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Abstract
Consider inviscid �uids in a channel f�1 < y < 1g. For the Cou-

ette �ow ~v0 = (y; 0), the vertical velocity of solutions to the linearized
Euler equation at ~v0 decays in time. At the nonlinear level, such in-
viscid damping is widely open. First, we show that in any (vorticity)
Hs

�
s < 3

2

�
neighborhood of Couette �ow, there exist non-parallel steady

�ows with arbitrary minimal horizontal period. This implies that nonlin-
ear inviscid damping is not true in any (vorticity) Hs

�
s < 3

2

�
neighbor-

hood of Couette �ow and for any horizontal period. Indeed, the long time
behavior in such neighborhoods are very rich, including nontrivial steady
�ows, stable and unstable manifolds of nearby unstable shears. Second, in
the (vorticity) Hs

�
s > 3

2

�
neighborhood of Couette, we show that there

exist no non-parallel steadily travelling �ows ~v (x� ct; y), and no unstable
shears. This suggests that the long time dynamics in Hs

�
s > 3

2

�
neigh-

borhoods of Couette might be much simpler. Such contrasting dynamics
in Hs spaces with the critical power s = 3

2
is a truly nonlinear phenom-

ena, since the linear inviscid damping near Couette is true for any initial
vorticity in L2:

1 Introduction

Consider the incompressible inviscid �uid in a channel f(x; y) j � 1 � y � 1g,
satisfying the 2D Euler equation(

@tu+ u@xu+ v@yu = �@xP
@tv + u@xv + v@yv = �@yP

(1)

with the incompressibility condition

@xu+ @yv = 0 (2)

and the boundary conditions

v = 0 on fy = �1g and fy = 1g : (3)
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Here, ~u = (u; v) is the �uid velocity and P is the pressure. De�ne the vorticity
! = uy � vx, then ! satis�es the equation

!t + u!x + v!y = 0:

Any shear �ow (U (y) ; 0) is a steady solution for (1). The Couette �ow ~u0 =
(y; 0) is among the simplest laminar �ows, however, it poses several long-standing
puzzles in hydrodynamics. First, for any Reynolds number R > 0; the Couette
�ow is also a steady state for Navier-Stokes equations(

@tu+ u@xu+ v@yu = �@xP + 1
R�u

@tv + u@xv + v@yv = �@yP + 1
R�v

(4)

with (3) and the boundary conditions

(u; v) = (�1; 0) on fy = �1g :

The so called Sommerfeld paradox ([22]) is that Couette �ow is linearly stable for
any R > 0 (proved in [19]), but it becomes turbulent when R is large as revealed
in experiments and numerical simulations. We refer to ([10]) and the references
therein for attempts to resolve this paradox. In this paper, we are interested in
another mystery about Couette �ow, namely, the inviscid damping. It is obvious
that Couette �ow is nonlinearly stable in any Lp norm of vorticity !, since for
Couette �ow !0 = 1 and thus the vorticity perturbation is preserved along the
perturbed �ow trajectory. In 1907, Orr ([17]) observed that for the linearized
Euler equation around Couette; the vertical velocity v (t) tends to zero when t
goes to in�nity. We refer to Section 4 for a more detailed study on the linear
damping of Couette �ow. It is unusual that such damping phenomena can occur
for a time reversible system such as the Euler equation. Moreover, the issue of
inviscid damping also appears in the study of many other stable �ows ([4], [1],
[18], [20]), and is believed to plan important roles on explaining the appearance
of coherent structures in 2D turbulence. To be precise mathematically, the
problem of nonlinear inviscid damping near Couette �ow is to prove or disprove
the following statement: When the initial velocity is close enough to Couette in
the sense that

k(u (0) ; v (0))� (y; 0)kX is small enough

in some function space X, then

kv (t)kL2 ! 0 when t!1;

that is, (u (t) ; v (t)) tends asymptotically to a shear �ow (U1 (y) ; 0) near the
Couette �ow. So far, nonlinear inviscid damping has not been proved for Couette
�ow or any other stable Euler �ows. Our �rst result shows that the minimal
regularity for such nonlinear damping to be true is H

5
2 , that is, the velocity

space X must be at least H
5
2 .
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Theorem 1 Fixed any T > 0 and 0 � s < 3
2 ; then for any " > 0, there exists a

steady solution (u" (x; y) ; v" (x; y)) to Euler equation (1) with (2)-(3) such that
(u" (x; y) ; v" (x; y)) has minimal x�period T;

k!" � 1kHs
(0;T )�(�1;1)

< "; where !" = @yu" � @xv";

and v" (x; y) is not identically zero.

The above Theorem immediately implies that nonlinear inviscid damping
is not true in any (vorticity) Hs

�
s < 3

2

�
neighborhood, or equivalently in any

(velocity) Hs
�
s < 5

2

�
neighborhood of Couette �ow. As a corollary of the proof

of Theorem 1, we also get the following structural instability result for Couette
�ow.

Corollary 1 Fixed any T > 0 and 0 � s < 3
2 ; then for any " > 0, there exists

a shear �ow (U" (y) ; 0) such that kU 0" (y)� 1kHs(�1;1) < " and (U" (y) ; 0) is
exponentially unstable to perturbations of x�period T .

The shear �ow (U" (y) ; 0) is unstable in the sense that unstable eigenval-
ues exist for the linearized problem in the domain 
T = ST � (�1; 1), where
ST is the T�periodic circle. By our results in [14], there exist stable and un-
stable manifolds near (U" (y) ; 0) for the Euler equation (1) in 
T . Therefore,
Theorem 1 and Corollary 1 imply that the long time dynamics in the (vortic-
ity) Hs

�
s < 3

2

�
neighborhood of Couette �ow is very rich, including nontrivial

steady �ows, stable and unstable manifolds of nearby unstable shear �ows.
Our next theorem shows that there exist no nontrivial steadily travelling

�ows in the (vorticity) Hs
�
s > 3

2

�
neighborhoods of Couette �ow.

Theorem 2 Fixed any T > 0; s > 3
2 ; there exists "0 > 0 such that any travel-

ling solution (u (x� cy; y) ; v (x� cy; y)) (c 2 R) to Euler equation (1)-(3) with
x�period T and satisfying that

k! � 1kHs
(0;T )�(�1;1)

< "0;

must have v (x; y) � 0, that is, (u; v) is necessarily a shear �ow.

By the proof of Theorem 2, we also have the following

Corollary 2 Fixed any T > 0 and s > 3
2 ; there exists "0 > 0 such that any

shear �ow (U (y) ; 0) satisfying

kU 0 (y)� 1kHs(�1;1) � "0;

is linearly stable to perturbations of x�period T .

Theorem 2 and Corollary 2 suggests that in the (vorticity)Hs
�
s > 3

2

�
neighborhoods

of Couette �ow, the long time dynamical behavior of Euler �ows might be much
simpler. Particularly, the only steady structures in any reference frame are
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nearby stable shear �ows. A necessary condition for nonlinear inviscid damping
in any space is that there exist no nontrivial invariant structures (time-periodic,
quasi-periodic solutions etc.) near Couette �ow in this space. Theorem 3 is a
�rst step in this direction.
In Theorem 3 in Section 4, we show that the linear decay holds true for any

initial vorticity in L2 and the optimal decay rate is already achieved for initial
vorticity in H1 (see Remark 2). This indicates that the contrasting dynamics
in Hs neighborhoods of Couette with s < 3

2 or s > 3
2 is a truly nonlinear

phenomena and it can not be traced back to the linear level.
A similar phenomena of collisionless damping for electron plasmas was dis-

covered at the linear level by Landau ([9]) in 1946. In the physical literature, the
collisionless damping had been often ([8], [18], [1]) compared with the inviscid
damping problem. In [15], we obtained similar results for the nonlinear Landau
damping problem. Moreover, in the case of collisionless plasmas we are able to
prove a stronger result that H

3
2 is the critical regularity for the existence of any

nontrivial invariant structure near a stable homogeneous state.
This paper is organized as follows. In Section 2, we construct nontrivial

steady �ows near Couette �ow in (vorticity) Hs
�
s < 3

2

�
neighborhood and for

any minimal x�period. In Section 3, the non-existence of nontrivial travelling
�ows is proved in (vorticity) Hs

�
s > 3

2

�
neighborhood. Section 4 is to study

the linear damping problem in Sobolev spaces. Throughout this paper, we use C
to denote a generic constant in the estimates and only indicate the dependence
of C when it matters.

2 Existence of Cat�s-eyes in Hs
�
s < 3

2

�
In this Section, we construct steady �ows of Kelvin�s cat�s eyes structure near
Couette �ow in the (vorticity) Hs

�
s < 3

2

�
space. Our strategy is to construct

cat�s eyes �ows by bifurcation at modi�ed shear �ows near Couette. We split
the proof into several steps.

Lemma 1 Assume U (y) 2 C5 [�1; 1] ; is odd, monotone in [�1; 1], and U 0(0) >
0. Let Q (y) = U 00(y)

U(y) and de�ne the operator

L := � d2

dy2
+Q (y) ; H2 (�1; 1)! L2 (�1; 1) ;

with zero Dirichlet conditions at fy = �1g. If L has a negative eigenvalue �k20,
then 9 "0 > 0, such that for each 0 < " < "0, there exist a steady solution
(u" (x; y) ; v" (x; y)) to Euler equations (1)-(3) which has minimal period T" in
x,

k!" (x; y)� U 0 (y)kH2(0;T")�(�1;1) = ";

and the streamlines of this steady �ow near y = 0 have cat�s eyes structure, with
a leading order expression given by (9). When "! 0, T" ! 2�

k0
.

4



Proof. The proof is a slight modi�cation of that in [10]. Let  0 (y) to be a
stream function associated with the shear (U (y) ; 0), i..e.,  00 (y) = U (y). Since
 0 (y) ; Q (y) are even in [�1; 1], we let  0 (y) = G

�
1
2y
2
�
and Q (y) = H

�
1
2y
2
�
.

Then

G0
�
1

2
y2
�
=
 00 (y)

y
=
U (y)

y
> 0, when y 2 [�1; 1] ;

and G; H 2 C1 because U (y) 2 C5. So we can de�ne a function f0 2
C2 [min 0;max 0] such that

f 00 = H �G�1 and f0 ( 0 (0)) =  000 (0) :

Then we extend f0 to f 2 C20 (R) such that f = f0 in [min 0;max 0]. By our
construction,

f 0( 0 (y)) = Q(y); for y 2 [�1; 1] , (5)

which implies that

f 0( 0 (y)) 
0
0 (y) = U 00 (y) =  0000 (y) ;

and an integration of above yields

f ( 0 (y)) =  000 (y) ; for y 2 [�1; 1] : (6)

We construct steady �ows near (U (y) ; 0) by solving the elliptic equation

� = f ( ) ;

where  (x; y) is the stream function and (u; v) = ( y;� x) is the steady ve-
locity. Let � = �x;  (x; y) = ~ (�; y) ; where ~ (�; y) is 2��periodic in �: We
use �2 as the bifurcation parameter. The equation for ~ (�; y) becomes

�2
@2 ~ 

@�2
+
@2 ~ 

@y2
� f( ~ ) = 0; (7)

with the boundary conditions that ~ takes constant values on fy = �1g. De�ne
the perturbation of the stream function

� (�; y) = ~ (�; y)�  0 (y) :

Then by using (6), we reduce the equation (7) to

�2
@2�

@�2
+
@2�

@y2
� (f(�+  0 (y))� f ( 0 (y))) = 0: (8)

De�ne the spaces

B =
�
�(�; y) 2 H3([0; 2�]� [�1; 1]); �(�;�1) = �(�; 1) = 0; 2� � periodic and even in �

	
and

D =
�
�(�; y) 2 H1([0; 2�]� [�1; 1]); 2� � periodic and even in �

	
:
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Consider the mapping
F (�; �2) : B � R+ 7! D

de�ned by

F (�; �2) = �2
@2�

@�2
+
@2�

@y2
� (f(�+  0 (y))� f ( 0 (y))) :

We study the bifurcation near the trivial solution � = 0 of the equation F (�; �2) =
0 in B, whose solutions give steady �ows with x�period 2�

� . The linearized op-
erator of F around

�
0; k20

�
has the form

G := F (0; k
2
0) = k20

@2

@�2
+
@2

@y
� f 0( 0 (y))

= k20
@2

@�2
+
@2

@y
�Q(y):

By Strum-Liouville theory, all eigenvalues of L are simple. In fact, as proven in
Appendix of [10], �k20 is the only negative eigenvalue of L. Let �0(y) be the
corresponding positive eigenfunction. So the kernel of G : B 7! D is given by

ker(G) = f�0(y) cos �g ;

In particular, the dimension of ker(G) is 1. Since G is self-adjoint, �0(y) cos � 62
R(G) �the range of G. Notice that @�2@�F (�; �2) is continuous and

@�2@�F (0; k
2
0) (�0(y) cos �) =

@2

@�2
[�0(y) cos �] = ��0(y) cos � 62 R(G):

Therefore by the Crandall-Rabinowitz local bifurcation theorem [6], there exists
a local bifurcating curve

�
�(�); �2(�)

�
of F (�; �2) = 0, which intersects the

trivial curve
�
0; �2

�
at �2 = k20, such that

�(�) = ��0(y) cos � + o(�);

�2(�) is a continuous function of �, and �2(0) = k20. So the stream functions of
the perturbed steady �ows in (�; y) coordinates take the form

 (�; y) =  0 (y) + ��0(y) cos � + o(�): (9)

Since �0(y) > 0,  00 (0) = U (0) = 0, the streamlines of perturbed �ows have
cat�s eyes structure near fy = 0g ; with saddle points near (2�j; 0). The proof
is completed.
In the next lemma, we study the eigenvalue problem of L for a class of

monotone shear �ows near Couette �ow. Let

erf (x) =
2p
�

Z x

0

e�s
2

ds; �1 < x < +1;
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be the error function. For  > 0; a > 0; we de�ne the shear pro�le

U;a (y) = y + a2 erf

�
y



�
; y 2 (�1; 1) : (10)

Denote

Q;a (y) =
U 00;a (y)

U;a (y)
; (11)

and
L;a : H2 (�1; 1)! L2 (�1; 1)

to be the operator � d2

dy2 +Q;a (y) with the Dirichlet conditions at fy = �1g :

Lemma 2 For any �xed a > 1
2 ; when  is small enough, the operator L;a has

a unique negative eigenvalue ��2;a. When  ! 0; �;a tends to the unique root
�a of the equation

2a = �a coth�a; (12)

with the error estimate j�;a � �aj = O
�p

�
.

Proof. We write the potential function Q;a (y) as

Q;a (y) = �
4a


p
�

ye�(
y
 )

2

y + a2 erf
�
y


�
= � 4a


p
�
e�(

y
 )

2 1

1 + a erf
�
y


�
=
��

y


��
= �4a 1


�

�
y



�
1

1 + a�
�
y


� ;
where

� (y) =
1p
�
e�y

2

; � (y) =
erf (y)

y
:

Since � (y) is positive and bounded, we formally derive that

Q;a (y)! �4a� (0) ; when  ! 0:

Thus, when  ! 0; the operator L;a tends to � d2

dy2 � 4a� (0), for which the
eigenvalue can be calculated by the formula (12). We implement these ideas
rigorously below. We divide the proof into several steps.
Step 1: Denote �;a to be the lowest eigenvalue of L;a and �;a the cor-

responding eigenfunction with k�;akL2 = 1. We show that for  > 0 small
enough,

�16a2 � �;a < 0;

and
k�;akH1 � 8a+ 1: (13)
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Note that

�;a = min
k�kL2=1
�2H1

0

(L;a�; �) = min
k�kL2=1
�2H1

0

�
k�0k2L2(�1;1) +

Z 1

�1
Q;a (y)� (y)

2
dy

�
:

Let �1 (y) = (1� jyj), then when  is small enough,

�;a �
(L;a�1; �1)
k�1k2L2

� 3

4
(2� 4a) < 0;

sincek�1k2L2 = 2
3 and

lim
!0+

(L;a�1; �1) = k�01k
2
L2(�1;1) � 4a�1 (0)

2
= 2� 4a < 0.

To estimate the lower bound of �;a, we take any � 2 H1
0 (�1; 1) with k�kL2 = 1,

then

(L;a�; �) � k�0k2L2(�1;1) �
Z 1

�1

4a


p
�
e�(

y
 )

2

dy k�k2L1 (14)

� k�0k2L2(�1;1) � 4a k�k
2
L1

� k�0k2L2(�1;1) � 8a k�kL2 k�
0kL2(�1;1) � �16a

2:

Taking the minimum of above estimate, we get �;a � �16a2. Moreover, again
from estimate (14),

0 > �;a = (L;a�;a; �;a) �
�0;a2L2 � 8a�0;aL2

which implies that
�0;aL2 � 8a.

Step 2: Let �a be de�ned by

�a = min
k�kL2=1
�2H1

0

k�0k2L2 � 4a� (0)
2
: (15)

We show that �a = ��2a where �a solves the equation (12).
First, we claim that the minimum of (15) is obtained at some function �a 2

H1
0 . To show this claim, we note that by the same estimates as in Step 1,

�16a2 � �a <
3

2
(2� 4a) < 0:

Let f�ng1n=1 � H1
0 be a minimizing sequence of (15) with k�nkL2 = 1 and

k�0nk
2
L2 � 4a�n (0)

2 ! �a; when n!1:

Similar to the estimate (13), when n is large, we have k�nkH1 � 8a + 1: Thus
�n ! �a weakly H1; and strongly in L2 \ L1: Therefore, k�akL2 = 1 and

k�0ak
2
L2 � 4a�a (0)

2 � lim
n!1

k�0nk
2
L2 � 4a�n (0)

2
= �a:
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Thus �a is the minimizer of (15).
By taking the variation of (15), one immediately obtains that �a 2 H1

0

satis�es the equation
�00a + 4a�a(0) + �a�a = 0 (16)

in the sense of distribution. In particular, �a is continuous on [�1; 1], �a(�1) =
0, and satis�es

�00a + �a�a = 0, on [�1; 1]nf0g:
Therefore, we have

�a(y) = �c sinh
�p

��a(y � 1)
�
; �y 2 (0; 1];

for some constant c. To satisfy (16), it is easy to check that one must have

�0a (0+)� �0a (0�) = �4a�a(0);

from which it follows that �a = ��2a and �a solves the equation (12). Note that
since the function

f (�) = � coth� : [0;1)! [
1

2
;1)

is monotone increasing. So for each a > 1
2 , there exists a unique �a = f�1 (a)

such that (12) is satis�ed.
Step 3: We show that when  is small enough,

j�;a � �aj � C (a)
p
. (17)

Denote the quadratic forms

H;a (�) = k�0k2L2(�1;1) +
Z 1

�1
Q;a (y)� (y)

2
dy

and
Ha (�) = k�0k2L2(�1;1) � 4a� (0)

2

in H1
0 (�1; 1). Then

�a � Ha (�;a)

= H;a (�;a) + 4a

Z 1

�1

1


�

�
y



�
1

1 + a�
�
y


��2;a (y) dy � 4a�;a (0)2
= �;a + 4a

Z 1


� 1


� (y)
�
�2;a (y)� �2;a (0)

�
dy � 4a

Z
jyj� 1



� (y) dy�2;a (0)

+ 4a

Z 1

�1

1


�

�
y



� a�
�
y


�
1 + a�

�
y


��2;a (y) dy
= �;a + T1 + T2 + T3:
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Since���2;a (y)� �2;a (0)�� � 2 k�;akL1 ����Z y

0

�0;a (s) ds

����
� C k�;ak2H1(�1;1)

p
 jyj

1
2 � C (8a+ 1)

p
 jyj

1
2 ;

so

jT1j � C (a)
p


Z
R

� (y) jyj
1
2 dy � C (a)

p
:

When  is small enough, we have

jT2j � C (a) k�;ak2L1
Z
jyj� 1



� (y) dy � C (a)
p
;

and

jT3j � C (a) k�;ak2L1 

Z
R

� (y) dy � C (a)
p
:

Thus
�a � �;a � C (a)

p


and similarly
�;a � �a � C (a)

p
:

This �nishes the proof of (17) and thus also the lemma.
We are now ready to prove Theorem 1.
Proof of Theorem 1. Fixed T > 0, there exists 1

2 < a1 < a2 such that

�a1 <
2�

T
< �a2 .

By Lemma 2, there exists 0 > 0 small enough, such that when 0 <  < 0, for
all a 2 (a1; a2) the operator L;a has a negative eigenvalue �;a andp

��;a1 <
2�

T
<
p
��;a2 . (18)

We show that: for a 2 (a1; a2) ; s 2 [0; 32 );U 0;a (y)� 1Hs(�1;1) ! 0; when  ! 0: (19)

Indeed,

U 0;a (y)� 1 =
2ap
�
e�(

y
 )

2

;

so U 0;a (y)� 1Hs(�1;1) � C
e�( y )2

Hs(R)
:

Using the Fourier transform, one may compute explicitlye�( y )2
_Hs(R)

= Cs
3
2�s;
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which implies (19) by our assumption that s < 3
2 . Thus For any " > 0, by

choosing 0 small enough, we can assume thatU 0;a (y)� 1Hs(�1;1) �
"

2T
; when (; a) 2 (0; 0)� (a1; a2) : (20)

By Lemma 1, for any (; �) 2 (0; 0)� (a1; a2) ; there exists local bifurcation of
non-parallel steady �ows (Cats�s eyes) of Euler equation (1)-(3), near the shear
�ow (U;a (y) ; 0). For each �xed 0 <  < 0; we can �nd r0 > 0 (independent
of a 2 (a1; a2) ) such that for any 0 < r < r0 , there exists a nontrivial steady
solution

(u;a;r (x; y) ; v;a;r (x; y))

with vorticity !;a;r (x; y) which has x�period T (; a; r) and!;a;r � U 0;a (y)H2(0;T (;a;r))�(�1;1) = r:

Moreover,
2�

T (; a; r)
!
p
��;a, when r ! 0:

By (18), when r0 is small enough,

T (; a1; r) < T < T (; a2; r) ; for 0 < r < r0:

Since T (; a; r) is continuous to a; for each  2 (0; 0) and r > 0 small enough,
there exists aT (; r) 2 (a1; a2) , such that T (; aT ; r) = T . Then the �ow

(u;r (x; y) ; v;r (x; y)) := (u;aT ;r (x; y) ; v;aT ;r (x; y))

with the vorticity !;r = !;aT ;r is a nontrivial steady solution of Euler equation,
with x�period T and!;r � U 0;aT (y)H2(0;T )�(�1;1) = r:

Thus for any 0 < r < min
�
0;

"
2

	
, combining with (20) we have

k!;r (x; y)� 1kHs(0;T )�(�1;1) < ":

This �nishes the proof of Theorem 1.
For the shear �ow U;a (y) de�ned by (10), there is only one in�ection point

at y = 0. The following Lemma about linear instability of (U;a (y) ; 0) follows
from the result in [11].

Lemma 3 If the operator L;a has a negative eigenvalue �;a < 0, then the
shear �ow (U;a (y) ; 0) is linearly exponentially unstable to perturbations of any
x�period greater than 2�p

��;a
.
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From above Lemma, it is easy to prove Corollary 1.
Proof of Corollary 1. For any �xed T > 0, pick a > 1

2 such that T >
2�
�a
:Then there exists  small enough such that

�;a < 0; T >
2�p
��;a

:

By Lemma 3, the shear �ow (U;a (y) ; 0) is linearly exponentially unstable to
perturbations of x�period T . For any " > 0; if  is small enough, by (19) we
can let U 0;a (y)� 1Hs(�1;1) < "

and this �nishes the proof.

Remark 1 We can use more general shear pro�les than U;a (y) in (10) to
construct cats�s eyes �ows near Couette. More precisely, de�ne

U;a (y) = y + a2h

�
y



�
;

where h 2 C5 (R) is odd, h0 2 H2 (R) ; andZ
R

h00 (x)

x
dx = b0 > 0; a >

2

b0
:

By the same proof of Lemma 2, when  is small enough, the operator

L;a := �
d2

dy2
+Q;a (y) ; with Q;a (y) =

U 00;a (y)

U;a (y)
;

has a negative eigenvalue ��2;a, where

j�;a � �aj = O (
p
) and

b0a

2
= �a coth�a:

Then the same proof of Theorem 1 yields cats�s eyes �ows bifurcating form
(U;a (y) ; 0) : Such shear �ows (U;a (y) ; 0) are exponentially unstable for per-
turbations with x�period T near 2�

�;a
.

3 Non-existence of traveling waves in Hs
�
s > 3

2

�
In this Section, we prove Theorem 2. For the proof, we need a few lemmas. The
�rst lemma is a Hardy type inequality.

Lemma 4 Let s 2
�
1
2 ;

3
2

�
. If u (y) 2 Hs (�1; 1) ; and u (y0) = 0 for some

y0 2 [�1; 1] ; then for any 1 � p < 1
3
2�s

; u (y)y � y0


Lp(�1;1)

� C (p) kukHs(�1;1) :

12



Proof. Since s > 1
2 , the space H

s (�1; 1) is embedded to the Hölder space
C0;s�

1
2 (�1; 1). So

ju (y)j = ju (y)� u (y0)j � jy � y0js�
1
2 kukC0;� � C jy � y0js�

1
2 kukHs ;

andZ 1

�1

���� u (y)y � y0

����p dy � kukpHs

Z 1

�1

1

jy � y0j(
3
2�s)p

dv

=
1

1�
�
3
2 � s

�
p

�
(1� y0)1�(

3
2�s)p + (y0 + 1)

1�( 32�s)p
�
kukpHs

� 1

1�
�
3
2 � s

�
p
21�(

3
2�s)p kukpHs :

This �nishes the proof.
Proof of Theorem 2. Suppose otherwise, then there exist a sequence "n !

0, and travelling solutions (un (x� cnt; y) ; vn (x� cnt; y)) to Euler equation (1)-
(3) which are T�periodic in x and such that vn is not identically zero,

k!n � 1kHs
(0;T )�(�1;1)

< "n; where !n (x; y) = @yun � @xvn. (21)

We can assume that Z T

0

Z 1

�1
un (x; y) dydx = 0; (22)

otherwise we consider the travelling wave

un (x� (cn + dn) t; y)� dn; vn (x� (cn + dn) t; y) ;

with

dn =
1

2T

Z T

0

Z 1

�1
un (x; y) dydx:

The travelling wave solutions satisfy the vorticity equation

(un � cn) @x!n + vn@y!n = 0: (23)

Because of the condition (22), (un; vn) is uniquely determined by the vorticity
!n and

k(un; vn)� (y; 0)kHs+1
(0;T )�(�1;1)

� C k!n � 1kHs
(0;T )�(�1;1)

� C"n:

Since s > 3
2 ;

k@yun � 1kL1(0;T )�(�1;1) � kun � ykHs+1
(0;T )�(�1;1)

� C"n;

thus when n is large,

1

2
< @yun <

3

2
, in (0; T )� [�1; 1] : (24)

13



Therefore, for each x 2 (0; T ), un (x; y) is strictly increasing for y 2 [�1; 1]. We
divide (0; T ) into three subsets

Pn = fx j cn � un (x;�1)g ; Qn = fx j cn � un (x; 1)g ;

and
Sn = fx j un (x;�1) < cn < un (x; 1)g :

When x 2 Sn, there exists a unique yn (x) 2 (�1; 1) such that un (x; yn (x)) =
cn. From (23), it follows that

vn (x; yn (x)) = 0 or @y!n (x; yn (x)) = 0;

and we further divide Sn into two subsets

S1n = fx 2 Sn j vn (x; yn (x)) = 0 g ;
S2n = fx 2 Sn j @y!n (x; yn (x)) = 0 g :

By the incompressible condition (2),

@x!n = @x (@yun � @xvn) = ��vn:

Since vn (x;�1) = 0 by (3), by integration by parts and using (23), we getZ T

0

Z 1

�1
jrvnj2 dydx =

Z T

0

Z 1

�1
vn@x!n dydx = �

Z T

0

Z 1

�1
vn
vn@y!n
un � cn

dydx

(25)

�
Z
Pn

Z 1

�1

����vn vn
un � cn

@y!n

���� dydx+ Z
Qn

Z 1

�1

����vn vn
un � cn

@y!n

���� dydx
+

Z
S1n

Z 1

�1

����vn vn
un � cn

@y!n

���� dydx+ Z
S2n

Z 1

�1

����v2n @y!n
un � cn

���� dydx
= I + II + III + IV:

Since
�
�
2

�2
is the lowest eigenvalue of �� on (0; T ) � (�1; 1) with periodic

boundary condition in x and Dirichlet boundary condition in y,

krvnk2L2
(0;T )�(�1;1)

�
��
2

�2
kvnk2L2

(0;T )�(�1;1)
:

Thus by Sobolev embedding, for any p > 1;

kvnkLp
(0;T )�(�1;1)

� C (p) kvnkH1
(0;T )�(�1;1)

� C (p) krvnkL2
(0;T )�(�1;1)

: (26)

Since
k@y!nkHs�1

(0;T )�(�1;1)
� k!n � 1kHs

(0;T )�(�1;1)
< "n; (27)

again by Sobolev embedding,

k@y!nkLp
(0;T )�(�1;1)

� C (p) "n for any 1 < p <
2

(2� s)+
;

14



where
(2� s)+ = max f2� s; 0g :

So we can always choose p1; p2; p3 such that

p1 > 1; 1 < p2 <
2

(2� s)+
; 1 < p3 < 2;

and
1

p1
+
1

p2
+
1

p3
= 1:

When x 2 Pn;
jun (x; y)� cnj � jun (x; y)� un (x;�1)j ;

so

I � kvnkLp1
(0;T )�(�1;1)

k@y!nkLp2
(0;T )�(�1;1)

 vn
y + 1


L
p3
Pn�(�1;1)

 y + 1

un (x; y)� un (x;�1)


L1
(0;T )�(�1;1)

� C"n krvnkL2
(0;T )�(�1;1)

 Z
Pn

 vn
y + 1

p3
Lp3 (�1;1)

dx

! 1
p3

� C"n krvnkL2
(0;T )�(�1;1)

�Z
Pn

kvnkp3H1(�1;1) dx

� 1
p3

(By Lemma 4)

� C"n krvnkL2
(0;T )�(�1;1)

kvnkH1
(0;T )�(�1;1)

T
1
p3
� 1
2 � C"n krvnk2L2

(0;T )�(�1;1)
:

Here in the second inequality above, we use (26), (27) and the estimate���� y + 1

un (x; y)� un (x;�1)

���� = 1

j@yun (x; ~y)j
� 2; ~y 2 (�1; y) ,

due to (24). By similar estimates as that for I, we get

II; III � C"n krvnk2L2
(0;T )�(�1;1)

:

To estimate IV; we choose

1 < p1 < minf2;
1�

5
2 � s

�
+

g; p2 = 2p
0
1;

then

IV � C kvnk2Lp2
(0;T )�(�1;1)

 @y!n
y � yn (x)


L
p1
S2n�(�1;1)

� C krvnk2L2
(0;T )�(�1;1)

 Z
S2n

k@y!nkp1Hs�1(�1;1) dx

! 1
p1

(By Lemma 4)

� C krvnk2L2
(0;T )�(�1;1)

k!n � 1kHs
(0;T )�(�1;1)

� C"n krvnk2L2
(0;T )�(�1;1)

:
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Thus from (25) and above estimates,

krvnk2L2
(0;T )�(�1;1)

� C"n krvnk2L2
(0;T )�(�1;1)

;

When n is large, this implies that rvn = 0 and thus vn = 0. This is a contra-
diction.
To prove Corollary 2, we use the following Lemma which follows from The-

orem 2.7 of [13].

Lemma 5 Let U (y) 2 C2 [�1; 1] be a monotone �ow. Denote U1s ; � � � ; U ls to
be all the in�ection values of U (y) ; that is, U is = U

�
yi
�
for some yi 2 [�1; 1]

satisfying U 00
�
yi
�
= 0. Then the shear �ow (U (y) ; 0) is linearly stable to per-

turbations of x�period T , if for any 1 � i � l, the operator

Li = �
d2

dy2
+

U 00

U � U is
with Dirichlet boundary conditions in [�1; 1] has the lowest eigenvalue greater
than �

�
2�
T

�2
.

Proof of Corollary 2. We use the notations in Lemma 5. We shall show
that Li > 0 for any 1 � i � l; when kU 0 (y)� 1kHs(�1;1) � "0

�
s > 3

2

�
is

su¢ ciently small. Then the conclusion of Corollary 2 follows from Lemma 5.
Take any nonzero function u 2 H1

0 (�1; 1), then

(Liu; u) = ku0k2L2(�1;1) +
Z 1

�1

U 00

U � U is
u (y)

2
dy:

Fix
1 < p1 < minf2;

1�
5
2 � s

�
+

g

and let p2 = 2p01. Since u (�1) = 0;

ku0kL2(�1;1) �
�

2
kukL2(�1;1) ;

and by Sobolev embedding

kukLp2 (�1;1) � C ku0kL2(�1;1) :
When "0 is small enough,

1

2
< U 0 (y) <

3

2
; for y 2 [�1; 1] ;

thus by Lemma 4,

(Liu; u) � ku0k2L2 �
Z 1

�1

���� U 00

y � yi

����u (y)2 dy  y � yiU � U is


L1

� ku0k2L2 � 2
 U 00

y � yi


Lp1

kuk2Lp2

� ku0k2L2 � C kU
00kHs�1 ku0k2L2

� (1� C"0) ku0k2L2(�1;1) > 0.
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This shows that Li > 0 when "0 is su¢ ciently small and the proof is completed.

4 Linear decay problem

In this Section, we studied the linearized Euler equation around Couette �ow.
In the vorticity form, the linearized equation becomes

!t + y!x = 0; (28)

where ! (t; x; y) has x�period T . If the initial vorticity ! (t = 0) = !0 (x; y),
then

! (t; x; y) = !0 (x� ty; y) : (29)

Notice that any ! = ! (y) is a steady solution of (28). For a general solution
(28); the x�independent component of ! remains steady and does not a¤ect
the evolution of the vertical velocity v (t). So we only consider !0 (x; y) withR T
0
!0 (x; y) dx = 0, and for such functions the Fourier series representation is

!0 (x; y) =
X

0 6=k2Z
ei

2�
T kx!0k (y) :

Under this assumption, it is easy to see that such a vorticity �eld uniquely
determines a velocity �eld satisfyingZ T

0

~u(x; y)dx � 0: (30)

To simplify notations, we take T = 2� below. We de�ne the space Hsx
x H

sy
y by

h =
X

0 6=k2Z
eikxhk (y) 2 Hsx

x Hsy
y i¤ khkHsx

x H
sy
y
=

0@X
k 6=0

jkj2sx khkk2Hsy
y

1A 1
2

<1:

Theorem 3 Assume
R T
0
!0 (x; y) dx = 0. Let ! (t; x; y) be the solution of (28)

with ! (t = 0) = !0 (x; y), and

~u (t; x; y) = (u (t; x; y) ; v (t; x; y))

is the corresponding velocity satisfying (30).
(i) If !0 (x; y) 2 L2x;y, then

k~u (t; x; y)kL2x;y ! 0; when t!1:

(ii)If !0 (x; y) 2 H�1
x H1

y , then

k~u (t; x; y)kL2x;y = O

�
1

t

�
; when t!1:
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(iii) If !0 (x; y) 2 H�1
x H2

y ;then

kv (t; x; y)kL2x;y = O

�
1

t2

�
; when t!1:

(iv) If !0 (x; y) 2 H�s
x Hs

y (0 < s < 1), then

k~u (t; x; y)kL2x;y = o

�
1

ts

�
; when t!1:

(v) If !0 (x; y) 2 H�1
x Hs

y (1 � s � 2), then

kv (t; x; y)kL2x;y = O

�
1

t1+s

�
; when t!1:

Proof. Proof of (i): We shall show that ! (t; x; y)! 0 weakly in L2x;y, then
k~u (t; x; y)kL2x;y ! 0 because of the compactness of the mapping ! ! ~u in L2x;y.
To show the weak convergence, we take any test function

� (x; y) =
X

eikx�k (y) 2 L2:

ThenZ 2�

0

Z 1

�1
! (t; x; y)� (x; y) dydx

=

Z 2�

0

Z 1

�1
!0 (x; y)� (x+ ty; y) dydx (by (29))

=
X
k 6=0

Z 1

�1
!0k (y)��k (y) e

�itkydy

=
X
jkj�N

Z 1

�1
!0k (y)��k (y) e

�itkydy +
X
jkj>N

Z 1

�1
!0k (y)��k (y) e

�itkydy = I + II:

For any " > 0, we �xed N large enough such that

jIIj �

0@ X
jkj>N

!0k (y)2L2y
1A 1

2

k�kL2x;y < ".

By Riemann-Lesbegue Theorem, jIj ! 0 when t!1: Since " is arbitrary, this
proves that Z 2�

0

Z 1

�1
! (t; x; y)� (x; y) dydx! 0 when t!1:
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Proof of (ii): De�ne the space ~H1 for the stream function by

~H1 =
�
 2 H1

x;y j  = 0 on fy = �1g ;  is T -periodic in x
	
:

Then
 =

X
eikx k (y) 2 H1

x;y

implies that  k (y) 2 H1
0 (�1; 1) and

P
k k kk

2
H1
y
< 1. By a duality lemma in

[12],

k~u (t; x; y)kL2x;y � C sup
 2 ~H1;k kH1�1

����Z 2�

0

Z 1

�1
! (t; x; y) (x; y) dydx

����
= C sup

 2 ~H1;k kH1�1

X
k 6=0

����Z 1

�1
!0k (y) �k (y) e

�itkydy

����
=
C

t
sup
 

X
k 6=0

1

jkj

Z 1

�1

d

dy

�
!0k (y) �k (y)

�
e�itkydy

� C

t
sup
 

0@X
k 6=0

1

jkj2
!0k (y)2H1

y

1A 1
2  X

k

k kk2H1
y

! 1
2

� C

t

!0
H�1
x H1

y
.

Proof of (iii): Note that

��v = !x = !0x (x� ty; y) in 
 = (0; 2�)� (�1; 1) ;

and v = 0 on fy = �1g. De�ne the function ' (t; x; y) by solving ��' = v in

 and ' = 0 on fy = �1g : Let

v (t; x; y) =
X
k 6=0

eikxvk (y; t) and ' (t; x; y) =
X
k 6=0

eikx'k (y; t) ;

where 'k satis�es that�
� d2

dy2
+ k2

�
'k = vk; 'k (�1) = 0:
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Then

kvk2L2(
) =
Z Z




�' (t; x; y)!0x (x� ty; y) dxdy

=
X
k 6=0

Z 1

�1
ik �'k (y; t)!

0
k (y) e

�itkydy

= �1
t

X
k 6=0

Z 1

�1

d

dy

�
�'k (y; t)!

0
k (y)

�
e�itkydy

=
1

it2

X
k 6=0

1

k

�
e�itkydy

d

dy

�
�'k (y; t)!

0
k (y)

�
j1�1 �

Z 1

�1

d2

dy2
�
�'k (y; t)!

0
k (y)

�
e�itkydy

�
� C

t2

X
k 6=0

1

jkj
 �'k (y; t)!0k (y)H2(�1;1) �

C

t2

X
k 6=0

1

jkj k'k (y; t)kH2
y

!0k (y)H2
y

� C

t2

X
k 6=0

1

jkj kvk (y; t)kL2y
!0k (y)H2

y

� C

t2

0@X
k 6=0

1

jkj2
!0k (y)2H2

y

1A 1
2  X

k

kvk (y; t)k2L2y

! 1
2

� C

t2
!0

H�1
x H2

y
kvkL2(
) ;

therefore

kvkL2(
) �
C

t2
!0

H�1
x H2

y
:

The decay rates in (iv) and (v) follow from (i)-(iii) by interpolation. This �nishes
the proof of Theorem 3.

Remark 2 The decay rates O (1=t) for kukL2 and O
�
1=t2

�
for kvkL2 in The-

orem 3 (ii), (iii) are optimal. They cannot be improved even for smooth ini-
tial vorticity. Consider a single mode solution with !0 (x; y) = eikx� (y) and
� (y) 2 C1 (�1; 1). Then ! (t; x; y) = eikxe�ikty� (y) and by Poisson�s equation
the stream function is  (t; x; y) = eikx k (t; y) ;where  k (t; y) satis�es�

� d2

dy2
+ k2

�
 k (t; y) = e�ikty� (y) ;  k (t;�1) = 0.

Denote G (y; y0) to be the Green�s function given by

G (y; y0) =
1

k sinh k
sinh k (y< + 1) sinh k (1� y>) ;

where y< and y> are the lesser and greater of y and y0 respectively. Then we
have

 k (t; y) =

Z 1

�1
G (y; y0) e

�ikty0� (y0) dy0; (31)
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and the 1=t2 decay of  k (t; y) follows from integration by parts because G (y; y0)
is C1 and its derivative is piecewise di¤erentiable. Moreover, by explicit evalu-
ation of the integral in (31), it can be shown that

 k (t; y) =
1

t2
fk (y) e

�ikty +O

�
1

t3

�
where fk (y) is not identically zero. Thus

ku (t; x; y)kL2x;y = k 
0
kkL2y �

1

t

and
kv (t; x; y)kL2x;y = k k kkL2y �

1

t2
.

The same decay rate O
�
1
t2

�
for v (t; x; y) was obtained in ([3], [2], [17]). Our

main purpose in this section is to get the linear decay for most general perturba-
tions. We note that the calculations in [5] contain mistakes and only yield the
estimate

 k (t; y) =
1

t
gk (y) e

�ikty +O

�
1

t2

�
;

from which only O
�
1
t

�
decay is obtained for v (t; x; y) and no decay is obtained

for u (t; x; y) =  0k (t; y).

Acknowledgement

This work is supported partly by the NSF grants DMS-0908175 (Lin) and
DMS-0801319 (Zeng).

References

[1] Briggs, R. J., Daugherty, J. D. and Levy, R. H. Role of Landau damping
in crossed-�eld electron beams and inviscid shear �ow, Phys. Fluids 13,
421-432 (1970).

[2] Brown, S. N.; Stewartson, K. On the algebraic decay of disturbances in a
strati�ed linear shear �ow, J. Fluid Mech. 100, 811�816 (1980).

[3] Bouchet, F. and Morita, H., Large time behavior and asymptotic stability of
the two-dimensional Euler and linearized Euler equations, arXiv:0905.1551.

[4] Caglioti, E.; Ma¤ei, C. Scattering theory: a possible approach to the ho-
mogenization problem for the Euler equations, Rend. Mat. Appl. (7) 17,
no. 3, 445�475 (1997).

[5] Case, K. M., Stability of inviscid plane Couette �ow, Phys. Fluids 3, 143�
148 (1960).

21



[6] Crandall, M. and Rabinowitz, P. Bifurcation from simple eigenvalues, J.
Funct. Anal. 8, 321-340 (1971).

[7] Gill, A. E., A mechanism for instability of plane Couette �ow and of
Poiseuille �ow in a pipe, J. Fluid Mech. 21, 503�511 (1965).

[8] Isichenko, M. B., Nonlinear Landau Damping in Collisionless Plasma and
Inviscid Fluid, Phys. Rev. Lett. 78, 2369-2372 (1997).

[9] Landau, L. On the vibration of the electronic plasma. J. Phys. USSR 10,
25 (1946).

[10] Li, Y. Charles and Lin, Zhiwu, A Resolution of the Sommerfeld Paradox,
submitted, arXiv:0904.4676.

[11] Lin, Zhiwu, Instability of some ideal plane �ows, SIAM J. Math. Anal. 35,
318-356 (2003).

[12] Lin, Zhiwu, Nonlinear instability of ideal plane �ows, Int. Math. Res. Not.,
41, 2147-2178 (2004).

[13] Lin, Zhiwu, Some recent results on instability of ideal plane �ows, Nonlin-
ear partial di¤erential equations and related analysis, 217�229, Contemp.
Math., 371, Amer. Math. Soc., Providence, RI, 2005.

[14] Lin, Zhiwu and Zeng, Chongchun, Invariant manifolds of Euler equations,
preprint in preparation, 2009.

[15] Lin, Zhiwu and Zeng, Chongchun, Small BGK waves and nonlinear Landau
damping, submitted, arXiv:1003.3005.

[16] Mouhot, C., and Villani, C., On Landau damping, Preprint, 2009.

[17] Orr, W. McF. Stability and instability of steady motions of a perfect liquid,
Proc. Ir. Acad. Sect. A, Math Astron. Phys. Sci. 27, 9-66, (1907).

[18] Pillai, S. and Gould, R. W. Damping and trapping in 2-D inviscid �uids,
Phys. Rev. Lett. 73, 2849-2852 (1994).

[19] Romanov, V. Stability of plane-parallel Couette �ow, Functional Analysis
and Its Applications 7, 137-146 (1973).

[20] Schecter,D. A., Dubin, D. H. E., Cass, A. C., Driscoll, C. F., Lansky, I. M.
and O�Neil, T. M. Inviscid damping of asymmetries on a two-dimensional
vortex, Phys. Fluids 12, 2397-2412 (2000).

[21] Shnirelman, Alexander, On the L2-instability of �uid �ows, Séminaire:
Équations aux Dérivées Partielles, 1999�2000, Exp. No. XIII, 13 pp., École
Polytech., Palaiseau, 2000.

[22] Sommerfeld, A. Ein Beitrag zur hydrodynamischen Erklärung der turbulent
Flussigkeitsbewegung, Atti IV Congr. Internat. Math., Roma 3 (1908), 116-
124.

22


