CORRIGENDUM: "UNSTABLE SURFACE WAVES IN RUNNING
WATER" [COMM. MATH. PHYS., 282, (2008) 733-796]
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It was pointed out by Michael Renardy that there were a few errors in Section 4
and Section 6 of [1]. First, in [1, Proposition 4.4] it was claimed that for a class of
shear flows the wave speed of a neutral limiting mode must be the inflection value.
As indicated in [2], however, two other possible values of the wave speed must be
added, namely, the extremum value and the value at the bottom of the shear flow.
We give its correct statement. Accordingly, we make changes to the statements of
several assertions in Section 4 and Section 6 of [1]. Second, the proof of [1, Lemma
4.11] contains an error. We give a corrected proof, which works for more general
shear flows. We note that these changes do not affect the main conclusions of [1];
see Remark 4.

Throughout, we follow the notation in [1] to study the Rayleigh equation

(1) (U=c)(¢" —a’p) =U"¢=0 in (0,h)

with the boundary conditions

@) (U(h) = ¢)*¢'(h) = (g + U'(h)(U(h) — ¢))p(h),
¢(0) = 0.

The main correction is to change [1, Proposition 4.4] to the following.

Proposition 4.4. For U € K, a neutral limiting mode (¢s, as, cs) must be one
of the following three cases:

(1) ¢s = Uy (inflection value) and ¢4 solves (1)—(2) with ¢ = Us;

(2) ¢s =U(0) and ¢s > 0 in (0,h) solves (1)~(2) with ¢ =U(0);

(3) ¢s = Ue, an extremum value of U; if y. € (0,h) is the largest such that
U(ye) = Ug, then ¢s(y) =0 fory € [0,y.] and ¢s > 0 iny € (yc, h) solves (1) with
the boundary conditions

(U(h) = cs)*@(h) = (g + U'(R)(U(h) — cs)) s (h),
¢s(ye) =0, ¢s(ye) =0.
The case (2) can happen only when U(y) > U(0) or U(y) < U(0) fory € (0,h].

The proof of that ¢, = Us,U(0) or U, is sketched in [2] by completing the
arguments in [1]. We will show properties of ¢, in cases (2) and (3).

Suppose ¢s # Us or U(0). Let § € (0, h] be the largest such that U(§) = cs. It
is shown in [1] that ¢ is not identically zero and ¢4(y) = 0 for y € [0, g]. We claim
that ¢s vanishes nowhere in (g,h). Suppose otherwise that ¢s(y) = 0 for some
g € (g, h). Then, ¢, = 0 on [7,y] by [1, Lemma 4.7]. Since the ordinary differential
equation (1) is regular in [7, h] furthermore ¢s = 0 on [g, h]. A contradiction then
proves the claim, and we may assume ¢5 > 0 on (g, h). If U'(§) # 0, then from
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#s(9) = ¢4(J) = 0 and from the H2-bound in [1, Lemma 4.6] of ¢, we deduce
that ¢s = 0 in a neighborhood of § by the property of solutions of ODE (1) near
g. Thus, ¢ must be an extremum and ¢ has the stated properties. If ¢, = U(0)
which is not an extremum value then U — ¢; # 0 on (0,h). Otherwise, ¢s = 0 on
(0,h) by the above argument. If ¢, = U(0) and U(y) = U(0) only at y = 0 then ¢,
cannot vanish on (0, ] and hence we may assume ¢, > 0 in (0, h].

As pointed out in [2], the mistake in [1] was to conclude that ¢s = 0 on [0, ]
would imply ¢s = 0 in [0, k] assuming ¢; # U only; the cases ¢; = U(0) and an
extremum value were neglected.

Remark 1. As shown in [2] by means of examples and numerical computations,
all three cases of neutral limiting modes with ¢ = U(0), an inflection value or an
extremum value can occur. In case ¢; = U(0) or an extremum value, in view of
Proposition 4.4 the wave number «; is unique.

We must change the statement of [1, Theorem 4.2], accordingly. Let ap be the
wave number of the neutral limiting mode with ¢ = U(0) and a1, -+ , ai be waves
numbers of neutral limiting modes with ¢ to be extremum of U.

Theorem 4.2. For U € KT, suppose that —a?2,,. < 0 is the lowest eigenvalue of

max

the ordinary differential operator *ﬁ — K on the interval (0, h) with the boundary
conditions (4.5)—(4.6) in [1]. Let

. 0 if min{ao, s ,ak} = Omax,
max{a; | @; < amax}t if min{ag, -+, ok} < Omax-

Then, to each a € (&, Amax) there corresponds an unstable solution triple (¢, v, c)
(with Imec > 0) of (1)-(2).

The proof is a minor modification of that in [1]. It is shown in [1] that for
U € KT, unstable modes bifurcate near a neutral mode with ¢ = U, (inflection
value) and @ = amax for « slightly less than ap.x. The unstable mode then
continues for smaller a.. Since the continuation can only stop at a neutral limiting
mode with ¢ = U(0) or an extremum value, there is an unstable mode for any
a € (@, amax). Of course, the interval (&, amax) may not be the sharp interval for
instability. To get a completed picture, one needs to study the local bifurcation of
unstable modes near neutral modes with ¢ = U(0) or an extremum value.

In view of [1, Lemma 4.11] and the corrected Theorem 4.2, we make changes to
the statement of [1, Corollary 4.12].

Corollary 4.12. A monotone shear flow U with exactly one inflection point ys and
=U"/(U —=U(ys)) > 0 is unstable in the free surface setting, for wave numbers in
an interval (&, max ), where

& = 0 Zf (e7s] 2 Qmax
- . )
ap if ap < Omax

and ag, max > 0 are as defined in Theorem 4.2.
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In Section 6 of [1], we made the same mistake as in [1, Proposition 4.4] in
characterizing neutral limiting modes for the class F. Lemma 6.2 and Proposition
6.6 of [1] must be replaced by the following.

Lemma 6.2. For U € F, we have the same characterization of neutral limiting
modes as in Proposition 4.4.

For the proof, we first derive an H2-bound for the sequence of unstable modes
approaching a neutral limiting mode. Then, the same arguments as in the proof of
Proposition 4.4 apply. The H? bound can be obtained by a slight adjustment of
the proof of [1, Lemma 4.6].

Changes are required for several assertions in [1, Section 6]. The conclusions of
Lemma 6.3 and Theorem 6.4 in [1] should be dropped. In fact, it was claimed in [1,
Theorem 6.4] that a shear flow without inflection is stable. But, it was shown in [2]
by numerical computations that U(y) = 1 -2 for y € (—1,1), has unstable modes
for wave number in (auyin, +00), where iy is the wave number of the neutral mode
with ¢ the extremum value 1. The description in [1, Theorem 6.7] of the interval of
unstable wave number must include the cases of the neutral modes with ¢ = U(0)
and extremum values in addition to the case with ¢ to be inflection values.

Another corrigendum is in the proof of [1, Lemma 4.11] due to the incorrect use
of the Sturm-Liouville comparison theorem. We fix it in the following.

Proof of Lemma 4.11 in [1]. Let K = —U" /(U — Us) and pg be the lowest eigen-
value of —j—; — K in (0, h) with the Dirichlet boundary conditions at y = 0 and
y = h. We consider three cases.

Case 1: po < 0. By the argument in [1, Remark 4.10], the lowest eigenvalue of
—% — K with boundary conditions (2) for ¢ = U, is negative, which we denote
by —a?. Then, a solution to (1)-(2) is found for ¢ = U and «.

Case 2: po > 0. We modify the arguments in the proof of [1, Lemma 4.11]. Let
¢, be the solution of the Rayleigh equation

$o + (K —a®)pa =0 in (0,h)
with ¢4(0) = 0 and ¢/, (0) = 1. We claim that
(3) ¢o >0 on (0,h] for any a > 0.

Suppose on the contrary that there exists ag > 0 such that ¢,, has a zero in (0, h)].
Let yo € (0, h] be such that ¢, (y) > 0 for y € (0,y0) and ¢, (yo) = 0. Thus, —af is
the lowest eigenvalue of —f—;? — K on (0,y0) with the Dirichlet boundary conditions

?(0) =0 = ¢(yo). Since the lowest eigenvalue of —% — K in (0,a) with the zero

Dirichlet conditions is decreasing in a € (0,h], it follows that pug < —a2 < 0. A

contradiction then proves (3). The rest of the proof is the same as that in [1].
Case 3: g = 0. The same argument as in Case 2 shows that ¢, > 0 on (0, h] for

any o > 0. Note that ¢o(h) = 0. Since ¢¢ is the zero eigenfunction of —% -K
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on (0, h) with zero boundary conditions, lim, .o+ ¢ (h) = 0. Hence,

B U(0) — Us a? h B B g

1) = )~ 0)gat®) TR~ U)oa®) / U= U9ty = 55y
1 |U(0) - U, o? b B g
= o) U 0. T O — 0 / U= U0ty = )2

defined in [1, page 768] satisfies that lim,_,o+ f(e) = —oo. The rest of the proof
again follows by that in [1]. O

Remark 2. Indeed, [1, Lemma 4.11] holds true for any non-monotone U satisfying
K is bounded and Us is between U(0) and U(h).

Remark 3. If U(0) is the strict absolute minimum or maximum and ¢, = U(0) then

Jy (16 @I + o8 10 W)1R) dv - (oo + o) 9 )|

—aZ= in i
$EH'(0,h d
17 0.1 Jy |8(y)Pdy

Choosing the test function ¢ = U — U(0), we have

a? < —— g <0
Jo (U =U(0))%dy

Thus, there exists unique neutral limiting mode with ¢ = U(0) for any g > 0. If
g = 0, obviously, o, = 0 and ¢, = U — U(0). Then, for g small, o, = O(\/9)
and oy — 400 as g — o0o. Therefore, by Corollary 4.12, we obtain instability of
monl(l)tone U with #(ys) < 0, for wave lengths as long as O(1/,/g) when g is
small.

Remark 4. The main results in [1] are not affected by the above changes. An
important example used in [1] is

(4) Uly) = Asin(B(y — h/2)),  y€[0,h],

for any h, 8 > 0 satisfying h < 7 for arbitrary A and h. By the correct Corollary
4.2, such shear flow is unstable for wave numbers in the interval (&, amayx), instead
of (0, amax) as claimed in [1]. As shown in [1], there bifurcate small-amplitude
periodic water waves with the shear background (4) and for any wave number a.
These periodic waves are unstable when « € (@, Amax ), Supporting two conclusions
in [1]: first, the bifurcation of periodic water waves is unrelated to stability of
background flows; second, an arbitrarily small vorticity to the irrotational system
of an arbitrary depth may induce instability of water waves. We refer the reader
to Remarks 4.14 and 5.2 in [1] for details.

We also want to take this opportunity to correct a few typos: on page 756,
equation (4.8a), the + before g, (Us) should be —; on page 757, line -2, the + before
K (y) should be —.
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