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It was pointed out by Michael Renardy that there were a few errors in Section 4
and Section 6 of [1]. First, in [1, Proposition 4.4] it was claimed that for a class of
shear �ows the wave speed of a neutral limiting mode must be the in�ection value.
As indicated in [2], however, two other possible values of the wave speed must be
added, namely, the extremum value and the value at the bottom of the shear �ow.
We give its correct statement. Accordingly, we make changes to the statements of
several assertions in Section 4 and Section 6 of [1]. Second, the proof of [1, Lemma
4.11] contains an error. We give a corrected proof, which works for more general
shear �ows. We note that these changes do not a¤ect the main conclusions of [1];
see Remark 4.
Throughout, we follow the notation in [1] to study the Rayleigh equation

(1) (U � c)(�00 � �2�)� U 00� = 0 in (0; h)

with the boundary conditions

(2)

(
(U(h)� c)2�0(h) = (g + U 0(h)(U(h)� c))�(h);
�(0) = 0:

The main correction is to change [1, Proposition 4.4] to the following.

Proposition 4.4. For U 2 K+, a neutral limiting mode (�s; �s; cs) must be one
of the following three cases:
(1) cs = Us (in�ection value) and �s solves (1)�(2) with c = Us;
(2) cs = U(0) and �s > 0 in (0; h) solves (1)�(2) with c = U(0);
(3) cs = Uc, an extremum value of U ; if yc 2 (0; h) is the largest such that

U(yc) = Uc, then �s(y) = 0 for y 2 [0; yc] and �s > 0 in y 2 (yc; h) solves (1) with
the boundary conditions(

(U(h)� cs)2�0s(h) = (g + U 0(h)(U(h)� cs))�s(h);
�s(yc) = 0; �

0
s(yc) = 0:

The case (2) can happen only when U(y) > U(0) or U(y) < U(0) for y 2 (0; h].

The proof of that cs = Us; U(0) or Uc is sketched in [2] by completing the
arguments in [1]. We will show properties of �s in cases (2) and (3).
Suppose cs 6= Us or U(0). Let ~y 2 (0; h] be the largest such that U(~y) = cs. It

is shown in [1] that �s is not identically zero and �s(y) = 0 for y 2 [0; ~y]. We claim
that �s vanishes nowhere in (~y; h). Suppose otherwise that �s(�y) = 0 for some
�y 2 (~y; h). Then, �s � 0 on [~y; �y] by [1, Lemma 4.7]. Since the ordinary di¤erential
equation (1) is regular in [�y; h] furthermore �s � 0 on [�y; h]. A contradiction then
proves the claim, and we may assume �s > 0 on (~y; h). If U 0(~y) 6= 0, then from
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�s(~y) = �0s(~y) = 0 and from the H2-bound in [1, Lemma 4.6] of �s, we deduce
that �s � 0 in a neighborhood of ~y by the property of solutions of ODE (1) near
~y. Thus, cs must be an extremum and �s has the stated properties. If cs = U(0)
which is not an extremum value then U � cs 6= 0 on (0; h). Otherwise, �s � 0 on
(0; h) by the above argument. If cs = U(0) and U(y) = U(0) only at y = 0 then �s
cannot vanish on (0; h] and hence we may assume �s > 0 in (0; h].

As pointed out in [2], the mistake in [1] was to conclude that �s = 0 on [0; ~y]
would imply �s = 0 in [0; h] assuming cs 6= Us only; the cases cs = U(0) and an
extremum value were neglected.

Remark 1. As shown in [2] by means of examples and numerical computations,
all three cases of neutral limiting modes with c = U(0); an in�ection value or an
extremum value can occur. In case cs = U(0) or an extremum value, in view of
Proposition 4.4 the wave number �s is unique.

We must change the statement of [1, Theorem 4.2], accordingly. Let �0 be the
wave number of the neutral limiting mode with c = U(0) and �1; � � � ; �k be waves
numbers of neutral limiting modes with c to be extremum of U .

Theorem 4.2. For U 2 K+, suppose that ��2max < 0 is the lowest eigenvalue of
the ordinary di¤erential operator � d2

dy2 �K on the interval (0; h) with the boundary
conditions (4.5)�(4.6) in [1]. Let

�� =

(
0 if minf�0; � � � ; �kg > �max;
maxf�i j �i < �maxg if minf�0; � � � ; �kg < �max:

Then, to each � 2 (��; �max) there corresponds an unstable solution triple (�; �; c)
(with Im c > 0) of (1)�(2).

The proof is a minor modi�cation of that in [1]. It is shown in [1] that for
U 2 K+; unstable modes bifurcate near a neutral mode with c = Us (in�ection
value) and � = �max for � slightly less than �max. The unstable mode then
continues for smaller �. Since the continuation can only stop at a neutral limiting
mode with c = U(0) or an extremum value, there is an unstable mode for any
� 2 (��; �max). Of course, the interval (��; �max) may not be the sharp interval for
instability. To get a completed picture, one needs to study the local bifurcation of
unstable modes near neutral modes with c = U(0) or an extremum value.

In view of [1, Lemma 4.11] and the corrected Theorem 4.2, we make changes to
the statement of [1, Corollary 4.12].

Corollary 4.12. A monotone shear �ow U with exactly one in�ection point ys and
�U 00=(U � U(ys)) > 0 is unstable in the free surface setting, for wave numbers in
an interval (��; �max), where

�� =

(
0 if �0 > �max
�0 if �0 < �max

;

and �0; �max > 0 are as de�ned in Theorem 4.2.
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In Section 6 of [1], we made the same mistake as in [1, Proposition 4.4] in
characterizing neutral limiting modes for the class F . Lemma 6.2 and Proposition
6.6 of [1] must be replaced by the following.

Lemma 6.2. For U 2 F , we have the same characterization of neutral limiting
modes as in Proposition 4.4.

For the proof, we �rst derive an H2-bound for the sequence of unstable modes
approaching a neutral limiting mode. Then, the same arguments as in the proof of
Proposition 4.4 apply. The H2 bound can be obtained by a slight adjustment of
the proof of [1, Lemma 4.6].

Changes are required for several assertions in [1, Section 6]. The conclusions of
Lemma 6.3 and Theorem 6.4 in [1] should be dropped. In fact, it was claimed in [1,
Theorem 6.4] that a shear �ow without in�ection is stable. But, it was shown in [2]
by numerical computations that U(y) = 1�y2 for y 2 (�1; 1); has unstable modes
for wave number in (�min;+1), where �min is the wave number of the neutral mode
with c the extremum value 1. The description in [1, Theorem 6.7] of the interval of
unstable wave number must include the cases of the neutral modes with c = U(0)
and extremum values in addition to the case with c to be in�ection values.

Another corrigendum is in the proof of [1, Lemma 4.11] due to the incorrect use
of the Sturm-Liouville comparison theorem. We �x it in the following.

Proof of Lemma 4.11 in [1]. Let K = �U 00=(U � Us) and �0 be the lowest eigen-
value of � d2

dy2 �K in (0; h) with the Dirichlet boundary conditions at y = 0 and
y = h. We consider three cases.
Case 1: �0 < 0. By the argument in [1, Remark 4.10], the lowest eigenvalue of

� d2

dy2 �K with boundary conditions (2) for c = Us is negative, which we denote
by ��2. Then, a solution to (1)-(2) is found for c = Us and �.
Case 2: �0 > 0. We modify the arguments in the proof of [1, Lemma 4.11]. Let

�� be the solution of the Rayleigh equation

�00� + (K � �2)�� = 0 in (0; h)

with ��(0) = 0 and �0�(0) = 1. We claim that

(3) �� > 0 on (0; h] for any � > 0:

Suppose on the contrary that there exists �0 > 0 such that ��0 has a zero in (0; h].
Let y0 2 (0; h] be such that ��0(y) > 0 for y 2 (0; y0) and ��0(y0) = 0. Thus, ��20 is
the lowest eigenvalue of � d2

dy2 �K on (0; y0) with the Dirichlet boundary conditions

�(0) = 0 = �(y0). Since the lowest eigenvalue of � d2

dy2 �K in (0; a) with the zero
Dirichlet conditions is decreasing in a 2 (0; h], it follows that �0 6 ��20 6 0. A
contradiction then proves (3). The rest of the proof is the same as that in [1].
Case 3: �0 = 0. The same argument as in Case 2 shows that �� > 0 on (0; h] for

any � > 0. Note that �0(h) = 0. Since �0 is the zero eigenfunction of � d2

dy2 �K
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on (0; h) with zero boundary conditions, lim�!0+ ��(h) = 0. Hence,

f(�) =
U(0)� Us

(U(h)� Us)��(h)
+

�2

(U(h)� Us)��(h)

Z h

0

(U � Us)��dy �
g

(Us � U(h))2

=
1

��(h)

"
U(0)� Us
U(h)� Us

+
�2

(U(h)� Us)

Z h

0

(U � Us)��dy
#
� g

(Us � U(h))2

de�ned in [1, page 768] satis�es that lim�!0+ f(�) = �1: The rest of the proof
again follows by that in [1]. �

Remark 2. Indeed, [1, Lemma 4.11] holds true for any non-monotone U satisfying
K is bounded and Us is between U(0) and U(h).

Remark 3. If U(0) is the strict absolute minimum or maximum and cs = U(0) then

��2s = inf
�2H1(0;h)
�(0)=0

R h
0

�
j�0(y)j2 + U 00(y)

U(y)�U(0) j�(y)j
2
�
dy �

�
g

(U(h)�U(0))2 +
U 0(h)

U(h)�U(0)

�
j�(h)j2R h

0
j�(y)j2dy

:

Choosing the test function � = U � U(0), we have

��2s 6 �
gR h

0
(U � U(0))2dy

< 0:

Thus, there exists unique neutral limiting mode with c = U(0) for any g > 0. If
g = 0, obviously, �s = 0 and �s = U � U(0). Then, for g small, �s = O(

p
g)

and �s ! +1 as g ! 1: Therefore, by Corollary 4.12, we obtain instability of
monotone U with U 00

U�U(ys) < 0, for wave lengths as long as O(1=
p
g) when g is

small.

Remark 4. The main results in [1] are not a¤ected by the above changes. An
important example used in [1] is

(4) U(y) = A sin(�(y � h=2)); y 2 [0; h];

for any h; � > 0 satisfying h� 6 � for arbitrary A and h. By the correct Corollary
4.2, such shear �ow is unstable for wave numbers in the interval (��; �max), instead
of (0; �max) as claimed in [1]. As shown in [1], there bifurcate small-amplitude
periodic water waves with the shear background (4) and for any wave number �.
These periodic waves are unstable when � 2 (��; �max), supporting two conclusions
in [1]: �rst, the bifurcation of periodic water waves is unrelated to stability of
background �ows; second, an arbitrarily small vorticity to the irrotational system
of an arbitrary depth may induce instability of water waves. We refer the reader
to Remarks 4.14 and 5.2 in [1] for details.

We also want to take this opportunity to correct a few typos: on page 756,
equation (4.8a), the + before gr(Us) should be �; on page 757, line -2, the + before
K(y) should be �.
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