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Some recent results on instability of ideal plane flows
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Abstract. We study linear and nonlinear instability of steady incompressible
inviscid flows. First, some sufficient conditions of linear instability for a class of

shear flows are given. Second, nonlinear instability in the L2-norm of velocity is
proved under the assumption that the growth rate exceeds half of the Liapunov

exponent of the steady flow, for any bounded domain. We also estimate the

growth of the semigroup generated by the linearized operator, in the Lp (p > 1)
space of the velocity.

1. Introduction

In this paper, we study the stability and instability of ideal plane flows. We
present some new results for linear and nonlinear instability of ideal plane flows.
Meanwhile, we give a brief survey of some recent results on this topic. We consider
the two-dimensional incompressible inviscid flow satisfying the Euler equation

(1.1a) ∂tu + (u · ∇u) +∇p = 0,

(1.1b) ∇ · u = 0,

in a bounded domain Ω of class C2 with smooth boundary ∂Ω composed of a finite
number of connected components Λi. The boundary condition is

(1.1c) u · n = 0 on ∂Ω,

where n stands for the unit outer normal of ∂Ω. The global existence of Euler
equation in two dimension is quite well understood (see [15], [14]). However, many
basic questions about the behavior of the solutions remain open. The stability and
instability of steady ideal plane flows is a classical problem, dated back to 19th
century ([17]). To rigorously prove instability for the full nonlinear problem, first
we must find an eigenvalue of the linearized operator with positive real part, that
is, a growing mode to the linearized equation. To prove nonlinear instability, we
need to find a norm ‖·‖ such that the nonlinear term behaves as O

(
‖·‖2

)
. For the

Euler equation, this is not easy since the nonlinear term involves derivative. The
linearized equation of (1.1) around a steady flow u0 is

(1.2) ∂tv + u0 · ∇v + v · ∇u0 +∇p = 0, in Ω
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with boundary conditions (1.1b) and (1.1c). The linearized operator is

L0v = −u0 · ∇v − v · ∇u0 −∇p

with v satisfying boundary conditions (1.1b) and (1.1c). It is a non self-adjoint
and degenerate operator. Thus it is rather difficult to find a growing mode of (1.2)
or a discrete unstable eigenvalue of L0. Even for the simplest steady flows, shear
flows of the form (U (y) , 0) with y1 ≤ y ≤ y2, very few sufficient conditions for
existence of growing modes are known although many efforts have been devoted
to it. For shear flows, to find growing modes is equivalent to solve the following
classical Rayleigh equation

(1.3) (U − c)
(

d2

dy2
− α2

)
φ− U ′′φ = 0

with φ (y1) = φ (y2) = 0. Here α is the wave number (positive real) in the x-
direction and c = cr + ici is the complex wave speed. The flow is linearly unstable
if some non-trivial solution to (1.3) with ci > 0 exists. A classical result of Lord
Rayleigh ([17]) is the necessary condition for instability that the basic velocity
profile should have an inflection point at some point y = ys, that is, U ′′ (ys) = 0.
However it is only a necessary condition for instability. Until now there are very
few sufficient conditions for instability. In 1930s, Tollmien ([18]) gave some formal
argument to find unstable modes near neutral modes. Besides that, there are only
some special examples for which linear instability can be proved rigorously, such
as U (y) = sinmy or cos my (m integer) studied in [6]. In [10], we obtain some
sufficient conditions of linear instability for several classes of shear flows. One class
of shear flows studied in [10] is the class K+ flows, with the steady velocity profile
U (y) in C2 [y1, y2] and the following function

K (y) := −U ′′ (y) / (U (y)− Us)

being positive and bounded in [y1,y2] , where Us is the only inflection value of U .

Theorem 1.1. ([10]) For a shear flow (U (y) , 0) in class K+. Let −α2
max be

the lowest eigenvalue of − d2

dy2 − K (y) ,which is assumed to be positive. For all
α ∈ (0, αmax) , there is an unstable solution (with Im c > 0) to (1.3). The instability
condition is sharp in the sense that there are no growing modes if α ≥ αmax or
− d2

dy2 −K (y) is nonnegative.

A particular example of class K+ flow is U (y) = sin my or cos my (m is any real
number) and thus the result in [6] is easily recovered by Theorem 1.1. In [10], results
of the same type as Theorem 1.1 have been obtained for plane rotating flows in an
annulus and a sufficient condition for instability of odd shear flows is also given.
In Section 2 of this paper, we study linear instability of more general shear flows
including those with U (y) being monotone or satisfying U ′′ (y) = g (U (y)) k (y)
for some function k (y) > 0. For these flows, we obtain a sufficient condition of
instability which in some cases is sharp by numerical evidences. We note that there
are very few results of linear instability for more general flows in a general domain.
In [11], we obtain the first general sufficient condition for linear instability of steady
flows satisfying

ω0 = −∆ψ0 = g (ψ0) ,
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where ω0 and ψ0 are steady vorticity and stream functions. We prove the existence
of a growing mode assuming that the following elliptic operator

(1.4) A := −∆− g′ (ψ0) φ + g′ (ψ0) P̃

has an odd number of negative eigenvalues and no kernel. Here P̃ is the projection
operator of L2 (Ω) into ker {u0 · ∇}. It is also showed in [11] that if g′ > 0 and A
is positive, then the steady flow is linearly stable.

After obtaining a growing solution to the linearized equation, we need to show
that linear instability implies nonlinear instability. This problem has two main
difficulties. One difficulty is that the nonlinear term contains derivative. Another
one is related to the structure of the essential spectrum of the linearized operator
L0. Define the space

L2
sol (Ω) = {v = (v1, v2) ∈ L2 (Ω)2 |∇ · v = 0, v · n = 0 on ∂Ω}.

For a general domain Ω, so far there is no rigorous characterization of σess
L2

sol
(L0).

When Ω is a torus, it was showed ([7]) that

σess
L2

sol
(L0) = {z ∈ C| − µ ≤ Re z ≤ µ}.

Here the number µ is the Liapunov exponent of the flow generated by the steady
velocity field u0. Note that µ > 0 is equivalent to that ψ0 has a nondegenerate
saddle point. Thus for general steady flows, the operator L0 has unstable essen-
tial spectrum. If the discrete spectrum lies deeply inside the essential spectrum,
nonlinear instability is difficult to prove. In recent years, the nonlinear instability
problem has been studied by several authors ([1], [5], [8], [19]). All these results
essentially need to assume that the discrete eigenvalue is dominant, or lies outside
the essential spectrum region. The best result is obtained by Bardos, Guo and
Strauss in [1]. They prove nonlinear instability in the L2−norm of vorticity if the
linear growth rate exceeds the Liapunov exponent of the steady flow, for a general
bounded domain. In Section 3, we prove nonlinear instability in the L2−norm of
velocity if the growth rate exceeds half of the Liapunov exponent, for steady flows
in a bounded domain. After this result is obtained, we show in [12] the completed
nonlinear instability result in the Lp−norm of velocity (for any p > 1) with no re-
striction on the growth rate. The idea of using a coupled approach introduced here
plays an important role in the proof of the completed result in [12] and the recent
proof of nonlinear instability of Vlasov-Poisson system ([13]). Using the same idea,
we can estimate the growth of the semigroup etL0 in the Lp space of velocity for
p > 1, in any bounded domain. These estimates are new to our knowledge.

In Section 4, we make some comments related to our results.

2. Extended study of shear flow instability

In this section, we extend Theorem 1.1 to more general shear flows.

Definition 2.1. A velocity profile U (y) is said to be in class F , if for each
number c in the range of U but not an inflection value, U ′′ takes the same sign at
all points where U (y) = c.

Some examples in class F are a monotone flow, a symmetric flow with monotone
half part and a flow satisfying U ′′ (y) = g (U (y)) k (y) for some positive function
k (y) and any continuous function g. In particular, all flows in class K+ are in class
F .
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Definition 2.2. The triple (cs, αs, φs) with cs real and αs positive is said to
be a neutral limiting mode, if it is the limit of a sequence of growing solutions
(ck, αk, φk) (with Im ck > 0) of the Rayleigh equation (1.3). Formally (cs, αs, φs)
ought to satisfy the Rayleigh equation

(2.1) (U − cs)
(

d2

dy2
− α2

s

)
φs − U ′′φs = 0.

We call cs the neutral limiting phase speed and αs the neutral limiting wave number.

Our first step is to study all possible neutral limiting modes. It is showed in
[10] that for any shear flow (U (y) , 0) in class F , the neutral limiting phase speed
must be an inflection value Us of U . Furthermore, the following result holds.

Theorem 2.3. If the flow is in class F , then for any neutral limiting mode
(cs, αs, φs) with positive αs, we have cs = Us and the function φs must solve

(2.2) − d2

dy2
φs +

U ′′

U − Us
φs = −α2

sφs

with φs (y1) = φs (y2) = 0. Thus −α2
s is a negative eigenvalue of the operator

− d2

dy2 + U ′′
U−Us

with Dirichlet boundary condition.

To prove Theorem 2.3, we need the following lemmas, some of which are proved
in [10].

Lemma 2.4. [10] If U (y) is in class F then the neutral limiting phase speed
must be an inflection value of U .

Lemma 2.5. [10] Let φ be a solution of (1.3) with complex eigenvalue c = cr+ici

(ci 6= 0) , then
∫ y2

y1

(
|φ′|2 + α2 |φ|2 +

U ′′ (U − q)
|U − c|2 |φ|2

)
dy = 0

for every real number q.

Lemma 2.6. For a flow U (y) in class F , if {(ck, αk, φk)} (with Im ck > 0 and
‖φk‖2 = 1) are a sequence of solutions to equation (1.3) as in Definition 2.2 of the
neutral limiting mode (cs, αs, φs) . Then we have

‖φk‖H2 ≤ C (independent of k) .

Proof. By Lemma 2.4, {ck} tends to an inflection value U i
s of U (y). Let

y0, y1, · · · , yni be all the points satisfying U = U i
s and

Eε =
{
y ∈ [y1, y2] |

∣∣y − yj
∣∣ < ε for some j

}
.

We choose ε small enough such that the intervals Ij
ε =

(
yj − ε, yj + ε

)
are disjoint

and on each interval Ij
ε

(2.3) U ′′ (y) = uj (y)
(
U − U i

s

)mj with uj (y) 6= 0.

Let µj = (−1)mj signuj , then µj must be the same by the definition of class F and
we denote it by µ. There exists δ0 > 0 such that

|U (y)− ck| ≥ δ0, if y ∈ Ec
ε and k large enough.
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In the following, we use φ, c, α, Us to replace φk, ck, αk, U i
s for simplicity and denote

c = cr + ici (ci > 0). By Lemma 2.5

(2.4)
∫ y2

y1

(
|φ′|2 + α2 |φ|2 +

U ′′ (U − q)
|U − cr|2 + c2

i

|φ|2
)

dy = 0,

for any real q.
If µ = −1, let q = Us − 2 (Us − cr). Then by (2.4)

∫ y2

y1

(
|φ′|2 + α2 |φ|2

)
dy =

∫ y2

y1

U ′′ (U − q)
|U − cr|2 + c2

i

|φ|2 dy

=
∫

Ec
ε

U ′′ (U − q)
|U − cr|2 + c2

i

|φ|2 dy

+
∑

j

∫

Ij
ε

|uj (y)| |U − Us|mj−1 (U − Us) (U − q)
|U − cr|2 + c2

i

|φ|2 dy

< c1

∫

Ec
ε

|φ|2 dy

+
∑

j

∫

Ij
ε

|uj (y)| |U − Us|mj−1
(
(U − cr)

2 − (Us − cr)
2
)

|U − cr|2 + c2
i

|φ|2 dy

< c1

∫

Ec
ε

|φ|2 dy +
∑

j

∫

Ij
ε

|uj (y)| |U − Us|mj−1 |φ|2 dy

< C.

If µ = 1, let q = Us, then
∫ y2

y1

(
|φ′|2 + α2 |φ|2

)
dy =

∫

Ec
ε

U ′′ (U − Us)
|U − cr|2 + c2

i

|φ|2 dy

−
∑

j

∫

Ij
ε

|uj (y)| ∣∣U − U i
s

∣∣mj−1 (U − Us)
2

|U − cr|2 + c2
i

|φ|2 dy

<

∫

Ec
ε

U ′′ (U − Us)
|U − cr|2 + c2

i

|φ|2 dy

< C.

In the above we use C to denote some constant independent of φ.
The estimate of ‖φ′′‖2 follows from the estimate of ‖φ′‖H1 . The proof is the

same as for the class K+ case in [10]. So we skip the details. ¤

With the apriori estimate in Lemma 2.6, Theorem 2.3 follows by the same proof
as in [10].

Our next step is to study the bifurcation near a neutral mode. Tollmien ([18])
and later C. C. Lin ([9]) formally showed that unstable modes can bifurcate from
neutral modes under some conditions. In [10], the bifurcation of unstable modes
from neutral modes is rigorously proved for shear flows in class K+. We note that
for such flows, there is only one inflection value Us and − U ′′

U−Us
is positive. In this

case, the bifurcation of an unstable mode from a neutral mode can be established
if and only if the perturbed wave number is slightly to the left of the neutral wave
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number. This one-way bifurcation property of neutral modes plus Theorem 2.3 and
the continuation property of unstable modes enable us to prove Theorem 1.1 ([10]).
Here we use the same strategy for flows in class F . Let U1

s , U2
s , · · · , Un

s be all the
inflection values of U (y). We consider a generic flow in class F for which − U ′′

U−Ui
s

at each point taking U−value U i
s is nonzero. We call these flows in class F+. Note

that for each inflection value U i
s the sign − U ′′

U−Ui
s

is the same for all U i
s−inflection

points. We call a neutral mode positive if − U ′′
U−Ui

s
is positive for its neutral phase

speed Us, and negative otherwise. We can also do the same perturbation analysis
around neutral modes as in [10] for class F+ flows. The conclusion is the following:
for a positive (negative) neutral mode, an unstable mode bifurcates from a neutral
mode if and only if the perturbed wave number is slightly to the left (right) of the
neutral wave number.

For each neutral wave number αs, by Theorem 2.3, −α2
s is a negative eigen-

value of one of the operators − d2

dy2 + U ′′
U−Ui

s
and vice versa. We list all neutral wave

numbers in the increasing order. From this sequence, we pick the smallest one from
consecutive negative neutral wave numbers and the largest one from consecutive
positive neutral wave numbers. In this way, we get a new sequence. If the smallest
number in this sequence is a positive neutral wave number, we add zero into the
sequence. We note that the largest number in this sequence must be a positive
neutral wave number, since no unstable modes exist to its right. Denote the ob-
tained sequence be α0

− < a0
+ < · · ·αm

− < αm
+ . Here α0

− (might be 0), · · · , αm
− are

negative neutral wave numbers and α0
+, · · · , αm

+ are positive neutral wave numbers.
We have the following Theorem.

Theorem 2.7. For a shear flow (U (y) , 0) in class F+, we define α0
− < a0

+ <
· · ·αm

− < αm
+ as above, then there exist unstable solutions to the Rayleigh equation

(1.3) for each α in the intervals
(
α0
−, a0

+

)
, · · · ,

(
αm
− , αm

+

)
. For α ≥ αm

+ there is no
unstable solution.

The proof of this theorem is similar to that of Theorem 1.1 in [10], so we skip
it.

Remark 2.8. If α0
− > 0, the unstable wave numbers in Theorem 2.7 start from

a positive number. This onset of instability away for zero wave number actually
appeared in numerical computations. In [2], the instability of the monotone flow

U (y) = y + 5y3 + f tanh 4
(

y − 1
2

)

is studied. From figure 3(c) in [2], we see that for f in the range 1.6 ≤ f ≤ 1.64,
the Rayleigh equation (1.3) has unstable solutions only for the wave numbers in an
interval away from 0. This is different from class K+ flows, in which case instability
always starts from zero wave number. For this example, the unstable wave number
interval given by Theorem 2.7 is sharp.

In general, it is not clear whether or not the unstable wave number intervals
in Theorem 2.7 are complete. However, by the proof of Theorem 2.7, to study
instability in the other intervals

(
0, α0

−
)
,
(
α0

+, α1
−

) · · · ,
(
αm−1

+ , αm
−

)
we only need to

look at any one wave number in each interval. That is, if there exists an unstable
solution to (1.3) for some α0 in

(
αi

+, αi+1
−

)
then (1.3) have unstable solutions for all

wave numbers in
(
αi

+, αi+1
−

)
. This enables us to locate the complete unstable wave
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number range with very little numerical work. In [8] Grenier considered nonlinear
instability of shear flows with perturbed velocity in L2 ((−∞,+∞)× [y1, y2]). He
proved that the shear flow is nonlinearly unstable in the space (−∞,+∞)× [y1, y2]
if there is an unstable solution to (1.3) for some wave number. So we have the
following.

Corrolary 2.9. For shear flows in class F+, the sharp condition for nonlinear
instability in (−∞,+∞)× [y1, y2] is that one of the operators − d2

dy2 + U ′′
U−Ui

s
has a

negative eigenvalue. Here
{
U i

s

}
are all the inflection values of U.

From the proof of Theorem 2.7 or Theorem 1.1 (see [10] for details), we have
the following result.

Corrolary 2.10. For any α ∈ (
0, αm

+

)
, denote n+ (α) to be the number of

positive neutral wave numbers greater than α and n− (α) to be the number of neg-
ative neutral wave numbers less than α. Then the Rayleigh equation (1.3) has at
most n+ (α) + n− (α) unstable solutions at the wave number α.

Finally we note we might generalize Theorem 2.7 to shear flows in class F .
A higher order bifurcation analysis around neutral modes is required, for the case
when mj > 1 as in the proof of Lemma 2.6.

3. Nonlinear instability and semigroup estimate

The vorticity form of the Euler equation (1.1) is

(3.1) ∂tω + u · ∇ω = 0.

Let ψ be the stream function, then u = ∇⊥ψ = (∂2ψ,−∂1ψ) and ω ≡ −∆ψ. Denote
u0, ω0, ψ0 to be the steady velocity, vorticity and stream functions.

Theorem 3.1. Consider a bounded domain Ω and a steady flow u0 with ω0 ∈
C1 (Ω). Suppose there exists an exponentially growing solution eλtv

(
x1, x2

)
(Re λ > 0)

to the linearized equation (1.2) with v = (v1, v2) ∈ H1 (Ω)2 and ω = curlv ∈
L∞ (Ω). Let µ be the Liapunov exponent of the steady velocity field u0. If Re λ > µ

2 ,
then u0 is nonlinearly unstable in the following sense:

There exists positive constants C, θ0, δ0 and a family of solutions {vδ, 0 ≤ δ < δ0}
to the Euler equation (1.1) satisfying

‖ωδ (0)− ω0‖2 ≤ δ

and
sup

0<t≤C ln|δ|
‖vδ(t)− u0‖2 ≥ θ0.

For simplicity, we only consider a simply connected domain Ω in which case we
can assume ψ|∂Ω = 0. Thus

u = curl−1ω = ∇⊥ (−∆)−1
ω.

The more complicated boundary conditions for ψ can be handled as in [11] and
[12].

We first state the main idea in the proof. The main difficulty is due to the
derivative in the nonlinear term. To overcome it, we use the following coupled
approach. The linearized operator for the vorticity equation (3.1) is

(3.2) M0ω := −u0 · ∇ω − u · ∇ω0 = −u0 · ∇ω −∇⊥ (−∆)−1
ω · ∇ω0.
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Denoting by ω(t) the evolution of the small perturbation of vorticity satisfying

∂tω + M0ω = −curl−1ω · ∇ω

then we have

(3.3) ω (t) = etM0ω (0) +
∫ t

0

e(t−s)M0 (−v · ∇ω) (s) ds

and
(3.4)

v (t) = curl−1ω (t) = curl−1
(
etM0ω (0)

)−
∫ t

0

curl−1e(t−s)M0 (∇ · (vω)) (s) ds

To study nonlinear instability, we estimate the growth of ‖v (t)‖2. The idea is to
consider the term ∇·(vω) in (3.4) as a function in H−1and then use the regularizing
effect of curl−1 to get back to L2. In this way the nonlinear term essentially becomes
vω and is easy to be handled by the bootstrap argument as in [1].

To prove Theorem 3.1, we need the following two lemmas.

Lemma 3.2. Let Re λ be the maximal growth rate for the linearized equation
(1.2). Then for any ε > 0, there exists Cε such that

(3.5)
∥∥etM0

∥∥
H−1→H−1 ≤ Cεe

t max{Re λ+ε,µ}.

Proof. It is equivalent to show that
∥∥∥etM∗

0

∥∥∥
H1→H1

≤ Cεe
t max{Re λ+ε,µ}.

Here
M∗

0 = u0 · ∇ − (−∆)−1 (∇⊥ω0 · ∇
)

is the duality operator of M0.We have
∥∥∥etM∗

0

∥∥∥
L2→L2

≤ C ′εe
t(Re λ+ ε

2 )

for some constant C ′ε, since M∗
0 is compact perturbation of the operator u0 · ∇

which generates a isometry group and Reλ is the maximal real part of the discrete
eigenvalues of M0 and M∗

0 . Denoting ω (t) = etM∗
0 ω (0), we have

(3.6) ω (t, x) = etu0·∇ω (0)−
∫ t

0

e(t−s)u0·∇ (−∆)−1 (∇⊥ω0 · ∇ω (s)
)
ds

= ω (0,X0 (t;x))−
∫ t

0

(
(−∆)−1 (∇⊥ω0 · ∇ω

))
(s;X0 (t− s;x)) ds,

where X0(t;x) is the flow induced by the steady velocity field u0. So

∂ω (t, x) = ∂ω (0,X0 (t;x))
∂X0

∂x
(t)

−
∫ t

0

(
∂ (−∆)−1 (∇⊥ω0 · ∇ω

))
(s;X0 (t− s;x))

∂X0

∂x
(t− s) ds.

By the definition of the Liapunov exponent, there exists constant C ′′ε such that
∣∣∣∣
∂X0

∂x

∣∣∣∣ (t) ≤ C ′′ε et(µ+ ε
2 ).
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Thus

‖∂ω (t)‖2 ≤ ‖∂ω (0)‖2 C ′′ε et(µ+ ε
2 ) +

∫ t

0

C ‖ω (s)‖2 C ′′ε e(t−s)(µ+ ε
2 )ds

≤ ‖∂ω (0)‖2 C ′′ε et(µ+ ε
2 ) +

∫ t

0

CC ′εe
s(Re λ+ ε

2 ) ‖ω (0)‖2 C ′′ε e(t−s)(µ+ ε
2 )ds

≤ Cεe
t max{Re λ+ε,µ}

and (3.5) is proved. Here we use the boundness of

(−∆)−1 : H−1 → H1.

and the fact that the Jacobian of the mapping x → X0 (t;x) is 1. ¤

The following bootstrap result is required.

Lemma 3.3. Let c1 = 2 ‖vg‖2. If ‖v (t)‖2 ≤ c1δe
Re λt for 0 ≤ t ≤ T, then there

exists some constant C1 such that

‖ω (t)‖4 , ‖v (t)‖4 ≤ C1δe
Re λt

for 0 ≤ t ≤ T.

The proof basically follows from the same argument in [1], so we skip it.

Proof of Theorem 3.1. We take the growing mode vg with the largest growth
rate Re λ. We consider the general case when λ is complex and take the initial data
to be vδ (0) = u0 + δ Im vg. There exists a constant c0 such that

∥∥etL0 Im vg

∥∥
2
≥ c0e

Re λt.

By normalization, we can assume ‖Im ωg‖2 = 1 then ‖ωδ (0)− ω0‖2 = δ. Since
ωδ (0) ∈ L∞, there exists a unique global weak solution to the Euler equation by
Yudovich’s theory (see [14]). Let ω (t) = ωδ (t)−ω0 and v (t) = vδ (t)− u0. Denote
T to be the maximal time such that

‖v (t)‖2 ≤ c1δe
Re λt

Since c1 = 2 ‖vg‖2, we have ‖v (0)‖2 < c1δ and thus T > 0. By (3.4), we have

v (t) = etL0v (0)−
∫ t

0

∇⊥ (−∆)−1
e(t−s)M0 (∇ · (vω)) (s) ds = v1 + v2.

For 0 ≤ t ≤ T, we have

‖v2‖2 ≤
∫ t

0

C
∥∥∥e(t−s)M0

∥∥∥
H−1→H−1

‖∇ · (vω) (s)‖H−1 ds

≤
∫ t

0

CCεe
(t−s) max{Re λ+ε,µ} ‖vω (s)‖2 ds

≤
∫ t

0

CCεe
(t−s) max{Re λ+ε,µ} ‖v (s)‖4 ‖ω (s)‖4 ds

≤
∫ t

0

CCεe
(t−s) max{Re λ+ε,µ} (

C1δe
Re λs

)2
ds (by Lemma 3.3)

= C2

(
δeRe λt

)2
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if ε is small, under our assumption that Reλ > µ
2 . Let T ∗ be such that δeT∗ Re λ = θ,

where

θ =
min {c0, c1}

4C2

We show that T ∗ ≤ T . Suppose otherwise, we have T ∗ > T . Then at time T, we
have

‖v (T )‖2 ≤ ‖v1 (T )‖2 + ‖v2 (T )‖2
≤

∥∥eTL0δvg

∥∥
2

+ C2

(
δeRe λT

)2

≤ (‖vg‖2 + C2θ
)
δeT Re λ

<
3
4
c1δe

T Re λ

which is a contradiction to the definition of T . So at time T ∗, we must have

‖v (T ∗)‖2 ≥ ‖vL (T ∗)‖2 − ‖vN (T ∗)‖2
≥ c0δe

Re λT∗ − C2

(
δeRe λT∗

)2

= c0θ − C2θ
2

≥ 3
4
θ.

We let θ0 = 3
4θ and the proof of Theorem 3.1 is finished. ¤

This coupled approach can be used to study the growth property of the semi-
group etL0 . We consider a simply connected domain first. Define the space

Hp =
{

u ∈ Lp (Ω)2 |∇ · u = 0, u · n = 0 on ∂Ω
}

.

Theorem 3.4. Consider a simply connected bounded domain Ω. Let Re λ be
the maximal growth rate for the linearized equation (1.2). Then for any ε > 0 and
p > 1 there exists Cε,p such that

∥∥etL0
∥∥

p
≤ Cε,pe

t max{Re λ+ε,µ}.

Here etL0 : Hp → Hp.

Proof. It is proved in [12] that there exists constant C such that

(3.7) ‖v‖p ≤ C sup
ψ∈W1,p′

0
‖ψ‖

W1,p′=1

∫ ∫

Ω

ψcurlvdx1dx2.
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So we have
∥∥etL0v (0)

∥∥
p
≤ C sup

ψ∈W1,p′
0

‖ψ‖
W1,p′=1

∫ ∫

Ω

ψcurl
(
etL0v (0)

)
dx1dx2

= C sup
ψ∈W1,p′

0
‖ψ‖

W1,p′=1

∫ ∫

Ω

ψetM0 (∂2v1 (0)− ∂1v2 (0)) dx1dx2

= C sup
ψ∈W1,p′

0
‖ψ‖

W1,p′=1

∫ ∫

Ω

(
etM∗

0 ψ
)

(∂2v1 (0)− ∂1v2 (0)) dx1dx2

= C sup
ψ∈W1,p′

0
‖ψ‖

W1,p′=1

∫ ∫

Ω

∂
(
etM∗

0 ψ
)
· (−v2 (0) , v1 (0)) dx1dx2 +

∮

∂Ω

etM∗
0 ψv · dl

= C sup
ψ∈W1,p′

0
‖ψ‖

W1,p′=1

∫ ∫

Ω

∂
(
etM∗

0 ψ
)
· (−v2 (0) , v1 (0)) dx1dx2

≤ C
∥∥∥etM∗

0 ψ
∥∥∥
W1,p′

‖v (0)‖p ,

where we use etM∗
0 ψ|∂Ω = 0 which can be easily seen from the formula (3.6). By

the same proof of Lemma 3.2, there exists constant Cε,p′such that
∥∥etM0

∥∥
W1,p′→W1,p′ ≤ Cε,p′e

t max{Re λ+ε,µ}.

Combining above, the conclusions follows. ¤

For a non-simply connected domain Ω with ∂Ω = ∪iΛi, we consider the semi-
group etL0 defined on the space

H0
p =

{
u ∈ Lp (Ω)2 |∇ · u = 0, u · n = 0 on ∂Ω and

∮

Λi

u · dl = 0 for each Λi

}
.

We note that all possible growing modes must be in the space H0
p (see [11]).

Theorem 3.5. Consider a non-simply connected bounded domain Ω. Let Re λ
be the maximal growth rate for the linearized equation (1.2). Then for any ε > 0
and p > 1 there exists Cε,p such that

∥∥etL0
∥∥

p
≤ Cε,pe

t max{Re λ+ε,µ}.

Here etL0 : H0
p → H0

p .

For the proof, we use the similar duality estimate for Lp−norm of a function
in H0

p (see [12]) and follow the same line in the proof of Theorem 3.4.
In the formal level, Theorems 3.4 and 3.5 imply that the unstable essential

spectrum of L0 in the space Hp (H0
p for non-simply connected domain) lies in the

strip
{z ∈ C|0 ≤ Re z ≤ µ}.

It is rigorously proved in [7] that for the case of a torus and p = 2 , the unstable
essential spectrum of L0 is the whole strip.
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4. Some comments

The choice of norm is very important in the stability or instability study of
ideal plane flows. In [11], we construct a steady flow which is nonlinearly and
linearly stable in the L2−norm of vorticity but linearly unstable in the L2−norm of
velocity. For most cases, we are interested in the stability or instability in the large
scale sense. We believe that the constrain of small Lp−norm of initial vorticity
perturbation is necessary to control the influence of very small scales. With this
constrain, we show ([12]) that nonlinear instability in Lp norm of velocity is indeed
in the large scale sense.

In the following, we comment on some future problems related to our results.
For steady flows satisfying −∆ψ0 = g (ψ0) with g′ > 0, if the operator A

(defined in (1.4))has no kernel, we conjecture that A > 0 is the sharp condition for
nonlinear stability. To prove it, first we need to close the gap between the linear
and nonlinear stability conditions in [11]. Second, if A has a negative eigenvalue
we need to find a growing mode. Currently, this is only proved for shear flows
and rotating flows ([10]). We also note that if g′ changes sign, so far there are no
methods to study nonlinear stability. In this case, the usual energy-Casimir method
is not applicable.

It is very interesting to utilize singular neutral modes in the study of shear flow
instability, as what we did for regular neutral modes in Section 2 and [10]. This
issue is important to study instability of shear flows in a stratified fluid and in a
beta plane([3], [16]).
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