unstable subspace.
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Lemma 5.6. There exists C > 0 such that if η ∈ (Cδ,1) and Q,µ,δ satisfy (4.9),
(4.16), (4.18), (4.20), and (5.18), then Dhcu(y,0,0,0,0) = 0 at any y ∈R3.

Proof. In the proof of this lemma, we adopt the notation (y,0) = (y,0,0,0,0) ∈
X cu . Observe that (4.11) and the definition of Ĝcu implies Ψ

(
t , (y,0)

)= (y,0) for
all t ≤ 0. For any H ∈ Y1, (4.12), the fact DĜ−(y,0) = 0, and the above obser-
vation implies T1(H )(y,0) = 0. The conclusion of the lemma follows immedi-
ately. �

5.3. Higher order smoothness of hcu . In this subsection, we shall prove

Proposition 5.7. For any k ≥ 1, there exists C > 0 such that if η ∈ (Cδ,1) and
Q,µ,δ satisfy (4.9), (4.16), (4.18), (4.20), (5.18), and

(5.25) Cδη−kd1
(
λ−kη

)−1 ≤ 1

then hcu ∈C k and

‖Dk hcu‖Yk + sup
t≤0

ekηt‖DkΨ(t , ·)‖C 0Lk
Q
<∞.

Here DkΨ denote the differentiation with respect to W only. In particular
‖Dhcu‖Y1 ≤ µ and ‖Dk hcu‖Yk may depend on δ for k > 1. In the rest of this
subsection, C as usual denotes a generic upper bound independent of t , W ∈
X cu(δ), and δ,Q,µ, while C̃ independent of t and W ∈ X cu(δ), but may depend
on δ,Q,µ.

Formally differentiating (4.11) and (4.12) k times implies that Dk hcu should
be a fixed point of the following affine transformation Tk on the space Yk . Here
for k ≥ 2, any H ∈ Yk , W ∈ X cu(δ), and W̃1, . . . ,W̃k ∈ X cu ,

(TkH )(W )(W̃1, . . . ,W̃k )

=
∫ 0

−∞
e−t M−

((
(Da−Ĝ−Dhcu +DW Ĝ−)Ψk (t )+Lk (t )

)
(W̃1, . . . ,W̃k )

+Da−Ĝ−H (Ψ)(DΨW̃1, . . . ,DΨW̃k )
)
d t ,

(5.26)

where D lΨ is evaluated at (t ,W ), D l hcu at Ψ, D l Ĝ l at (Ψ,hcu), the symmetric
multilinear mapping Lk (t ) ∈ Yk is an algebraic combination involving D lΨ and
D l hcu , DkĜ−, and D l Ĝ−, 0 ≤ l ≤ k − 1, and the symmetric multilinear Ψk (t ) ∈
L(⊗k

s ym X cu , X cu) satisfiesΨk (0) = 0 and

∂tΨk =
(

Acu(
y(t ),ĜT )+G1(Ψ)+ G̃1(Ψ)Dhcu(Ψ)

)
Ψk

+ G̃1(Ψ)H (Ψ)(DΨ, . . . ,DΨ)+Gk (t ).
(5.27)

Here Gk (t ) ∈C 0
(
X cu(δ),L(⊗k

s ym X cu , X cu)
)

is again an algebraic combination in-

volving D lΨ and D l hcu , DkĜcu , and D l Ĝcu , 0 ≤ l ≤ k −1. These terms Gk and
Lk are the lower order term in the higher order differentiation of compositions
of mappings. The explicit forms of T2, G2, and L2 can be found in (5.8) and
(5.27).



48 JIAYIN JIN, ZHIWU LIN†, AND CHONGCHUN ZENG‡

The proof of Proposition 5.7 is inductive in k. The case of k = 1 has been
proved in Subsection 5.2. Assume it holds for 1 ≤ l < k, we will prove it for k. As
outlined in Subsection 5.1, we shall prove by showing that Dk hcu is given by the
fixed point of the contraction Tk . Based on the usual formula of higher order
derivatives of compositions of mappings, the induction assumptions imply

(5.28) sup
t≤0

ekηt‖Lk (t )‖Yk + sup
t≤0

ekηt‖Gk (t )‖C 0Lk
Q
<∞.

In the following proof we will skip some details which are similar to those in
Subsection 5.2.

For k ≥ 2, as Tk is an affine transformation on Yk , we first consider its homo-
geneous part Tk ∈ L(Yk )

(T̃kH )(W )(W̃1, . . . ,W̃k )

=
∫ 0

−∞
e−t M−

(
(Da−Ĝ−Dhcu +DW Ĝ−)Ψ̃k (t )(W̃1, . . . ,W̃k )

+Da−Ĝ−H (Ψ)(DΨW̃1, . . . ,DΨW̃k )
)
d t ,

(5.29)

with the same convention of the notations and

∂tΨ̃k =
(

Acu(
y(t ),ĜT )+G1(Ψ)+ G̃1(Ψ)Dhcu(Ψ)

)
Ψ̃k

+ G̃1(Ψ)H (Ψ)(DΨ, . . . ,DΨ).
(5.30)

Lemma 5.8. Let k ≥ 2. There exists C > 0 such that if η ∈ (Cδ,1) and Q,µ,δ satisfy
(4.9), (4.16), (4.18), (4.20), and (5.18), then

‖T̃k‖L(Yk ) ≤Cδη−kd1 (λ−kη)−1.

Proof. Lemma 5.3 and (5.6) imply, for t ≤ 0,

(5.31) ‖Ψ̃k (t )‖Lk
Q
≤Cδη−(k+1)d1−1e−kηt‖H ‖Yk .

Substituting it into (5.29) yields the lemma. �

Lemma 5.9. Let k ≥ 2 and assume Proposition 5.7 holds for each l , 0 ≤ l ≤ k.
There exists C > 0 such that if η ∈ (Cδ,1) and Q,µ,δ satisfy (4.9), (4.16), (4.18),
(4.20), (5.18), and (5.25), then Tk is a contraction on Yk . Moreover, for any H ∈ Yk

and W ∈ X cu(δ), theΨk (t ) defined in (5.27) satisfies

sup
t≤0,W ∈X cu (δ)

ekηt‖Ψk (t )‖Lk
Q
<∞.

Proof. Firstly, the ‖·‖Yk bound of Tk (0) can be easily obtained using (5.28), which
along with Lemma 5.8 implies the ‖ · ‖Yk bound of Tk (H ) for any H ∈ Yk . The
continuity of Tk (H )(W ) with respect to W follows from the same argument as
in the proof of Lemma 5.4. Therefore Tk (H ) ∈ Yk and thus (5.25) and Lemma
5.8 imply that Tk is a contraction. �

Recall that the Lipschitz property of hcu was used in the proof of hcu ∈ C 1 in
Subsection 5.2. Similarly, before we proceed to prove Dk hcu is equal to the fixed
point of Tk and thus hcu ∈C k , we first take a step back to prove Li p Dk−1hcu <
∞ using the above lemma.
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Lemma 5.10. Let k ≥ 2 and assume Proposition 5.7 holds for each l , 0 ≤ l ≤ k −1.
There exists C > 0 such that if η ∈ (Cδ,1) and Q,µ,δ satisfy (4.9), (4.16), (4.18),
(4.20), (5.18), and (5.25), then

Li p Dk−1hcu + sup
t≤0

ekηt Li p Dk−1Ψ(t , ·) <∞.

Proof. From the induction assumption, Dk−1hcu ∈ Yk−1 and thus Tk−1(Dk−1hcu) =
Dk−1hcu . To prove the lemma, we shall show that, for some Ck−1 which might
depend on δ,Q,µ, the closed subset

Ỹk = {H ∈ Yk−1 : Li p H ≤Ck−1}

of Yk−1 is invariant under Tk−1, which implies Dk−1hcu ∈ Ỹk−1 and thus Lips-
chitz.

Since Lk−1 and Gk−1, appearing in (5.26) and (5.27), involve only D lΨ and
D l hcu , Dk−1Ĝ−, and D l Ĝ−, 0 ≤ l ≤ k −2, the induction assumptions imply, for
t ≤ 0,

(5.32) ‖DW Lk−1(t )‖Yk +‖DW Gk−1(t )‖C 0Lk
Q
≤ C̃ e−kηt .

Due to the slightly different forms, one has to proceed separately in the cases of
k = 2 and k > 2, even though the estimates in prove these cases are essentially
the same.

Case 1: k−1 ≥ 2. Let H ∈ Ỹk−1 and W j ∈ X cu(δ), j = 0,1, letΨ j
k−1(t ) = Dk−1Ψ(t ,W j ),

which are also the solutions to (5.27) where Ψ is evaluated at (t ,W j ). From
Lemma 5.3, (5.31), (5.32), the induction assumptions, and the Lipschitz bound
on H , it is straight forward to obtain the desired Lipschitz estimate on Dk−1Ψ(t , ·)

‖Ψ1
k−1 −Ψ0

k−1‖Lk−1
Q

≤ (C̃ +Cδη−1−(k+1)d1Ck−1)e−kηt‖W1 −W0‖X1,Q .

Therefore, using (4.14), (5.32), (4.16), and the induction assumptions, we can
estimate (5.26) as

‖Tk−1(H )(W0)−Tk−1(H )(W1)‖Lk−1
Q

≤
∫ 0

−∞
e(λ−kη)t (Cδη−kd1 (1+η−d1−1δ)Ck−1 + C̃ )d t ‖W1 −W0‖X1,Q

≤(λ−kη)−1(Cδη−kd1Ck−1 + C̃ ) ‖W1 −W0‖X1,Q .

From (5.25), there exists Ck−1 > 0 such that Tk−1(H ) ∈ Ỹk for any H ∈ Ỹk .

Case 2: k−1 = 1. In this case, one considers (5.8) and (5.9) instead. The estimates
are similar we omit the details. �

Assume (5.25) and let Hk ∈ Yk be the fixed point of Tk . We will prove

Lemma 5.11. There exists C > 0 such that if η ∈ (Cδ,1) and Q,µ,δ satisfy (4.9),
(4.16), (4.18), (4.20), (5.18), and (5.25), then Dk hcu =Hk .
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Proof. As in the proof of Lemma 5.5, for any fixed W0 ∈ X cu(δ) and W̃ ∈ X cu\{0},
letΨk (t ) ∈ L(⊗k

s ym X cu , X cu) be defined as in (5.27) associated to Hk and W0 and

RΨ(t ) =Dk−1Ψ(t ,W0 +W̃ )−Dk−1Ψ(t ,W0)−Ψk (t )(W̃ , . . .)

Rh(t ) =
(
Dk−1hcu(

Ψ(t ,W0 +W̃ )
)−Dk−1hcu(

Ψ(t ,W0)
))(

DΨ(·), . . . ,DΨ(·))
−Hk

(
Ψ(t ,W0)

)(
DΨ(W̃ ),DΨ(·), . . . ,DΨ(·)),

where all above DΨ are evaluated at (t ,W0). Note in the above Ψk (t )(W̃ , . . .) ∈
L(⊗k−1

s ym X cu , X cu) and

Hk
(
Ψ(t ,W0)

)(
DΨ(W̃ ),DΨ(·), . . . ,DΨ(·)) ∈ L(⊗k−1

s ym X cu ,Rd ),

consistent with the other terms. According to (5.2) and Lemma 5.10, Rψ and Rh

satisfy the rough estimates

(5.33) ‖RΨ(t )‖Lk−1
Q

+|Rh(t )|Lk−1
Q

≤ C̃ e−kηt‖W̃ ‖X1,Q ,

for t ≤ 0. Our goal is to show ‖RΨ,h(0)‖X1,Q /‖W̃ ‖X1,Q → 0 as ‖W̃ ‖X1,Q → 0.
Using Tk−1(Dk−1hcu) = Dk−1hcu , Lemma 5.10, and the induction assump-

tions, much as the derivation of (5.22) and (5.23), we obtain

Rh(t ) =
∫ 0

−∞
e−τM−

(
(DW Ĝ−+Da−Ĝ−Dhcu)RΨ

+Da−Ĝ−Rh +R1
)|t+τdτ

(5.34)

∂t RΨ =
(

Acu(
y(t ),ĜT )+G1(Ψ)+ G̃1(Ψ)Dhcu(Ψ)

)
RΨ+ G̃1(Ψ)Rh +R2(t ).

where DĜ− and DĜcu are evaluated at (Ψ,hcu), hcu at Ψ, and Ψ at (t ,W0), fol-
lowed by the shift in the integral of Rh . Here the norms r j (t ) = ‖R j (t )‖Lk−1

Q
,

j = 1,2, of the remainder terms R1(t ) and R2(t ) satisfy

(5.35) r1(t )+ r2(t ) ≤ C̃ e−kηt‖W̃ ‖X1,Q , lim
‖W̃ ‖X1,Q→0

‖r1 + r2‖C 0([t1,t2])

‖W̃ ‖X1,Q
= 0

for any t1 ≤ t2 ≤ 0. Lemma 5.3 and (5.2) imply

(5.36) ‖RΨ(t )‖2
Lk−1

Q
≤Cδ2η−2d1−1

∫ 0

t
e2η(τ−t )‖Rh(τ)‖2

Lk−1
Q

dτ+ r3(t )

where

(5.37) r3(t ) ≤ C̃ e−2kηt‖W̃ ‖2
X1,Q , lim

‖W̃ ‖X1,Q→0

‖r3‖C 0([t1,t2])

‖W̃ ‖2
X1,Q

= 0

Finally, let

R̃h = sup
t≤0

e(k+1)ηt |Rh(t )|
‖W̃ ‖X1,Q

, R̃Ψ = sup
t≤0

e(k+1)ηt
‖RΨ(t )‖Lk−1

Q

‖W̃ ‖X1,Q
.
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Inequality (5.33) implies R̃h , R̃Ψ < ∞. Inequalities (5.36) and (5.34) along with
(5.35), (5.37), and Lemma 4.3 imply

R̃Ψ ≤Cδη−d1−1R̃h + sup
t≤0

r3(t )
1
2 e(k+1)ηt

and

R̃h ≤C (λ− (k +1)η)−1(δ(R̃Ψ+ R̃h)+ sup
τ≤0

r1(τ)e(k+1)ητ).

Therefore
R̃Ψ+ R̃h ≤C

(
sup
t≤0

r3(t )
1
2 e(k+1)ηt + sup

τ≤0
r1(τ)e(k+1)ητ).

From (5.35) and (5.37), we obtain that R̃h , R̃Ψ→ 0 as ‖W̃ ‖X1,Q → 0. �

In the last step of the above proof, we may define R̃h and R̃Ψ by using a weight
eaηt with any a > k and thus we do not have assume λ> (k +1)η additionally.

6. A NON-DEGENERACY CASE

In this section, we consider a traveling wave Uc = uc+i vc satisfying the follow-
ing non-degeneracy conditions. Recall Lc,y and Ly defined in (2.11), its Morse
index n−(Lc ) in (2.19), and the dimensions d1,d2,d in Lemma 2.3. Assume

(H1) kerLc = span{∂x j Uc | j = 1,2,3};
(H2) d = n−(Lc ).

Remark 6.1. Assumption (H1) is a linearized elliptic problem. Usually (H2) is not
easy to verify directly. A special situation is when n−(Lc ) = 1, which is often the
case when Uc is derived from the Mountain Pass or a constrained minimization
process with 1 constraint. In this case, according to Theorem 2.3 and Propo-
sition 2.2 in [36], (H2) is satisfied if 〈LcV ,V 〉 > 0 for all V ∈ ker(JLc )2\ker(JLc ).
More specifically, it was proved in [35] that, if c0 ∈ R3 and Uac0 (x) is a family
of traveling waves depending on a smoothly, then d

d a P (Uac0 ) < 0 along with
n−(Lc ) = 1 implies (H1).

Under these hypotheses, among the subspaces in the decomposition given in
Lemma 2.3, statement (2) there implies X d1

c,y = X d2
c,y = {0} and thus, in the same

notations, we have the following decomposition.

Lemma 6.2. Assume (H), (H1-2), and (2.6), then for any y ∈R3, it holds that

(1) X = X T
c,y ⊕X e

c,y ⊕X +
c,y ⊕X −

c,y ;
(2) JLc,y and Lc,y take the forms

Lc,y ←→


0 0 0 0
0 Le (y) 0 0
0 0 0 L+−(y)
0 0 L+−(y)∗ 0

 ,

JLc,y ←→


0 ATe (y) 0 0
0 Ae (y) 0 0
0 0 A+(y) 0
0 0 0 A−(y)

 .
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Here the above blocks satisfy the same properties as in Lemma 2.3.
In this non-degenerate case, we shall carefully consider the energy-momentum

functional E + c ·P invariant under (GP) and (2.7), where E and P are defined in
(1.1) and (1.3). Let Ẽ(y, a+, a−,V e ) be defined as

Ẽc = (E + c ·P )◦Φ ∈C∞(R2d ⊕X e ,R),

where the coordinate mappingΦ is defined in (2.36), whose domain can also be
extended to R3+2d ×X1. The smoothness of Ẽ follows from Lemma 2.2 and 2,3 of
[35] along with Lemma 2.3. Using (2.10) and (2.11) it is straight forward to obtain
the leading order expansion of Ẽ at (y,0,0,0) =Φ−1

(
Uc (·+ y)

)
Ẽc

(
y, a+, a−,V e)= 〈Le (y)V e ,V e〉+2〈L̃+−a−, a+〉

+O
(
(|a+|+ |a−|+‖V e‖X1 )3)(6.1)

when |a+|, |a−|, and ‖V e‖X1 are small. Here Le (y) is given in Lemma 2.3, uni-
formly positive, and translation invariant, i.e.

〈Le (0)V e ,V e〉 = 〈Le (y)V e (·+ y),V e (·+ y)〉.
The d ×d matrix L̃+− is defined by

〈L̃+−a−, a+〉 = 〈L+−(y)a−ξ−c (·+ y), a+ξ−c (·+ y)〉.
where ξ−c = (ξ−c,1, . . . ,ξ−c,d ) and L+−(y) are given in Lemma 2.3. L̃+− is independent
of y since Lc,y and thus L+−(y) are translation invariant.

Let W cu,cs,c , hcu,cs , hc = (hc+,hc−) be given in Section 4 , whose smoothness
are established in Section 5, and the parameters Q,µ,δ,η satisfy (4.9), (4.16),
(4.18), (4.20), and (5.25). For any

(
y, a+ = hcs(y, a−,V e ), a−,V e

) ∈ W cs , since
Dhcs(y,0,0,0) = 0, we have

(6.2) |Ẽc
(
y,hcs(y, a−,V e ), a−,V e)−〈Le (y)V e ,V e〉| ≤C0(|a−|+‖V e‖X1 )3

for some C0 > 0. Based on the expansion (6.1), we can prove the exponential
stability of W c inside W cs .

Lemma 6.3. There exits C > 1 such that if η ∈ (Cδ,1) and Q,µ,δ satisfy (4.9),
(4.16), (4.18), (4.20), and (5.25), then for any initial value W̄ = (

ȳ , ā+ = hcs(ȳ , ā−,V̄ e ), ā−,V̄ e
) ∈

W cs with |ā−|+‖V̄ e‖X1 <C−2δ, its corresponding solution W (t ) = (y, a+, a−,V e )(t )
satisfy, for all t ≥ 0,

|a−(t )|+‖V e (t )‖X1 < δ/15, a+(t ) = hcs((y, a−,V e )(t )
)
,

|a−(t )−hc
−
(
(y,V e )(t )

)| ≤Ce−(λ−2η)t |a−(0)−hc
−
(
(y,V e )(0)

)|.(6.3)

Proof. The assumptions on W̄ , the conservation of Ẽ , and (6.2) imply

|Ẽ(
W (t )

)| = |Ẽ(W̄ )| ≤C−2δ2.

Let
T = sup{t > 0 : |a−(t ′)|+‖V e (t ′)‖X1 < δ/15, ∀t ′ ∈ [0, t )} > 0.

On [0,T ], Proposition 4.16 implies (6.3) holds, which along with Dhc (y,0) = 0
implies

|a−(t )| ≤C‖V e (t )‖2
X1

+C−1e−(λ−2η)tδ, t ∈ [0,T ].
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Applying (6.2) again, we obtain

‖V e (t )‖2
X1

≤C
(
Ẽ

(
W (t )

)+|a−(t )|3)
and thus ‖V e (t )‖2

X1
≤ C−1δ2. This along with the above inequality on a−(t ) im-

plies the T =∞. From Propositions 4.16 and 4.19 and Lemma 4.20, the rest of
the lemma follows. �

Following exactly the same arguments, we also obtain the exponential stabil-
ity of W c backward in time inside W cu .

Lemma 6.4. There exits C > 1 such that if η ∈ (Cδ,1) and Q,µ,δ satisfy (4.9),
(4.16), (4.18), (4.20), and (5.25), then for any initial value W̄ = (

ȳ , ā+, ā− = hcu(ȳ , ā+,V̄ e ),V̄ e
) ∈

W cu with |ā+|+‖V̄ e‖X1 <C−2δ, its corresponding solution W (t ) = (y, a+, a−,V e )(t )
satisfy, for all t ≤ 0,

|a+(t )|+‖V e (t )‖X1 < δ/15, a−(t ) = hcu(
(y, a+,V e )(t )

)
,

|a+(t )−hc
+
(
(y,V e )(t )

)| ≤Ce(λ−2η)t |a+(0)−hc
+
(
(y,V e )(0)

)|.(6.4)

Consequently, we also obtain the stability of M in W c .

Proposition 6.5. There exist C > 1 and δ> 0 such that, for any initial value W̄ =(
ȳ , (ā+, ā−) = hc (ȳ ,V̄ e ),V̄ e

) ∈W c with ‖V̄ e‖X1 <C−2δ, its corresponding solution
W (t ) = (y, a+, a−,V e )(t ) satisfy, for all t ∈R,

‖V e (t )‖X1 < δ/15, (a+, a−)(t ) = hc((y,V e )(t )
)
.

Combine the above results and Corollary 4.13, Propositions 4.16 and 4.19, we
obtain the following characterization of W cu , W cs , and W c .

Proposition 6.6. There exist C > 1 and δ > 0 such that the following hold. Let
U (t ) =Φ(

W (t )
)
, where W (t ) = (y, a+, a−,V e )(t ), be a solutions to (2.7) with ini-

tial value

W̄ = (
ȳ , ā+, ā−,V̄ e) ∈ B 2d (C−2δ)⊕X e (C−2δ),

then

(1) W̄ ∈W cu and thus W (t ) ∈W cu for all t ≤ 0, if and only if W (t ) ∈ B 2d (δ/15)⊕
X e (δ/15) for all t ≤ 0.

(2) W̄ ∈W cs and thus W (t ) ∈W cu for all t ≥ 0, if and only if W (t ) ∈ B 2d (δ/15)⊕
X e (δ/15) for all t ≥ 0.

(3) W̄ ∈W c and thus W (t ) ∈W c for all t ∈R, if and only if W (t ) ∈ B 2d (δ/15)⊕
X e (δ/15) for all t ∈R.

Remark 6.7. Note that when we construct the local invariant manifolds, we cut
off the nonlinearities to focus on the local dynamics. Different choice of the cut-
off could yield different local invariant manifolds. Therefore local center-stable,
center-unstable, and center manifolds are usually not unique. However, under
the non-degeneracy conditions (H1-2), we obtain the above characterization of
the local invariant manifolds which is independent of the cut-off. Therefore the
local manifolds are unique in this case.
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APPENDIX A

In the Appendix, we give some estimates of the nonlinear term G in (2.17).
One may compute in (2.16)

G2(c, y, w) =− (|U |2 −|Uc (·+ y)|2 −2Uc (·+ y) · (Kc,y w)
)

uc (·+ y)

− (|U |2 −|Uc (·+ y)|2)(w1 −χ(D)
(
vc (·+ y)w2

))
− 1

2

(
(1−|U |2)χ(D)(w2

2)+∆χ(D)(w2
2)

)
,

(A.1)

where U is given in (2.15) as

(A.2) U =ψ(
wc

(·+ y
)+w

)=Uc
(·+ y

)+Ky,c w −
(

1

2
χ(D)(w2

2),0

)T

.

Substituting this into G1 we obtain

G1 =G1(c, y,∂t y, w) =G11(c, y, w)+G12(c, y,∂t y, w)

where

G11 =
(|U |2 −|Uc (·+ y)|2 −2Uc (·+ y) · (Kc,y w)

)
vc (·+ y)

+ (|U |2 −|Uc (·+ y)|2)w2 − 1

2
χ(D)(w2∇w2 · c)

(A.3)

and by substituting (2.16) into G1

G12 =G12(c, y, ỹ , w) =χ(D)
(
w2

(− (Lc,y Kc,y w)1 − ỹ ·∇vc (·+ y)

+G2(c, y, w)
))

.
(A.4)

Here (Lc,y Kc,y w)1 denotes the first component of Lc,y Kc,y w . For fixed c and y ,
G is a polynomial of w and ỹ . More precisely, it is the sum of some multi-linear
transformations on w and ỹ of degree between 2 and 6.

Lemma A.1. Fix c. It holds that

G(c, ·, ·, ·) ∈C∞(R3 ×R3 ×X1,W 1, 3
2 )+C∞(R3 ×X1,L

3
2 ∩Ẇ 1, 6

5 ),

and
G(c, y,0) = 0, DwG(c, y,0) = 0.

In particular, the only term G12 containing ỹ belongs to C∞(R3×R3×X1,W 1, 3
2 ).

More refined estimates on G can be found in (A.10), (A.11), (A.12), (A.13), (A.14),
and (A.15), where the generic constant C in those inequalities are independent
of y .

Proof. Due to the polynomial form of G in w ∈ X1 and ỹ ∈ R3, we only need to
estimate the boundedness of each monomial, i.e. multi-linear transformation.
To handle the terms with χ(D), we will repeatedly use

(A.5) ‖|∇|sχ(D) f ‖Lp∩L∞ ≤Cs,p‖ f ‖Lp , ∀k ≥ 0, 1 ≤ p ≤∞.

We start with the consideration on |U |2 −|Uc (·+ y)|2. Let

ρ = 1

2
χ(D)

(
w2

2 +2w2w2c (·+ y)
)=⇒ Dk

yρ =χ(D)
(
w2Dk w2c (·+ y)

)
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for any k ≥ 1 and

∇ρ =χ(D)
(
w2∇w2 +∇w2w2c (·+ y)+w2∇w2c (·+ y)

)
.

Using w2c = vc ∈ Ḣ 1, (A.5) implies, for any s +k ≥ 1

(A.6) ‖∇sDk
yρ‖L

3
2 ∩L∞ ≤Cs,k‖w2‖Ḣ 1 (‖w2‖Ḣ 1 +1)

where Cs,k is independent of y . Here we used the property Dk w2c = Dk vc ∈ L2∩
L∞ for all k ≥ 1 due to equation (1.4) and also the embedding Ẇ 1, 3

2 (R3) → L3(R3)
on ρ. The second term in ρ actually has a better spatial decay estimate by using
the Hardy’s inequality and (2.6). Namely,

‖w2w2c (·+ y)‖L2 = ‖w2(·− y)vc‖L2 ≤C‖w2(·− y)

|x| ‖L2 ≤C‖w2‖Ḣ 1 .

On some occasions, we also need to consider
(
I−χ(D)

)
( f1 f2), for f1,2 ∈ Ḣ 1. Since

∇( f1 f2) ∈ L
3
2 , we have

‖(I −χ(D)
)
( f1 f2)‖

L
3
2
= ‖ I −χ(D)

|D| |D|( f1 f2)‖
L

3
2

≤C‖∇( f1 f2)‖
L

3
2
≤C‖ f1‖Ḣ 1‖ f2‖Ḣ 1

where we used that the inverse Fourier transform of 1−χ(ξ)
|ξ| is in L1. It implies

(A.7) ‖(I −χ(D)
)
( f1 f2)‖

W 1, 3
2
≤C‖ f1‖Ḣ 1‖ f2‖Ḣ 1 .

One may compute that

|U |2 −|Uc |2 =w2
1 +2uc (·+ y)(w1 −ρ)+ρ2 −2w1ρ+2vc (·+ y)w2 +w2

2

=w2
1 +2w1 +2

(
uc (·+ y)−1

)
(w1 −ρ)+ρ2 −2w1ρ

+2
(
I −χ(D)

)(
vc (·+ y)w2 +w2

2

)
.

By using the above inequalities and (2.6), we obtain, through straight forward
calculations, for k ≥ 1,

‖|U |2 −|Uc |2 −2w1‖W 1, 3
2
+‖Dk

y (|U |2 −|Uc |2)‖
W 1, 3

2 ∩Ḣ 1

≤C‖w‖X1 (‖w‖3
X1

+1).
(A.8)

Similarly,

|U |2 −|Uc |2 −2Uc (·+ y) · (Kc,y w)

=w2
1 +

(
1−χ(D)

)
(w2

2)+ (
1−uc (·+ y)

)
χ(D)(w2

2)+ρ2 −2w1ρ

and along with the above inequalities, it implies for k ≥ 1

‖Dk
y

(|U |2 −|Uc |2 −2Uc (·+ y) · (Kc,y w)
)‖

W 1, 6
5 ∩Ḣ 1

+‖|U |2 −|Uc |2 −2Uc (·+ y) · (Kc,y w)‖
W 1, 3

2
≤C‖w‖2

X1
(‖w‖2

X1
+1).

(A.9)

Substituting (A.8) and (A.9) into (A.1) and using (A.5), we obtain through straight
forward calculations

(A.10) ‖G2‖L
3
2 ∩L2

+‖∇G2‖L
3
2 +L

6
5
≤C‖w‖2

X1
(‖w‖3

X1
+1).
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Here we have to estimate ∇G2 in L
3
2 +L

6
5 since

‖∇∆χ(D)(w2
2)‖

L
3
2
≤C‖w2‖2

X1

does not seem to have better decay and

‖(|U |2 −|Uc |2
)∇w1‖L

6
5
≤C‖w‖2

X1
(‖w‖3

X1
+1).

does not seem to have better regularity. Similarly, for any k ≥ 1,

(A.11) ‖Dk
y G2‖W 1, 6

5 ∩Ẇ 1, 3
2
≤C‖w‖2

X1
(‖w‖3

X1
+1).

The estimates for G11 are

(A.12) ‖G11‖L
3
2 ∩L2

+‖∇G11‖L
3
2 ∩L∞+L1∩L

6
5
≤C‖w‖2

X1
(‖w‖3

X1
+1).

Again, we have to estimate ∇G2 in this norm as

‖∇χ(D)(w2∇w2 · c)‖
L

3
2 ∩L∞ ≤C‖w‖2

X1

does not seem to have better decay and

‖∇((|U |2 −|Uc (·+ y)|2)w2
)‖

L1∩L
6
5
≤C‖w‖2

X1
(‖w‖3

X1
+1)

does not seem to have better regularity. Differentiating in y implies that

(A.13) ‖Dk
y G11‖W 1, 6

5 ∩Ẇ 1, 3
2
≤C‖w‖2

X1
(‖w‖3

X1
+1), k ≥ 1.

Next we consider G12. Recall from (2.11), for any f = ( f1, f2) ∈ X1,

(Lc,y f )1 = (2−∆) f1 +
(
3(u2

c −1)+ v2
c

)
(·+ y) f1 − c ·∇ f2 +2(uc vc )(·+ y) f2.

Using the Hardy’s inequality, and the fact Kc,y being an isomorphism, we obtain

‖(Lc,y Kc,y w)1 +∆w1‖L2 ≤C‖w‖X1 .

From w2∆w1 =∇· (w2∇w1)−∇w2 ·∇w1 and (A.5), we have, for any s ≥ 0,

‖|∇|sχ(D)(w2∆w1)‖
L

3
2 ∩L∞ ≤C‖w2‖Ḣ 1‖w1‖Ḣ 1 .

Therefore, (A.4), (A.10), and the above inequalities yield

(A.14) ‖|∇|sG12‖L
3
2 ∩L∞ ≤C‖w2‖Ḣ 1

(|ỹ |+‖w1‖Ḣ 1 +‖w‖2
X1

(‖w‖3
X1

+1)
)
.

Differentiating in y , we have, for k ≥ 1,

Dk
y (Lc,y Kc,y w)1 = 2Dk (uc vc )(·+ y)w2

+Dk(
3(u2

c −1)+ v2
c

)
(·+ y)w1 − (2−∆)χ(D)

(
(Dk vc )(·+ y)w2

)
− ∑

k1+k2=k
Dk1

(
3(u2

c −1)+ v2
c

)
(·+ y)χ(D)

(
(Dk2 vc )(·+ y)w2

)
.

By using (A.5) and (A.11), we obtain, for any k ≥ 1,

(A.15) ‖|∇|sDk
y G12‖L

3
2 ∩L∞ ≤C‖w2‖Ḣ 1

(|ỹ |+‖w1‖Ḣ 1 +‖w‖2
X1

(‖w‖3
X1

+1)
)
.

Finally, we note that G11, G12, and G2 are polynomials of w and ỹ consisting of
monomials of degree between 2 and 6 with coefficients depending on Uc (·+ y).
Therefore, one may regrouping those monomials so that some of them belong
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to W 1, 3
2 while others to Ẇ 1, 6

5 . Moreover it is easy to obtain the estimates on
D l

w Dk
y G and the the proof is complete. �

REFERENCES

[1] M. Abid, C. Huepe, S. Metens, C. Nore, C. T. Pham, L. S. Tuckerman, and M. E. Brachet. Gross-
Pitaevskii dynamics of Bose-Einstein condensates and superfluid turbulence. Fluid Dynam.
Res., 33(5-6):509–544, 2003.

[2] I. V. Barashenkov, A. D. Gocheva, V. G. Makhan′kov, and I. V. Puzynin. Stability of the soliton-
like “bubbles”. Phys. D, 34(1-2):240–254, 1989.

[3] I. V. Barashenkov and V. G. Makhan′kov. Soliton-like “bubbles” in a system of interacting
bosons. Phys. Lett. A, 128(1-2):52–56, 1988.

[4] P. W. Bates and Christopher K. R. T. Jones. Invariant manifolds for semilinear partial differen-
tial equations. In Dynamics reported, Vol. 2, volume 2 of Dynam. Report. Ser. Dynam. Systems
Appl., pages 1–38. Wiley, Chichester, 1989.

[5] P. W. Bates, K. Lu, and C. Zeng. Approximately invariant manifolds and global dynamics of
spike states. Invent. Math., 174(2):355–433, 2008.

[6] M. Beceanu. A centre-stable manifold for the focussing cubic NLS in R1+3. Comm. Math.
Phys., 280(1):145–205, 2008.

[7] M. Beceanu. A critical center-stable manifold for Schrödinger’s equation in three dimen-
sions. Comm. Pure Appl. Math., 65(4):431–507, 2012.

[8] N. G. Berloff and P.H. Roberts. Motions in a bose condensate: X. new results on the stability
of axisymmetric solitary waves of the gross–pitaevskii equation. Journal of Physics A: Mathe-
matical and General, 37(47):11333, 2004.

[9] F. Béthuel, P. Gravejat, and J.-C. Saut. Existence and properties of travelling waves for the
Gross-Pitaevskii equation. In Stationary and time dependent Gross-Pitaevskii equations, vol-
ume 473 of Contemp. Math., pages 55–103. Amer. Math. Soc., Providence, RI, 2008.

[10] F. Béthuel, P. Gravejat, and J.-C. Saut. Travelling waves for the Gross-Pitaevskii equation. II.
Comm. Math. Phys., 285(2):567–651, 2009.

[11] F. Béthuel, G. Orlandi, and D. Smets. Vortex rings for the Gross-Pitaevskii equation. J. Eur.
Math. Soc. (JEMS), 6(1):17–94, 2004.

[12] F. Béthuel and J.-C. Saut. Travelling waves for the Gross-Pitaevskii equation. I. Ann. Inst. H.
Poincaré Phys. Théor., 70(2):147–238, 1999.

[13] J. Carr. Applications of centre manifold theory, volume 35 of Applied Mathematical Sciences.
Springer-Verlag, New York-Berlin, 1981.

[14] D. Chiron. Travelling waves for the Gross-Pitaevskii equation in dimension larger than two.
Nonlinear Anal., 58(1-2):175–204, 2004.
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