
Nonlinear instability of periodic BGK waves for
Vlasov-Poisson system

Zhiwu Lin
Courant Institute

Abstract

We investigate the nonlinear instability of periodic Bernstein-Greene-Kruskal(BGK)
waves. Starting from an exponentially growing mode to the linearized equation, we
proved nonlinear instability in the L1-norm of the electric field.

1 Introduction

We consider a one-dimensional electron plasma with a fixed homogeneous
neutralizing ion background. In such a plasma collisions are relatively
rare; hence we assume no collisions at all. So the time evolution can be
modelled by the Vlasov-Poisson system

(1.1a)
∂f

∂t
+ v

∂f

∂x
− E

∂f

∂v
= 0,

(1.1b)
∂E

∂x
= −

∫ +∞

−∞
fdv + 1,

where f(x, v, t) is the electron distribution function, E (x, t) = −∂xφ (x, t)
the electric field (φ is the electric potential), and 1 is the ion density. In
1957, Bernstein, Greene and Kruskal ([2]) showed the existence of an infi-
nite family of exact stationary solutions to (1), called BGK waves. Since
then, the stability of these BGK waves has been of great interest. In
[4], [5], [6], Guo and Strauss initiated a rigorous study of instability of
spatially-dependent equilibria in plasmas. Using some delicate perturba-
tion arguments, they proved in particular that inhomogeneous periodic
BGK waves with small amplitude are linearly and nonlinearly unstable,
if the corresponding homogeneous case has a growing mode according to
Penrose’s criteria. In [7], we show that an arbitrary periodic BGK wave
is linearly unstable under multi-periodic perturbations. In this paper, we
finally complete such instability investigation of BGK waves by showing
that linear instability always implies nonlinear instability, without the
smallness assumption. In particular, combining with the result in [7], we
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prove that any periodic BGK wave is nonlinearly unstable under multi-
periodic perturbations. Before stating our main theorem, we introduce
some notations as in [7].

A BGK wave is a steady state of the form

f0 (x, v) = µ

(
1
2
v2 − β (x)

)
, E0 (x) = −βx (x) ,

with β a periodic solution of the differential equation

(1.2) βxx =
∫ +∞

−∞
µ

(
1
2
v2 − β (x)

)
dv − 1.

We assume that (i) µ (θ) is a nonnegative C2 function on R ; (ii) µ is
neutral, that is,

(1.3)
∫ +∞

−∞
µ

(
1
2
v2

)
dv − 1 = 0 ;

and (iii) For some γ > 1

(1.4)
∣∣µ′ (θ)

∣∣ ,
∣∣µ′′ (θ)

∣∣ ≤ C

1 + |θ|γ

Let β be any periodic solution of (1.2) and Pβ be its minimal period.
By adjusting the starting point, we can arrange that the solution satisfies:

(1.5) β(0) = β(Pβ) = min
0≤x≤Pβ

β(x), β(
Pβ

2
) = max

0≤x≤Pβ

β(x),

(1.6) β (x) = β (Pβ − x) , ∀x ∈ [0, Pβ] ,

and β (x) is strictly increasing in
[
0,

Pβ

2

]
. Notice that by extending β (x)

to [0, kPβ] periodically, we obtain new BGK waves with period kPβ. It was
proved in [7] that if k ≥ 2, then there exists some kPβ-periodic growing
mode to the linearized equation. That is, there is a solution (eλtf̃ , eλtẼ)
with λ > 0 to

(1.7a)
∂f

∂t
+ v

∂f

∂x
− E0

∂f

∂v
= E

∂f0

∂v
,

(1.7b)
∂E

∂x
= −

∫ +∞

−∞
fdv,

where f̃ and Ẽ are kPβ-periodic functions in x and Ẽ ∈ H1. The main
theorem in this paper is
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Theorem 1.1 Let (E0, f0) be the above periodic BGK solution to (1)
with period P = kPβ(k ≥ 2) and µ satisfying (1.4) and (3.1). Then there
exists positive constants ε0, C1 and a family of solutions

[
f̄ δ (t) , Ēδ (t)

]
∈ W 1,1 ([0, P ]×R)

of (1) with period P in x, defined for δ sufficiently small, with f̄ δ (t)
non-negative, such that
(1.8)∥∥∥∥f̄ δ (0)− µ

(
1
2
v2 − β (x)

)∥∥∥∥
W 1,1([0,P ]×R)

+
∥∥∥Ēδ (0)− E0

∥∥∥
W 1,1(0,P )

≤ δ,

and

(1.9) sup
0≤t≤C1|ln δ|

∥∥∥Ēδ (t)− E0

∥∥∥
L1(0,P )

≥ ε0.

We note that in [4] [5], nonlinear instability is proved in terms of the
L1 norm of the electric field plus the electron distribution function. In
our result, nonlinear instability is in the L1 norm of the electric field only,
which is clearer physically. In particular, this implies that the deviation
from the unstable BGK waves is macroscopic, not in the microscopic
sense.

Before sketching the main idea of proving Theorem 1.1, we indicate
some difficulties in the nonlinear instability study. The main difficulty
is that the nonlinear term of (1), E∂vf , contains derivative and thus is
unbounded in Lp space of E and f . This is a typical situation in many
equations in continuum physics and kinetic theory, and so far there is
no general method to dealt with it. Starting with [4], Guo and Strauss
developed a bootstrap technique to overcome this difficulty and prove
nonlinear instability. Their basis idea is to derive the growth estimate for
the derivative of the perturbation from the growth of the perturbation,
in a time period during which the perturbation is exponentially growing
while the amplitude is kept small. In [4] [5], they used this technique
to bootstrap ∂vf form the estimate of f , under the assumption that the
amplitude of the BGK wave is small. In [1], this technique was used to
study nonlinear instability of ideal plane flows, with some new arguments.
It was showed that if the growth rate of the growing mode exceeds the
Liapunov exponent of the steady velocity field, then linear instability im-
plies nonlinear instability. If we use the argument of [1] to the current
problem, then similar result can be obtained. That is, nonlinear instabil-



4 ZHIWU LIN

ity can only be showed if the growth rate exceeds the Liapunov exponent
(
√

βxx (0) in this case) of the particle equation.
To overcome such a difficulty, we introduce some new ideas. Let

E (t) and f (t) be the small perturbations satisfying the nonlinear Vlasov-
Poisson system (3). Our method is to study the L1 norm of E (t) by using
the following evolution formula for f (t)

(1.10) f (t) = etL0f (0) +
∫ t

0
e(t−s)L0∂v (Ef) (s) ds,

where L0 is the linearized operator. The idea of this coupled approach
is to use the regularizing effect of Poisson’s equation to get rid of the
derivative ∂v in the nonlinear term ∂v (Ef). In this way, the nonlinear
term essentially becomes Ef which is easier to handle. To make this
thinking formal, we use the following inequality to estimate ‖E (t)‖1

‖E (t)‖1 ≤ 2 sup
a∈W1,1(0,P )
‖ax‖∞≤1

∫ ∫

[0,P ]×R
f (t, x, v) a(x)dxdv

and then use a duality argument and integration by parts to move ∂v in
(1.10) to a differentiable test function. Another important point in our
proof is that even though the quantity

∂X(s;x, v)
∂v

has pointwise exponential growth, where (X(s;x, v),V(s;x, v)) satisfies
the particle trajectory equation (2), the integral

∫ ∣∣∣∣
∂X(s;x, v)

∂v

∣∣∣∣ dv

only has linear growth. This is due to the geometric property of the
particle trajectory. This observation is crucial in our proof of regularity
of growing modes and nonlinear instability.

The method of proving Theorem 1.1 can be directly used to show
that linear instability implies nonlinear instability of any periodic BGK
waves, in the case of two species of particles or relativistic case. Moreover
the new ideas we introduced in this paper are quite flexible and could
apply to other physical systems. In ([9]), we use these new ideas to
study general 2D ideal flows and prove nonlinear instability from linear
instability, without assumption on the linear growth rate.
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2 Regularity of growing modes

In the following, we denote P = kPβ . First, we recall some facts about
growing modes proved in [7]. The growing mode found in [7] is of the
form (eλtf,e

λtE ) with λ > 0, E = −∂xφ and

(2.1) f(x, v) = −µ′(e)φ (x) + µ′(e)
∫ 0

−∞
λeλsφ(X(s;x, v))ds.

Here φ ∈ H2
per(0, P ) satisfies

− ∂2

∂x2
φ−

∫

R
µ′(e)dvφ (x) +

∫

R
µ′(e)

∫ 0

−∞
λeλsφ(X(s))dsdv = 0

where e = 1
2v2 − β(x), and (X(s;x, v),V(s;x, v)) is the solution of the

characteristic equation

(2.2a) Ẋ(s) = V(s),

(2.2b) V̇(s) = −E0(X(s)),

with initial data X(0) = x,V (0) = v. It was showed in [8] that the
growing mode

(eλtf,e
λtE)

satisfies (1) weakly and f is almost everywhere differentiable in x, v. Now
we show that

Theorem 2.1 The function f defined by (2.1) is in W1,1 ([0, P ]×R) .

To see the main difficulty in the proof, we take the v-derivative of (2.1)
and the following term appears in the right hand side

(2.3) I (x, v) := µ′(e)
∫ 0

−∞
λeλsφx(X(s))

∂X(s)
∂v

ds.

If the particle energy e = −βmin, then ∂X(s)
∂x grows exponentially in |s|

with the rate
√

βxx (0). Thus if λ <
√

βxx (0), the integral in (2.3) might
diverge and I (x, v) becomes infinite on the critical set

(2.4) Acr =
{

(x, v) |1
2
v2 − β(x) = −βmin

}
.

However we can show that I (x, v) ∈ L1. This is the following lemma.
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Lemma 2.2 The function I (x, v) defined by (2.3) is in L1 ([0, P ]×R) .

Proof: We need to show that
∫

[0,P ]

∫

R

∫ 0

−∞
eλs

∣∣∣∣µ′(e)φx(X(s))
∂X(s)

∂v

∣∣∣∣ dsdvdx < ∞.

Let ecr = −βmin and e0 < ecr < e1 < e2 be three numbers to be deter-
mined later. We divide the (x, v) space into the following five regions.

(D1) (fast particles) e = 1
2v2 − β(x) > e2.

(D2) (mildly free particles) e1 < e < e2.
(D3) (barely free particles) ecr < e < e1.
(D4) (barely trapped particles) e0 < e < ecr.
(D5) (strongly trapped particles) −βmax ≤ e < e0. First we claim:
For e2 sufficiently large, if (x, v) ∈ D1 then there exists constant C1

such that

(2.5)
∣∣∣∣
∂X(s;x, v)

∂v

∣∣∣∣ ≤ C1e
λ
2
|s|

for −∞ ≤ s ≤ +∞.
To show (2.5), we consider the case of positive time and positive ve-

locity only since (2) is time reversible. Differentiating (2.2a) with respect
to v, we get

∂Ẋ(s)
∂v

=
∂V(s)

∂v
.

So

(2.6)
∂X(s)

∂v
=

∫ s

0

∂V(u)
∂v

du.

For any solution ((X(s;x, v),V(s;x, v))) of (2), we have

(2.7)
1
2
v2 − β(x) =

1
2
V(s)2 − β(X(s)).

Differentiating above with respect to v, we get

(2.8) v = V(s)
∂V(s)

∂v
− βx(X(s))

∂X(s)
∂v

.

It follows from (2.6) and (2.8) that

∂X(s)
∂v

=
∫ s

0

(
v

V(u)
+

βx(X(u))
V(u)

∂X(u)
∂v

)
du.
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It is easy to see that if e2 is large and (x, v) ∈ D1, then we have

1
2
≤ v

V(u)
≤ 3

2
,

∣∣∣∣
βx(X(u))

V(u)

∣∣∣∣ <
λ

2

for 0 ≤ u ≤ +∞. Thus we have

∂X(s)
∂v

≤ 3
2
s +

λ

2

∫ S

0

∂X(u)
∂v

du

and the estimate (2.5) follows from Gronwall’s inequality.
Since D2 and D5 are bounded and the Liapunov exponent of (2) is

zero there, there exists some constant C2 such that
∣∣∣∣
∂X(s)

∂v

∣∣∣∣ ≤ C2e
λ
2
|s|,

for −∞ ≤ s ≤ +∞. Let C3 = max{C1, C2}, then
∫ ∫

D1∪D2∪D5

∫ 0

−∞
eλs

∣∣∣∣µ′(e)φx(X(s))
∂X(s)

∂v

∣∣∣∣ dsdvdx

≤
∫ 0

−∞
C3e

λ
2
s
∫ ∫

D1∪D2∪D5

∣∣µ′(e)φx(X(s))
∣∣ dvdxds

≤
∫ 0

−∞
C3e

λ
2
s
∫

[0,P ]

∫

R

∣∣µ′(e)φx(x)
∣∣ dvdx

≤
∫ 0

−∞
C3e

λ
2
s sup

x

∫

R

∣∣µ′(e)
∣∣ dv

∫

[0,P ]
|φx(x)| dx

≤ C ′
(∫

[0,P ]
|φx(x)|2 dx

) 1
2

,

which implies that

(2.9)
∫ ∫

D1∪D2∪D5

|I (x, v)| dxdv < ∞.

Here in the second inequality above, we used the fact that the mapping

(x, v) → ((X(s;x, v),V(s;x, v)))

is 1-1 with Jacobian 1.
In D3 and D4,

∂X(s)
∂v might have growth e

√
βxx(0)s and we need to do

more delicate analysis. First we recall some basic facts about the particle
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motion satisfying (2). If e 6= ecr, particles with energy e do periodic
motion. Free particles with energy e > ecr travel through the whole
interval [0, P ] with the period

T (e) =
∫ P

0

1√
2(e + β (y))

dy.

and trapped particles with energy e < ecr go back and forth within one
of the intervals

[a (e) , b (e)] , [a + Pβ, b + Pβ] , · · · , [a + (k − 1) Pβ , b + (k − 1) Pβ ]

with period

T (e) = 2
∫ b(e)

a(e)

1√
2(e + β (y))

dy .

Here a (e) , b (e) are two points in [0, Pβ] such that β (x) = −e. For par-
ticles with energy ecr, it takes infinite time to approach the saddle point.
We have the following properties of T (e):

(I) T (e) is twice differentiable for (−βmax,ecr) ∪ (ecr,∞).
(II) T (e) → +∞ as e → ecr andT (e) → 2π√

βxx(0)
as e → −βmax.

(III) T ′ (e) < 0 for e > ecr

(IV) There exists e0 ∈ (−βmax,ecr) such that T ′ (e) , T ′′ (e) > 0 for
e0 < e < ecr.

Properties (I),(II) are standard (e.g. see [3]) and (III) is obvious. It
follows from (I) and (II) that T ′ (e), T ′′ (e) tends to +∞ as e → ecr+. So
if we choose e0 close to ecr then (IV) holds.

Now we estimate
∫ ∫

D3
|I (x, v)| dxdv. Let Jx = {v| (x, v) ∈ D3}, J+

x =
Jx ∩ {v > 0} and J−x = Jx ∩ {v < 0}. Then

∫ ∫

D3

|I (x, v)| dxdv

=
∫ 0

−∞
eλs

∫

[0,P ]

∫

J+
x ∪J−x

∣∣∣∣µ′(e)φx(X(s))
∂X(s)

∂v

∣∣∣∣ dvdxds

≤ C ′′
∫ 0

−∞
eλs

∫

[0,P ]

∫

J+
x ∪J−x

∣∣∣∣
∂X(s)

∂v

∣∣∣∣ dvdxds(2.10)

where
C ′′ =

∥∥µ′(e)
∥∥∞ ‖φx‖∞ .

We will prove that

(2.11)
∫

J+
x ∪J−x

∣∣∣∣
∂X(s)

∂v

∣∣∣∣ dv ≤ 2
( |s|

T (e1)
+ 1

)
P .
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Then it follows from (2.10) and (2.11) that

(2.12)
∫ ∫

D3

|I (x, v)| dxdv < ∞.

We only show (2.11) for positive s. First we notice that

∫

J+
x

∣∣∣∣
∂X(s)

∂v

∣∣∣∣ dv =
∫

J+
x

∂X(s)
∂v

dv =
∫

X∈X(s;J+
x )

dX.

Here in the second equality, we use the change of variable v → X(s) and
denote X(s;J+

x ) to be the image of J+
x under this mapping. Free particle

with energy e > ecr always go in one direction. If they start from the same
position x with different velocity, they will never meet. The particles in
D3 have the minimal period T (e1). So by time s they can finish at most[

s
T (e1)

]
periods of motion and we can use

(
s

T (e1) + 1
)

number of interval
[0, P ] to cover the set X(s;J+

x ). So

∫

J+
x

∣∣∣∣
∂X(s)

∂v

∣∣∣∣ dv ≤
(

s

T (e1)
+ 1

)
P.

The estimate on J−x is the same as above. Thus (2.11) is proved.
We use the same idea as above to estimate

∫ ∫
D4
|I (x, v)| dxdv. But

particles in D4 can go back and forth, we need to do more careful analysis.
We use the same notations as above. We will prove that

(2.13)
∫

J+
x ∪J−x

∣∣∣∣
∂X(s)

∂v

∣∣∣∣ dv ≤ 4
( |s|

T (e0)
+ 1

)
Pβ .

Assuming (2.13), then as what we did for D3 above, we have
∫ ∫

D4

|I (x, v)| dxdv < ∞.

Combining with (2.9) and (2.12), we have

I (x, v) ∈ L1 ([0, P ]×R) .

We only prove (2.13) for positive s and x ∈ (0, Pβ) since the proof is
the same for other cases. First by co-area formula, we have

(2.14)
∫

J+
x

∣∣∣∣
∂X(s)

∂v

∣∣∣∣ dv =
∫

X∈X(s;J+
x )

dX.
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So to show (2.13) we need to understand the set X(s;J+
x ). We know

that by time s, each particle in D4 can finish at most
[

s
T (e0)

]
periods

of motion. Consider the following question: for particles starting from
the same position x and with different energy e ∈ (e0, ecr), how many of
them can collide at x1 by time s? We classify the possible collision in the
following way. Denote P+

j

(
P+

j

)
to be the set of all particles getting to

x1 at time s with positive (negative) velocity after having exactly finished
j periods of motion and n+

j

(
n−j

)
is the number of particles in P+

j

(
P+

j

)
.

Note that as mentioned above, we have 0 ≤ j ≤
[

s
T (e0)

]
. For a particle in

P+
j with energy e, we have

(2.15) s = jT (e) +
∫ x1

x0

dx√
2 (e + β (x))

if x1 > x0 and

(2.16) s = jT (e) + T (e)−
∫ x0

x1

dx√
2 (e + β (x))

if x1 < x0. For a particle with energy e in P−
j , we have

(2.17) s = jT (e) +
T (e)

2
−

∫ x0

Pβ−x1

dx√
2 (e + β (x))

if Pβ − x1 < x0 and

(2.18) s = jT (e) +
T (e)

2
+

∫ Pβ−x1

x0

dx√
2 (e + β (x))

if Pβ − x1 > x0. Above equations of s can be obtained by analyzing the
phase space of (2) and here the symmetry property of β ((1.5), (1.6)) is
used. By property (IV) of T (e), it is easy to see that right hand sides of
(2.15), (2.16), (2.17) and (2.18) are either monotone or convex functions
of e. So there are at most two particles with different energy such that
one of (2.15), (2.16), (2.17) (2.18) is true. Therefore we have n+

j , n−j ≤ 2,

for 0 ≤ j ≤
[

s
T (e1)

]
. So we can use 2

([
s

T (e1)

]
+ 1

)
intervals [0, Pβ] to

cover the set X(s;J+
x ). Thus from (2.14),

∫

J+
x

∣∣∣∣
∂X(s)

∂v

∣∣∣∣ dv ≤ 2
( |s|

T (e0)
+ 1

)
Pβ.

Since the estimate for J−x is the same, (2.13) is proved.
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Now we can prove the regularity of growing modes.

Proof of Theorem 2.1: Since f defined by (2.1) is differentiable
besides the critical set Acr (defined by (2.4)), almost everywhere we have

∂vf = −µ′′(e)vφ (x) + µ′′ (e) v

∫ 0

−∞
λeλsφ(X(s;x, v))ds + I (x, v) .

The first two terms in the right hand side above are obviously integrable.
So by Lemma 2.2, ∂vf ∈ L1 ([0, P ]×R). Now consider the integrability of
∂xf . Besides the set Acr, f is twice differentiable and satisfy the equation

(2.19) λf + v∂xf − E0∂vf = −φxvµ′(e).

We take ∂x of (2.19) to get

(2.20) λfx+v∂x (∂xf)−E0∂v (∂xf) = −βxx∂vf−φxxvµ′(e)+φxβxvµ′′(e).

From (2.20), we have

d

ds

(
eλsfx(X(s),V(s)

)
) = eλs(−βxx∂vf − φxxvµ′(e)

+ φxβxvµ′′(e) (X(s),V(s))).(2.21)

Integrating (2.21) from −∞ to 0, we get

fx (x, v) =
∫ 0

−∞
eλs(−βxx∂vf − φxxvµ′(e)

+ φxβxvµ′′(e) (X(s),V(s)))ds.
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So ∫

[0,P ]

∫

R
|fx (x, v)| dvdx

≤
∫

[0,P ]

∫

R

∫ 0

−∞
eλs(‖βxx‖∞ |∂vf |+ |φxx|

∣∣vµ′(e)
∣∣

+ ‖βx‖∞ ‖φx‖∞
∣∣vµ′′(e)

∣∣ (X(s),V(s)))dsdvdx

=
∫ 0

−∞
eλs

∫

[0,P ]

∫

R
(‖βxx‖∞ |∂vf |+ |φxx|

∣∣vµ′(e)
∣∣

+ ‖βx‖∞ ‖φx‖∞
∣∣vµ′′(e)

∣∣ (x, v))dvdxds

=
1
λ

∫

[0,P ]

∫

R
(‖βxx‖∞ |∂vf |+ |φxx|

∣∣vµ′(e)
∣∣

+ ‖βx‖∞ ‖φx‖∞
∣∣vµ′′(e)

∣∣)dvdx

≤ 1
λ

(‖βxx‖∞ ‖∂vf‖L1 +
1√
P

sup
x

∫

R

∣∣vµ′(e)
∣∣ dv ‖φxx‖2

+ ‖βx‖∞ ‖φx‖∞
∥∥vµ′′(e)

∥∥
L1)

< ∞.

Here in third line, we change the variable

(x, v) → (X(s),V(s)) .

We shall use the following fact:
Assume a continuous function a (x, y) which is differentiable beyond a

closed C1 curve. If ax, ay (defined almost everywhere) are both integrable.
Then ax, ay are also the weak derivatives of a in the distribution sense.

It is straightforward to prove the above fact by the definition of weak
derivative. Using this fact and the integrability of fx, fv just proved, we
know that f defined by (2.1) is in W1,1 ([0, P ]×R).

In ([8]), we showed that f is a weak solution to (2.19). By Theorem
2.1, f is also the strong solution to (2.19).

Remark 2.3 The method of proof of Theorem 2.1 can be used to get the
following regularity result: Let

(
eλtf, eλtE

)
(Re λ > 0) be a growing mode

to (1) with f ∈ L1 ([0, P ]×R) , then we have f ∈ W1,1 ([0, P ]×R) .

3 Nonlinear instability of Periodic BGK waves

By the result in [7], there exists a growing mode to (1). We pick the
growing mode

(
eλtfg, e

λtEg

)
with the largest growth rate Re λ. By the
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regularity result proved in the last section, fg ∈ W1,1 ([0, P ]×R) and
Eg ∈ W1,1 (0, P ). Consider the more general case that λ is not real.
The usual way to construct unstable initial state is to let f̄ δ (0) = f0 +
δ Im fg and Ēδ (0) = E0 + δ Im Eg. However to be physically meaningful,
the distribution function f δ must be nonnegative. So some truncation
process is required. This was done in [5] for the relativistic case. Here the
construction is almost the same as in [5] [6], so we only state the result
and indicate some minor modifications.

Lemma 3.1 Let h (s) be either 〈s〉σ or exp (l〈s〉)
(
〈s〉 =

√
1 + s2

)
with

σ ≥ 0, l ≥ 0. Assume for sufficiently large v, we have
(3.1)∣∣∣vµ′

(
v2/2

)∣∣∣ ≤ C ′h (|v|) µ
(
v2/2

)
, µ

(
v2/2

)
≤ h′ (|v|) [h (|v|)]−2−m

for some m > 0. Then there exists δ0, θ, c0 > 0 such that for 0 < δ < δ0,
there exists perturbed initial state

(
f̄ δ (0) , Ēδ (0)

)
=

(
f0 + δf δ

g , E0 + δEδ
g

)

such that

f̄ δ (0) ∈ W1,1 ([0, P ]×R) , Ēδ (0) ∈ W1,1 (0, P ) ,

∥∥∥f̄ δ (0)− f0

∥∥∥
W 1,1([0,P ]×R)

+
∥∥∥Ēδ (0)− E0

∥∥∥
W 1,1(0,P )

= δ,

f̄ δ (0) ≥ 0,

∂xEδ
g = −

∫

R
f δ
g dv.

Moreover, denote
(
f δ

L (t) , Eδ
L (t)

)
be the solution to the linearized equation

(1) with
(
f δ

L (0) , Eδ
L (0)

)
=

(
δf δ

g , δEδ
g

)
, then we have

(3.2) c0δe
Re λt ≤

∥∥∥Eδ
L (t)

∥∥∥
L1(0,P )

≤ 3c0δe
Re λt

for 0 ≤ t ≤ T ∗ (here δeRe λT ∗ = θ).

We can use the same arguments in [5] to prove Lemma 3.1 and we
refer to [5] for the details. A minor modification is the following. From
(2.1) for the growing mode fg, we have

|fg (x, v)| ≤ 2 ‖φg‖∞
∣∣µ′ (e)

∣∣ .
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This estimate can be used to prove Lemma 14 in [5] without the assump-
tion that E0 is small. A minor extension of Lemma 3.1 is to dealt with
the case when f0 = µ (e) has compact support. In this case, by assuming
the growth condition like (3.1) near the boundary of the support of µ, we
can construct corresponding nonnegative f δ (0) by the similar truncation
technique. We skip these details and move on to the nonlinear instability
proof below.

Denote
(
f̄ δ (t) , Ēδ (t)

)
to be the solution to (1) with initial data(

f̄ δ (0) , Ēδ (0)
)

as constructed in Lemma 3.1. Denote

(
f δ (t) , Eδ (t)

)
=

(
f̄ δ (t)− f0, Ē

δ (t)− E0

)
.

to be the perturbations satisfying the equation

(3.3a)
∂f

∂t
= −v

∂f

∂x
+ E0

∂f

∂v
+ E

∂f0

∂v
+ E

∂f

∂v
,

(3.3b)
∂E

∂x
= −

∫ +∞

−∞
fdv,

with (
f δ (0) , Eδ (0)

)
=

(
δf δ

g , δEδ
g

)
.

In the following we consider a fixed δ < δ0, so we simply denote
((

f̄ δ (t) , Ēδ (t)
))

and
(
f δ (t) , Eδ (t)

)
by

((
f̄ (t) , Ē (t)

))
and (f (t) , E (t)). Denote

D = −v · ∂x + E0 · ∂v

then the linearized operator L0 corresponding to the linear part of (3) can
be written as

L0f = Df + µ′ (e) D∂−1
xx

(∫

R
fdv

)
= Df + Kf.

Here we define ∂−1
xx in the following way: ψ = ∂−1

xx ρ is the solution to

ψxx = ρ,with
∫ P

0
ψ (x) dx = 0.

Then we have

f (t) = etL0f (0) +
∫ t

0
e(t−s)L0 (∂v (Ef) (s)) ds = fL (t) + fN (t)
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and correspondingly

E (t) = −∂xφ (t)

= −∂x∂−1
xx

(∫

R
f (t) dv

)

= −∂x∂−1
xx

(∫

R
fL (t) dv

)
− ∂x∂−1

xx

(∫

R
fN (t) dv

)

= EL (t) + EN (t) = −∂xφL (t)− ∂xφN (t) .

We define the dual operator L∗0 of L0 as

L∗0f := −Df − ∂−1
xx

(∫

R
µ′ (e) Dfdv

)
= −Df + K∗f.

Consider
etL0 : L1 ([0, P ]×R) → L1 ([0, P ]×R)

and
etL∗0 : L∞ ([0, P ]×R) → L∞ ([0, P ]×R) .

We have

Lemma 3.2 For any f ∈ L1 ([0, P ]×R), f∗ ∈ L∞ ([0, P ]×R) and t ∈
R, the following is true

∫ ∫

[0,P ]×R

(
etL0f

)
f∗dxdv =

∫ ∫

[0,P ]×R
f

(
etL∗0f∗

)
dxdv.

Proof: Since L1 and L∞ are not dual spaces, we cannot use the
abstract theory directly. We sketch the proof below. Let

f0 (t, x, v) = etDf = f (X(−t;x, v),V(−t;x, v))

f1 (t, x, v) = f0 +
∫ t

0
e(t−s)DKf0 (s) ds

= f0 +
∫ t

0
(Kf0) (s,X(− (t− s) ; x, v),V(− (t− s) ; x, v)) ds

· · ·
fk+1 (t, x, v) = f0 +

∫ t

0
(Kfk) (s,X(− (t− s) ; x, v),V(− (t− s) ; x, v)) ds

and
f∗0 (t, x, v) = e−tDf∗ = f∗ (X(t;x, v),V(t;x, v))
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f∗1 (t, x, v) = f∗0 +
∫ t

0
(K∗f∗0 ) (s,X(t− s;x, v),V(t− s;x, v)) ds

· · ·
f∗k+1 (t, x, v) = f∗0 +

∫ t

0
(Kf∗k ) (s,X(t− s;x, v),V(t− s;x, v)) ds.

Then since K, K∗ are compact operators, by the standard theory we have

fk → etL0f in L1 and f∗k → etL∗0f in L∞

as k →∞. By deduction on k and a tedious computation using integration
by parts, we can show that

∫ ∫

[0,P ]×R
fkf

∗dxdv =
∫ ∫

[0,P ]×R
ff∗kdxdv

for any integer k. Letting k →∞ in the above, we get the conclusion.

We need the following simple lemma.

Lemma 3.3
(i) If g (x) ∈ L1

per (0, P ) and
∫ P
0 g (x) dx = 0, then

(3.4) ‖g‖1 ≤ 2 sup
a∈W1,∞

per (0,P )
‖ax‖∞≤1

∫ P

0
gax dx.

Moreover if gx ∈ L1 (0, P ) , then

(3.5) ‖g‖1 ≤ 2 sup
a∈W1,∞

per (0,P )
‖ax‖∞≤1

∫ P

0
gxa dx.

(ii) If g (x) ∈ L∞per (0, P ) and
∫ P
0 g (x) dx = 0, then

(3.6) ‖g‖∞ ≤ 2 sup
a∈W1,1

per(0,P )
‖ax‖1≤1

∫ P

0
gax dx.

Moreover if gx ∈ L∞ (0, P ) , then

(3.7) ‖g‖∞ ≤ 2 sup
a∈W1,1

per(0,P )
‖ax‖1≤1

∫ P

0
gxa dx.
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Proof: We only prove (i) since the proof of (ii) is the same. We
have

(3.8) ‖g‖1 = sup
b∈L∞per

‖b‖∞=1

∫ P

0
g (x) b (x) dx.

Since the function

b− 1
P

∫ P

0
b (x) dx

has zero integral, there exists some function a ∈ W1,∞
per (0, P ) such that

b− 1
P

∫ P

0
b (x) dx = ax.

So

(3.9) b =
1
P

∫ P

0
b (x) dx + ax

and clearly ‖ax‖∞ ≤ 2 ‖b‖∞ = 2. From (3.8), (3.9) and the assumption
that

∫ P
0 gdx = 0, we have

‖g‖1 = sup
b∈L∞per

‖b‖∞=1

∫ P

0
g (x) axdx

≤ sup
a∈W1,∞

per (0,P )
‖ax‖∞≤2

∫ P

0
gaxdx.

The estimate (3.5) follows from (3.4) by integration by parts.

The following lemma will be used later.

Lemma 3.4 For any ε < 0, there exists constant Cε such that: for any
function a(x) in W1,∞

per (0, P ) with ‖ax‖∞ ≤ 1, we have the following
estimate

(3.10)
∣∣∣∂v

(
etL∗0a

)∣∣∣ ≤ P

∣∣∣∣
∂X(t)

∂v

∣∣∣∣ + Cε

∫ t

0
e(Re λ+ε)s

∣∣∣∣
∂X(t− s)

∂v

∣∣∣∣ ds.

Proof: Denote
h (t, x, v) = etL∗0a,
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then h is the solution to the equation

(3.11) ∂th = −Dh− ∂−1
xx

(∫

R
µ′ (e) Dhdv

)

with g (0) = a (x) . We have the following estimate:

(3.12) ‖h (t)‖∞ ≤ C ′
εe

(Re λ+ε)t

for some constant C ′
ε. To prove (3.12), we notice that: there exists C ′′

ε

such that ∥∥∥etL0

∥∥∥
L1→L1

≤ C ′′
ε e(Re λ+ε)t.

This is due to the fact that L0 is compact perturbation of the operator D
which generate an isometry group in any Lp space (1 ≤ p < ∞), and Reλ
is the maximal growth rate. Now (3.12) follows easily by duality since

‖h (t)‖∞ =
∥∥∥etL∗0a

∥∥∥∞
= sup
‖k‖1=1

∫ ∫

[0,P ]×R

(
etL∗0a

)
k (x, v) dxdv

= sup
‖k‖1=1

∫ ∫

[0,P ]×R
a (x)

(
etL0k

)
(x, v) dxdv (by Lemma 3.2)

≤ ‖a‖∞
∥∥∥etL0k

∥∥∥
1
≤ P ‖ax‖1

∥∥∥etL0

∥∥∥
L1→L1

≤ PC ′′
ε e(Re λ+ε)t.

From (3.11), we have

h (t) = e−tDa−
∫ t

0
e−(t−s)D∂−1

xx

(∫

R
µ′ (e) Dh (s) dv

)
ds

= a (X(t))−
∫ t

0
∂−1

xx

(∫

R
µ′ (e) Dhdv

)
(s,X(t− s)) ds.

So

∂vh (t) = ax (X(t))
∂X(t)

∂v

−
∫ t

0
∂x∂−1

xx

(∫

R
µ′ (e) Dhdv

)
(s,X(t− s))

∂X(t− s)
∂v

ds.(3.13)

Denoting

g (s, x) = ∂x∂−1
xx

(∫

R
µ′ (e) Dh (s) dv

)
,
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then by (3.7) we have

‖g (s)‖∞ ≤ 2 sup
b∈W1,1

per(0,P )
‖bx‖1≤1

∫ P

0
gxb dx

= 2 sup
b∈W1,1

per(0,P )
‖bx‖1≤1

∫ ∫

[0,P ]×R
µ′ (e) Dh (s) b (x) dxdv

= 2 sup
b∈W1,1

per(0,P )
‖bx‖1≤1

∫ ∫

[0,P ]×R
h (s) D

(
µ′ (e) b

)
dxdv

= 2 sup
b∈W1,1

per(0,P )
‖bx‖1≤1

∫ ∫

[0,P ]×R
h (s) µ′ (e) vbx dxdv

≤ 2 ‖h (s)‖∞ sup
x

∫

R

∣∣vµ′ (e)
∣∣ dv ‖bx‖1

≤ 2C ′
ε sup

x

∫

R

∣∣vµ′ (e)
∣∣ dve(Re λ+ε)s (by (3.12)).

Let
Cε = 2C ′

ε sup
x

∫

R

∣∣vµ′ (e)
∣∣ dv,

then (3.10) follows from (3.13) and the above estimate.

We need the following bootstrap lemma.

Lemma 3.5 For 0 < δ < δ0, consider the solution (E (t) , f (t)) to (3)
with

(f (0) , E (0)) =
(
δf δ

g , δEδ
g

)
.

If

(3.14) ‖E (t)‖L1(0,P ) ≤ 4c0δe
Re λt

for 0 ≤ t ≤ T ∗ (here δ0, c0, T
∗ are as in Lemma 3.1), then there exists

constants c1, c2, c3 such that

‖f (t)‖1 ≤ c1δe
Re λt, ‖f (t)‖∞ ≤ c2δe

Re λt, ‖E (t)‖∞ ≤ c3δe
Re λt

for 0 ≤ t ≤ T ∗.
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Proof: First we estimate ‖f (t)‖1. We rewrite (3.3a) as

(3.15)
∂f

∂t
+ v

∂f

∂x
− Ē (t)

∂f

∂v
= E

∂f0

∂v
,

where Ē (t) = E0 + E (t) is the perturbed electric field. Denote

(X̄(s;x, v), V̄(s;x, v))

to be the solution of the perturbed characteristic equation

d

ds
X̄(s) = V̄(s),(3.16)

d

ds
V̄(s) = −Ē(s, X̄(s)),(3.17)

with initial data X̄(0) = x, V̄ (0) = v. Then integrating (3.15) along the
perturbed trajectory, we have

f (t, x, v) = f
(
0, X̄(− t), V̄(−t)

)

+
∫ t

0

(
E

∂f0

∂v

) (
s, X̄(− (t− s)), V̄(− (t− s))

)
ds.

So
∫ ∫

[0,P ]×R
|f (t, x, v)| dxdv

≤
∫ ∫

[0,P ]×R

∣∣f (
0, X̄(− t), V̄(−t)

)∣∣ dxdv

+
∫ t

0

∫ ∫

[0,P ]×R

∣∣∣∣E
∂f0

∂v

∣∣∣∣
(
s, X̄(− (t− s)), V̄(− (t− s))

)
dxdvds

=
∫ ∫

[0,P ]×R
|f (0)| dxdv +

∫ t

0

∫ ∫

[0,P ]×R

∣∣∣∣E
∂f0

∂v

∣∣∣∣ (s) dxdvds

≤ δ
∥∥∥f δ

g

∥∥∥
1
+ sup

x

∫

R

∣∣vµ′ (e)
∣∣ dv

∫ t

0
‖E (s)‖1 ds

≤
(∥∥∥f δ

g

∥∥∥
1
+

4c0

Re λ
sup

x

∫

R

∣∣vµ′ (e)
∣∣ dv

)
δeRe λt : = c1δe

Re λt.

Here in the second equality above we changed the variable by

(x, v) → (
X̄(− (t− s)), V̄(− (t− s))

)
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which has Jacobian 1. The estimate of ‖E (t)‖∞ follows easily by letting
c3 = Pc1, since

‖E (t)‖∞ ≤ P ‖∂xE (t)‖1

≤ P ‖f (t)‖1 ≤ Pc1δe
Re λt.

Now we estimate ‖f (t)‖∞. Define the electron current

j (t) =
∫

R
vf (t) dv.

First we need the following estimate

(3.18) ‖j (t)‖1 ≤ c′δeRe λt

for some constant c′ and 0 ≤ t ≤ T ∗. To show (3.18), we obtain the
following equation from (3.15)

∂ (vf)
∂t

+ v
∂ (vf)

∂x
− Ē (t)

∂ (vf)
∂v

= Ev
∂f0

∂v
− Ē (t) f.

Integrating above along the perturbed trajectory, we have

vf (t, x, v) = V̄(−t)f
(
0, X̄(− t), V̄(−t)

)

+
∫ t

0

(
Ev

∂f0

∂v
− Ēf

) (
s, X̄(− (t− s)), V̄(− (t− s))

)
ds.

So
∫ ∫

[0,P ]×R
|vf (t)| dxdv

≤
∫ ∫

[0,P ]×R
|vf (0)| dxdv

+
∫ t

0

∫ ∫

[0,P ]×R

(∣∣∣∣Ev
∂f0

∂v

∣∣∣∣ + (‖E‖∞ + ‖E0‖∞) |f |
)

(s) dxdv.

Then by the estimates on ‖f (t)‖1 and ‖E (t)‖∞ just proved, there exists
some constant c′ such that

‖vf (t)‖1 ≤ c′δeRe λt

for 0 ≤ t ≤ T ∗, which implies (3.18). Since

∂f̄

∂t
+ v

∂f̄

∂x
− Ē

∂f̄

∂v
= 0,
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we have
f̄ (t, x, v) = f̄

(
0, X̄(− t), V̄(−t)

)

and thus

f (t) = f̄ (t)− f0

= µ

(
1
2
V̄(−t)2 − β

(
X̄(− t)

))− µ

(
1
2
v2 − β (x)

)
+ δf δ

g

(
X̄(− t), V̄(−t)

)
.

If (X̄(s; y, u), V̄(s; y, u)) is a solution to (3.16) with initial data (y, u) then

d

ds

(
1
2
V̄(s)2 − φ̄

(
s, X̄(s)

))
= −φ̄s

(
s, X̄(s)

)

and so

1
2
V̄(t; y, u)2 − φ̄

(
t, X̄(t; y, u)

)
=

1
2
u2 − φ̄ (0, y)−

∫ t

0
φ̄s

(
s, X̄(s; y, u)

)
ds

=
1
2
u2 − φ̄ (0, y)−

∫ t

0
φs

(
s, X̄(s; y, u)

)
ds,

where φ̄ (t) = β + φ (t) is the perturbed potential. Letting

(y, u) = X̄(− t;x, v), V̄(−t;x, v),

then we have

1
2
V̄(−t)2 − φ̄

(
0, X̄(− t)

)
=

1
2
v2 − φ̄ (t, x) +

∫ t

0
φs

(
s, X̄(s− t;x, v)

)
ds.

So

1
2
V̄(−t)2 − β

(
X̄(− t)

)−
(

1
2
v2 − β (x)

)

= φ
(
0, X̄(− t)

)− φ (t, x) +
∫ t

0
φs

(
s, X̄(s− t;x, v)

)
ds.

Combining above we have

(3.19) ‖f (t)‖∞ ≤ ∥∥µ′
∥∥∞

(
‖φ (t)‖∞ + δ

∥∥∥φδ
g

∥∥∥∞
)

+
∫ t

0
‖φs (s)‖∞ ds.

Since
‖φ (t)‖∞ ≤ P ‖E (t)‖1 ≤ 4c0PδeRe λt
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and

‖φt (t)‖∞ ≤ P ‖∂xφt (t)‖1

= P ‖∂tE (t)‖1 ≤ 2P ‖j (t)‖1

≤ c′PδeRe λt,

by (3.19) there exists c2 such that

‖f (t)‖∞ ≤ c2δe
Re λt

for 0 ≤ t ≤ T ∗. Here we use the estimate

‖∂tE (t)‖1 ≤ 2 ‖j (t)‖1 .

which we prove in the below. Denote the electron density by

ρ (t) =
∫

R
f (t) dv,

then from (3) we have

∂xE = −ρ, ∂tρ = −∂xj.

So by (3.5) of Lemma 3.3,

‖∂tE (t)‖1 ≤ 2 sup
a∈W1,∞

per (0,P )
‖ax‖∞≤1

∫ P

0
∂x (∂tE (t)) a (x) dx

= 2 sup
a∈W1,∞

per (0,P )
‖ax‖∞≤1

∫ P

0
∂tρ (t) a (x) dx

= 2 sup
a∈W1,∞

per (0,P )
‖ax‖∞≤1

∫ P

0
∂xj (t) a (x) dx

= 2 sup
a∈W1,∞

per (0,P )
‖ax‖∞≤1

∫ P

0
j (t) ax (x) dx

≤ 2 ‖j (t)‖1 .

This ends the proof of Lemma 3.5.

With the preparations above, we can prove Theorem 1.1 now.
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Proof of Theorem 1.1: Denote T to be the maximal time such
that

‖E (t)‖1 ≤ 4c0δe
Re λt.

Notice that (3.2) implies

‖E (0)‖1 =
∥∥∥δEδ

g

∥∥∥
1
≤ 3c0δ,

so T > 0. We claim that T > T ∗, where T ∗ is as in Lemmas 3.1, 3.5.
Suppose otherwise, we have T ≤ T ∗. By (3.5), we have

(3.20) ‖EN (t)‖1 ≤ 2 sup
a∈W1,∞

per (0,P )
‖ax‖∞≤1

∫ P

0
∂xEN (t) a (x) dx.

For any a ∈ W1,∞
per (0, P ) with ‖ax‖∞ ≤ 1, we have

∫ P

0
∂xEN (t) a (x) dx

= −
∫ ∫

[0,P ]×R
fN (t) a (x) dxdv

= −
∫ t

0

∫ ∫

[0,P ]×R
e(t−s)L0 (∂v (Ef) (s)) a (x) dxdvds

= −
∫ t

0

∫ ∫

[0,P ]×R
∂v (Ef) (s)

(
e(t−s)L∗0a

)
dxdvds

=
∫ t

0

∫ ∫

[0,P ]×R
(Ef) (s) ∂v

(
e(t−s)L∗0a

)
dxdvds

≤
∫ t

0

∫ ∫

[0,P ]×R
|Ef | (s) (P

∣∣∣∣
∂X(t− s)

∂v

∣∣∣∣

+ Cε

∫ t−s

0
e(Re λ+ε)u

∣∣∣∣
∂X(t− s− u)

∂v

∣∣∣∣ du) dxdvds

=
∫ t

0

∫ ∫

D1∪D2∪D5

(· · · ) dxdvds +
∫ t

0

∫ ∫

D3

(· · · ) dxdvds +
∫ t

0

∫ ∫

D4

(· · · ) dxdvds

= I1 (t) + I2 (t) + I3 (t) .

In the above we used Lemma 3.4 with ε = 1
4 Re λ. Now we estimate I3 (t).

As showed in Section 2, there exists constant C3 such that
∣∣∣∣
∂X(t)

∂v

∣∣∣∣ ≤ C3e
1
2

Re λ|t|.
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So

I1 (t) ≤
∫ t

0
‖E (s)‖∞ ‖f (s)‖1 (PC3e

1
2

Re λ(t−s)

+ Cε

∫ t−s

0
e(Re λ+ε)uC3e

1
2

Re λ(t−s−u)du) ds

≤
∫ t

0
c1c3

(
δeRe λs

)2
(PC3e

1
2

Re λ(t−s)

+ Cε

∫ t−s

0
e(Re λ+ε)uC3e

1
2

Re λ(t−s−u)du) ds

≤ C ′
4

(
δeRe λt

)2

for some constant C ′
4 and 0 ≤ t ≤ T . To estimate I2 (t), we notice that

by (2.11)
∫ ∫

D3

∣∣∣∣
∂X(s)

∂v

∣∣∣∣ dxdv ≤
∫ P

0

∫

J+
x ∪J−x

∣∣∣∣
∂X(s)

∂v

∣∣∣∣ dvdx

≤ 2
(

s

T (e1)
+ 1

)
P 2.

Thus

I2 (t) ≤
∫ t

0
‖E (s)‖∞ ‖f (s)‖∞ (2P 3

(
t− s

T (e1)
+ 1

)

+ Cε

∫ t−s

0
e(Re λ+ε)u2

(
t− s− u

T (e1)
+ 1

)
P 2du)ds

≤
∫ t

0
c2c3

(
δeRe λs

)2
(2P 3

(
t− s

T (e1)
+ 1

)

+ Cε

∫ t−s

0
e(Re λ+ε)u2

(
t− s− u

T (e1)
+ 1

)
P 2du)ds

≤ C ′′
4

(
δeRe λt

)2

for some constant C ′′
4 and 0 ≤ t ≤ T . The estimate of I3 is the same and

we have
I3 (t) ≤ C ′′′

4

(
δeRe λt

)2

for some constant C ′′′
4 and 0 ≤ t ≤ T . Let C4 = 2 (C ′

4 + C ′′
4 + C ′′′

4 ).
Combining these estimates, we have

∫ P

0
∂xEN (t) a (x) dx ≤ 1

2
C4

(
δeRe λt

)2
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and by (3.20)

(3.21) ‖EN (t)‖1 ≤ C4

(
δeRe λt

)2

for 0 ≤ t ≤ T . So we have

‖E (T )‖1 ≤ ‖EL (T )‖1 + ‖EN (T )‖1

≤ 3c0δe
Re λT + C4

(
δeRe λT

)2

≤ (3c0 + C4θ)
(
δeRe λT

)
(by (3.2) and (3.21))

< 3.5c0δe
Re λT ,

if we choose θ to be small such that C4θ < 1
2 . This is a contradiction to

the definition of T . So we must have T ∗ < T. Then

‖E (T ∗)‖1 ≥ ‖EL (T )‖1 − ‖EN (T )‖1

≥ c0δe
Re λT ∗ − C4

(
δeRe λT ∗

)2
= c0θ − C4θ

2

>
1
2
c0θ

if θ is small such that C4θ < 1
2c0. We let θ0 = 1

2c0θ and the proof of
Theorem 1.1 is finished.
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