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Abstract: We investigate stability and instability of steady ideal plane flows for an arbi-
trary bounded domain. First, we obtain some general criteria for linear and nonlinear
stability. Second, we find a sufficient condition for the existence of a growing mode to the
linearized equation. Third, we construct a steady flow which is nonlinearly and linearly
stable in the L2 norm of vorticity but linearly unstable in the L2 norm of velocity.

1. Introduction

We consider an incompressible inviscid flow satisfying the Euler equation

∂tu + (u · ∇u) + ∇p = 0, (1a)

∇ · u = 0, (1b)

in a bounded domain 	 ⊂ R2 with smooth boundary ∂	 composed of a finite number
of connected components 
i . The boundary condition is

u · n = 0 on ∂	,

where n stands for the unit outer normal of ∂	. The vorticity form of (1) is given by

∂tω − ψy∂xω + ψx∂yω = 0, (2)

where ψ is the stream function, and ω ≡ −�ψ = −
(
∂2
x + ∂2

y

)
ψ is the vorticity. The

boundary conditions associated with (2) are given by

ψ |
i
= �i, (3a)
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and ∮

i

∂ψ

∂n
= Ai, (3b)

with �i depending on time only, and Ai being some constants.
A steady flow satisfying (2), (3) has a stream function ψ0 satisfying

−ψ0y ∂xω0 + ψ0x ∂yω0 = 0, (4)

where ω0 ≡ −�ψ0 is the associated vorticity. Consider ψ0 satisfying the following
elliptic equation:

−�ψ = g (ψ) (5)

with boundary conditions (3) and g being some differentiable function. Then ω0 ≡
−�ψ0 = g (ψ0) is a steady solution of (2). In this paper we study stability and instability
of these steady solutions. If g′ > 0, Wolansky and Gill [17] derived some linear and
nonlinear stability criteria, using the energy-Casimir method and a supporting functional
method. However their conditions involve some unspecified finite dimensional function
spaces and are not easy to check. Our first theorem is a refinement of their results.
We state the theorem only for a simply connected domain. For this case, the boundary
conditions (3) can be simplified to be

ψ = 0 on ∂	.

First we introduce some notations. We call a real number ρ a critical value of ψ0 if
ψ0 takes the value ρ at a critical point. The set of all critical values of ψ0 has zero
measure by Sard’s Theorem. For any ρ which is not a critical value, the level set
{ψ0 = ρ} consists of a finite number of disjoint closed curves, which we denote by
�1 (ρ) , �2 (ρ) , · · · , �nρ (ρ). Let X = H1

0 (	) ∩ H2 (	) and Y = H1
0 (	) , with

‖ψ‖2
X =

∫ ∫
	

|�ψ |2 dxdy, ‖ψ‖2
Y =

∫ ∫
	

|∇ψ |2 dxdy.

Note that ‖ψ‖2
X , ‖ψ‖2

Y are the enstrophy and energy of the flow with the stream function
ψ . The linearized equation of (2) around the steady state (ψ0, ω0) is

∂t ω̃ − ψ0y ∂xω̃ + ψ0x ∂yω̃ = ψ̃y∂xω0 − ψ̃x∂yω0, (6)

with

ω̃ = −�ψ̃

and

ψ̃ = 0 on ∂	.

We have the following result on nonlinear and linear stability.
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Theorem 1.1. Suppose ω0 = g (ψ0)
(
g ∈ C1

)
is a steady flow with g′ > 0.

(i)We define the functional a (φ) for φ ∈ Y by

a (φ) =
∫ ∫

	

|∇φ|2 dxdy −
∫ ∫

	

g′ (ψ0) φ
2dxdy

+
∫ maxψ0

minψ0

g′ (ρ)

∣∣∣∑nρ
i=1

∮
�i(ρ)

φ
|∇ψ0|

∣∣∣2∑nρ
i=1

∮
�i(ρ)

1
|∇ψ0|

dρ .

If

inf
‖φ‖2=1

a (φ) > 0, (7)

then the flow is nonlinearly stable in the following sense: for any ε > 0, there exists
δ > 0 such that

‖ψ (., 0) − ψ0‖X < δ ⇒ sup
t>0

‖ψ (., t) − ψ0‖X < ε,

where ψ (., t) is the solution to (2) with the initial state ψ (., 0) ∈ X. Condition (7) is
equivalent to the operator B (defined by (14)) being positive.

(ii)We define the functional b (φ) for φ ∈ Y by

b (φ) =
∫ ∫

	

|∇φ|2 dxdy −
∫ ∫

	

g′ (ψ0) φ
2dxdy

+
∫ maxψ0

minψ0

g′ (ρ)
nρ∑
i=1

∣∣∣∮�i(ρ)
φ

|∇ψ0|
∣∣∣2∮

�i(ρ)
1

|∇ψ0|
dρ .

If

inf
‖φ‖2=1

b (φ) > 0, (8)

then the flow is linearly stable in the following sense : for any ε > 0, there exists δ > 0
such that

‖ψ (., 0) − ψ0‖X < δ ⇒ sup
t>0

‖ψ (., t) − ψ0‖X < ε,

where ψ (., t) is the solution to the linearized Euler equation (6) with the initial state
ψ (., 0) ∈ X.

Note that we have b (φ) ≥ a (φ) for any φ ∈ Y and the equality only holds in the
case when each level set {ψ0 = ρ} consists of only a single curve.

Theorem 1.1(ii) also gives a criterion for spectral stability. That is, if b (φ) is positive
definite then there is no exponentially growing solution to the linearized Euler equation
(6). So the linearized operator has no unstable discrete eigenvalue. For shear flows and
rotating flows, it was proved in [12] that this criterion is also necessary, namely if b (φ) is
negative then we can find a growing mode. Now we give a new criterion for the existence
of a growing mode, for steady flows satisfying (5) on a bounded domain and without
the assumption that g′ > 0. We state the result only for the simply connected case. For
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the non-simply connected case, see Sect. 5 for some modifications. Define the operator
A0: X → L2 (	) as follows:

A0φ := −�φ − g′ (ψ0) φ + g′ (ψ0) P̃ φ, (9)

where P̃ is the orthogonal projection operator of L2 (	) onto S = ker L and L =
−∂yψ0∂x + ∂xψ0∂y is defined on H1

0 (	). We prove later that

b (φ) = (A0φ, φ) . (10)

So the fact that b (φ) is negative for some φ is equivalent to the existence of a negative
eigenvalue of A0, and condition (8) is equivalent to the operator A0 being positive.

Theorem 1.2. If A0 has an odd number of negative eigenvalues and no kernel, then
there exists a purely growing mode eλtω (with λ > 0 and ω ∈ X) to the linearized Euler
equation (6) .

It is hard to prove the existence of unstable discrete eigenvalues for the linearized
Euler operator since it is degenerate and non-elliptic. Even for the simplest shear flow
case, little has been known about sufficient conditions for the existence of unstable dis-
crete eigenvalues ([2, 13]). We can modify the proof of Theorem 1.2 to get an instability
criterion for the case when A0 has a nontrivial kernel. For the case when A0 has an even
number of negative eigenvalues and no kernel, we cannot expect to find purely growing
modes. Some new methods to find non-purely growing modes were developed in [13]
for shear flows and rotating flows.

Now we sketch the main idea for the proof of Theorem 1.2. For a growing mode(
eλtω, eλtψ

)
(with λ > 0) to the linearized Euler equation (6), (ω, φ) satisfies the

following equations

λω − ψ0y ∂xω + ψ0x ∂yω = ψy∂xω0 − ψx∂yω0, (11)

ω = −�ψ, (12)

ψ = 0 on ∂	.

Using the strategy in [12], we represent ω in terms of ψ by integrating (11) along the
fluid trajectory, then plug it into the Poisson equation (12). The resulting equation can be
written as Aλψ = 0. The operator Aλ is the minus Laplacian plus a bounded operator.
For the existence of a purely growing mode, it suffices to show that for some λ0 > 0, Aλ0

has a nontrivial kernel. The main difference from the case in [12] is that here Aλ is not
self-adjoint. This makes the analysis more difficult. We use the infinite determinant
method developed in [13]. We study the infinite determinant d (λ) of Id − exp(−Aλ) as
λ → 0+ and λ → ∞. It turns out that d (λ) is nonnegative when λ is sufficiently large.
It can be shown that d (λ) is negative as λ → 0+ under the conditions of Theorem 1.2.
These two facts imply that for some λ0 > 0 d (λ0) = 0, which implies that Aλ0 has a
nontrivial kernel.

The stability result in Theorem 1.1 is proved in the vorticity norm. This norm was
also used in [1] to prove nonlinear instability from the existence of an unstable discrete
eigenvalue of the linearized Euler operator. However, the stability problem in the L2

norm of velocity (energy norm) is quite different. So far there is no general method to
prove nonlinear stability and instability in the energy norm. In the last part of this paper,
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we construct a steady flow which is nonlinearly and linearly stable in the enstrophy
norm || · ||X but linearly unstable in the energy norm || · ||Y. This example illustrates
the importance of the norm to adopt when studying stability of incompressible inviscid
flows.

2. Stability Criteria

In this section, we prove Theorem 1.1. We need the following result from Wolansky and
Gill [17]. We state it in the following form.

Lemma 2.1 ([17]). The steady flow as in Theorem 1.1 is nonlinearly stable in X if for
some integer m, the following functional em (φ) is positive definite in Y:

em (φ) :=
∫ ∫

	

|∇φ|2 dxdy −
∫ ∫

	

g′ (ψ0) φ
2dxdy +

m∑
i=1

< ξ0
i , φ >2,

where < ., . > is the g′weighted L2 inner product, and
{
ξ0

1 , · · · , ξ0
m

}
is a g′ weighted

orthogonal basis of some m-dimensional subspace Wm of

W = {ψ ∈ Y |ψ = h (ψ0) , h being measurable on the range of ψ0} .

Denote P (Pm) the orthogonal projection operators of L2 (	) onto W (Wm) and
define the operators

B (Bm) : X → L2 (	) , (13)

Bφ (Bmφ) = −�φ − g′ (ψ0) φ + g′ (ψ0) Pφ(Pmφ). (14)

Then we readily see that em (φ) = (Bmφ, φ). Thus to show that em (φ) is positive
definite, it is equivalent to show that Bm is positive.

Lemma 2.2. If the operator B is positive, then for some integer m there exists a
m-dimensional subspace Wm ⊂ W such that the operator Bm is positive.

Proof. Let ζ1, ζ2, · · · be a complete orthogonal basis of L2 (	), and denoteWn the space
spanned by

Pζ1, P ζ2, · · · , P ζn.

Let Pn be the corresponding orthogonal projection. Then it is readily seen that Pn → P

strongly in the sense that for any φ ∈ X, Pnφ → Pφ strongly in L2 (	). If the conclu-
sion of the lemma is not true, then for each n ∈ N we can find λn ≤ 0 and ‖φn‖2 = 1
such that

Bnφn = λnφn. (15)

Let λn → λ0 ≤ 0. Then it is obvious that ‖φn‖H2(	) ≤ C (independent of n). So after
taking some subsequence, we have φn → φ0 strongly in L2 (	) with ‖φ0‖2 = 1. Since
Bn → B strongly, we have Bnφn → Bφ0 weakly. So taking the limit in (15), we have
Bφ0 = λ0φ0 which is a contradiction to the positivity of B. ��
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Lemma 2.3. For any regular point (x, y) ∈ 	 of the function ψ0, let ρ = ψ0 (x, y)

and (x, y) ∈ �i (ρ) , where {ψ0 = ρ} = ∪nρ
i=1�i (ρ). For any φ ∈ Y, we define two

functions φ1, φ2 ∈ L2 (	) in the following way:

φ1 (x, y) =
∑nρ

i=1

∮
�i(ρ)

φ
|∇ψ0|∑nρ

i=1

∮
�i(ρ)

1
|∇ψ0|

(16)

and

φ2 (x, y) =
∮
�i(ρ)

φ
|∇ψ0|∮

�i(ρ)
1

|∇ψ0|
. (17)

Then we have Pφ = φ1 and P̃ φ = φ2 in the L2 sense. Here P̃ is the projection operator
of L2 (	) onto

S = ker
(−∂yψ0∂x + ∂xψ0∂y

)
.

Proof. To show Pφ = φ1, we take any ξ = h (ψ0) ∈ W . Then

(φ − φ1, ξ) =
∫ ∫

	

(φ − φ1) h (ψ0) dxdy

=
∫ maxψ0

minψ0

h (ρ)

(∫
{ψ0=ρ}

φ − φ1

|∇ψ0|
)
dρ (by the co-area formula)

=
∫ maxψ0

minψ0

h (ρ)

( nρ∑
i=1

∮
�i(ρ)

φ

|∇ψ0| − φ1 (ρ) |ψ0=ρ

nρ∑
i=1

∮
�i(ρ)

1

|∇ψ0|

)
dρ

= 0.

So φ − φ1 ∈ W⊥. Since clearly φ1 ∈ W, we have Pφ = φ1.

To show that P̃ φ = φ2, we take any η ∈ S. Then

(φ − φ2, η) =
∫ ∫

	

(φ − φ2) ηdxdy

=
∫ maxψ0

minψ0

nρ∑
i=1

(∮
�i(ρ)

(φ − φ2) η

|∇ψ0|
)
dρ

=
∫ maxψ0

minψ0

nρ∑
i=1

η|�i(ρ)

(∮
�i(ρ)

φ

|∇ψ0| − φ2|�i(ρ)

∮
�i(ρ)

1

|∇ψ0|
)
dρ

(since η, φ2 take constant values on each �i (ρ) )

= 0.

So φ − φ2 ∈ S⊥. Since φ2 ∈ S, we have P̃ φ = φ2. ��
Now Theorem 1.1(i) follows from the above three lemmas. By Lemmas 2.2 and 2.3,

if the condition (7) is satisfied, then there exists some integer m such that Bm is positive.
Then by Lemma 2.1, the steady flow is nonlinearly stable. Theorem 1.1(ii) can be proved
in the same way.
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Corollary 2.1. Under assumption (8), there is no unstable discrete eigenvalue for the
linearized Euler operator.

Proof. This is a consequence ofTheorem 1.1(ii). Here we give a direct proof of it. First we
notice that if (ω,ψ) is a solution to (6), then for any ξ ∈ S = ker

(−∂yψ0∂x + ∂xψ0∂y
)
,

the following two functionals

E (ω,ψ) = ∫ ∫
	

( |ω|2
g′(ψ0)

− |∇ψ |2
)
dxdy

Mξ (ω) = ∫ ∫
	
ωξdxdy

are conserved. This can be checked by a straightforward computation.
If there exists a growing mode

(
eλtω (x, y) , eλtψ (x, y)

)
to (6) with Re λ > 0, then

E
(
eλtω, eλtψ

) = e2 Re λtE (ω,ψ) ,Mg

(
eλtω

) = eλtMg (ω)

are independent of t . Thus it follows that

E (ω,ψ) = Mξ (ω) = 0

for any ξ ∈ S.
Noticing that ∫ ∫

	

|∇ψ |2 dxdy =
∫ ∫

	

ψω∗dxdy,

where ω∗ is the complex conjugate of ω, we have

0 = E (ω,ψ) =
∫ ∫

	

(
|ω|2

g′ (ψ0)
− 2ψω∗ + |∇ψ |2

)
dxdy

=
∫ ∫

	



∣∣∣∣∣ ω√

g′ (ψ0)
− ψ

√
g′ (ψ0)

∣∣∣∣∣
2

− g′ (ψ0) |ψ |2 + |∇ψ |2

 dxdy

=
∫ ∫

	

∣∣∣∣∣ ω√
g′ (ψ0)

−
(

1 − P̃
)
ψ
√
g′ (ψ0)

∣∣∣∣∣
2

− g′ (ψ0) |ψ |2 + |∇ψ |2

+ g′ (ψ0)

∣∣∣P̃ψ

∣∣∣2 dxdy

≥
∫ ∫

	

|∇ψ |2 − g′ (ψ0) |ψ |2 + g′ (ψ0)

∣∣∣P̃ψ

∣∣∣2 dxdy.
So if the last quadratic form in the above is positive, we get a contradiction. This proves
the conclusion. Here for the equality in the third line above, we use the fact that

ω√
g′ (ψ0)

∈ S⊥.

��
Remark 2.1. The two conditions (7) and (8) are the same if and only if {ψ0 = ρ} consists
of only one closed curve for any ρ. We shall prove that in this case the linearized Euler
operator has no growing modes.
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We consider the steady flow with the stream function ψ0 defined on a simply con-
nected domain. Here ψ0 satisfies the following elliptic equation:

−�ψ0 = g (ψ0) , in 	

ψ0 = 0, on ∂	.

Lemma 2.4. If {ψ0 = ρ} consists of only one closed curve for any

ρ ∈ (minψ0,maxψ0),

then there are no exponentially growing modes to the linearized Euler equation (6).

Proof. First we define the generalized polar coordinates (r, θ) in the following way. Let
l be the arc length variable on the stream line {ψ0 = ρ} and define

r = ψ0 (x, y) ,
2π

v (r)
=
∮

{ψ0=r}
1

|∇ψ0| , θ = v (r)

∫ l

0

dl
′

|∇ψ0| .

Then minψ0 ≤ r ≤ maxψ0, 0 ≤ θ ≤ 2π . If eλtψ (Re λ > 0) is a growing mode to
(6), then ψ satisfies (see Lemma 3.1)

−�ψ − g′ (ψ0) ψ + g′ (ψ0) λ

∫ 0

−∞
eλsψ (X (s; x, y) , Y (s; x, y)) ds = 0. (18)

Here (X (s; x, y) , Y (s; x, y)) is the solution of the characteristic equation as defined in
(22). In the polar coordinates (r, θ) , the characteristic equation becomes{

ṙ = 0,
θ̇ = −v (r) .

Let

ψ (r, θ) =
+∞∑
−∞

ψk (r) e
ikθ ,

then (18) becomes

−�ψ − g′ (ψ0) ψ + g′ (ψ0)

+∞∑
−∞

λ

λ − ikv (r)
ψk (r) e

ikθ = 0. (19)

Taking the inner product of (19) with ψ∗, we have∫ ∫
	

|∇ψ |2 dxdy +
∫ maxψ0

minψ0

1

v (r)
g′ (r)

+∞∑
−∞

ikv (r)

a + bi − ikv (r)
|ψk (r)|2 dr = 0,

(20)

where λ = a + bi (a > 0) . Taking the imaginary part of (20), we get∫ maxψ0

minψ0

1

v (r)
g′ (r)

+∞∑
−∞

akv (r)

a2 + (b − kv (r))2 dr = 0.

So a = 0 which is a contradiction. Thus there are no growing modes to the linearized
Euler equation (6).
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3. Instability Criterion

We divide the proof of Theorem 1.2 into several steps.

3.1. Dispersion operators. In this part, we introduce dispersion operators Aλ and study
their basic properties.

Definition 3.1. The dispersion operators are a family of operators Aλ

(
λ ∈ R+) : X →

L2 (	). Here

Aλψ := −�ψ − g′ (ψ0) ψ + g′ (ψ0) λ

∫ 0

−∞
eλsψ (X (s; x, y) , Y (s; x, y)) ds, (21)

where (X (s; x, y) , Y (s; x, y)) is the solution to the characteristic equation{
Ẋ (s) = −∂yψ0(X (s) , Y (s))

Ẏ (s) = ∂xψ0(X (s) , Y (s)),
(22)

with the initial value X (0) = x, Y (0) = y.

Remark 3.1. Aλ is well-defined. Denoting

Kλψ := −g′ (ψ0) ψ + g′ (ψ0) λ

∫ 0

−∞
eλsψ (X (s; x, y) , Y (s; x, y)) ds, (23)

then we have

‖Kλψ‖2 ≤ 2
∥∥g′ (ψ0)

∥∥∞ ‖ψ‖2 . (24)

Indeed, for any function φ ∈ L2 (	) , we have∣∣∣∣
∫ ∫

	

∫ 0

−∞
λeλsg′ (ψ0) φ(x, y)ψ (X (s; x, y) , Y (s; x, y)) dsdxdy

∣∣∣∣
≤
(∫ ∫

	

∫ 0

−∞
λeλs |ψ |2 ∣∣g′ (ψ0)

∣∣ (X (s; x, y) , Y (s; x, y))dsdxdy
) 1

2

·
(∫ ∫

	

∫ 0

−∞
λeλs |φ|2 ∣∣g′ (ψ0)

∣∣ dsdxdy)
1
2

≤
(∫ 0

−∞
λeλs

∥∥g′ (ψ0)
∥∥∞

∫ ∫
	

|ψ |2 dxds
) 1

2

·
(∫ 0

−∞
λeλs

∥∥g′ (ψ0)
∥∥∞

∫ ∫
	

|φ|2 dxds
) 1

2

= ∥∥g′ (ψ0)
∥∥∞ ‖φ‖2 ‖ψ‖2 .

Thus (24) follows. Here we used the fact that the Jacobian of the mapping

(x, y) → (X (s; x, y) , Y (s; x, y))
is one.
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The following lemma indicates the reason why we introduce Aλ.

Lemma 3.1. Let λ > 0, then there exists a nontrivial solution(
eλtω (x, y) , eλtψ (x, y)

)
to (6) withω ∈ C1 andψ ∈ X, if and only if there exists someψ ∈ X such thatAλψ = 0.
In this case

ω = g′ (ψ0) ψ − g′ (ψ0) λ

∫ 0

−∞
eλsψ (X (s; x, y) , Y (s; x, y)) ds. (25)

Proof. If
(
eλtω (x, y) , eλtψ (x, y)

)
is a solution to (6), then (ω,ψ) satisfies (11). We

can rewrite (11) at (X (s) , Y (s)) as

d

ds
(eλsω ((X (s) , Y (s)))) = eλs

(
ψy∂xω0 − ψx∂yω0

)
(X (s) , Y (s))

= eλsg′ (ψ0)
(−∂yψ0ψx + ∂xψ0ψy

)
(X (s) , Y (s))

= eλsg′ (ψ0)
dψ

ds
(X (s) , Y (s)) .

Integrating above from −∞ to 0, we get

ω (x, y) = g′ (ψ0)
∫ 0
−∞ eλs

dψ
ds

(X (s; x, y) , Y (s; x, y)) ds
= g′ (ψ0) ψ − g′ (ψ0) λ

∫ 0
−∞ eλsψ (X (s; x, y) , Y (s; x, y)) ds.

Plugging the above equality into the Poisson equation, we get

−�ψ = g′ (ψ0) ψ − g′ (ψ0) λ

∫ 0

−∞
eλsψ (X (s; x, y) , Y (s; x, y)) ds,

which is exactly Aλψ = 0.
Conversely, if ω ∈ C1 and satisfies (25), we can show that it satisfies (11) by the

same argument as in [12]. ��
In the following, we show that (ω,ψ) is a weak solution to (11). Moreover ω is

differentiable almost everywhere.

Lemma 3.2. Givenψ ∈ Y satisfyingAλψ = 0 andω (x, y) defined by (25), then (ψ, ω)
is a weak solution of (11). Moreover ψ is differentiable besides the critical set, which
is the set of all points (x, y) such that ψ0 (x, y) is equal to the critical value at a saddle
point. So according to Lemma 3.1 (ψ, ω) satisfies (11) almost everywhere in the classical
sense.

Proof. To show that (ψ, ω) is a weak solution of (11), we take any φ ∈ C1
0 (	), then∫ ∫

	

(
ψ0y ∂xφ − ψ0x ∂yφ

)
ωdxdy

= −
∫ ∫

	

(
ψ0y ∂xφ − ψ0x ∂yφ

)
g′ (ψ0)

∫ 0

−∞
λeλsψ(X(s),Y (s) )ds dxdy

+
∫ ∫

	

(
ψ0y ∂xφ − ψ0x ∂yφ

)
g′ (ψ0) ψ (x, y) dxdy

= I + II.
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For the first term, we have

I = −
∫ 0

−∞
λeλs

∫ ∫
	

g′ (ψ0)
(
ψ0y ∂xφ − ψ0x ∂yφ

)
(X(−s),Y (−s)) ψ (x, y) dxdyds

=
∫ ∫

	

g′ (ψ0)

∫ 0

−∞
λeλs

(
− d

ds
φ (X(−s),Y (−s))

)
dsψ (x, y) dxdy

=
∫ ∫

	

g′ (ψ0)

(
−λφ (x, y) +

∫ 0

−∞
λ2eλsφ (X(−s),Y (−s)) ds

)
ψ (x, y) dxdy

= −
∫ ∫

	

g′ (ψ0) λφ (x, y)ψ (x, y) dxdy

+
∫ 0

−∞
λ2eλs

∫ ∫
	

g′ (ψ0) φ (X(−s),Y (−s)) ψ (x, y) dxdy

= λ

∫ ∫
	

(
−g′ (ψ0) ψ + g′ (ψ0) λ

∫ 0

−∞
eλsψ (X (s; x, y) , Y (s; x, y)) ds

)
×φ (x, y) dxdy

= −λ

∫ ∫
	

ωφdxdy.

Here in the first and fourth equality we change the variable

(x, y) → (X (s; x, y) , Y (s; x, y)) .
By integration by parts

II =
∫ ∫

	

(
ψ0y ∂xφ − ψ0x ∂yφ

)
g′ (ψ0) ψ (x, y) dxdy

=
∫ ∫

	

φ
(−ψ0y ∂x + ψ0x ∂y

) (
g′ (ψ0) ψ (x, y)

)
dxdy

=
∫ ∫

	

g′ (ψ0)
(−ψ0y ∂xψ + ψ0x ∂yψ

)
φdxdy

=
∫ ∫

	

(
ψy∂xω0 − ψx∂yω0

)
φdxdy.

So∫ ∫
	

(
ψ0y ∂xφ − ψ0x ∂yφ

)
ωdxdy = I + II

=
∫ ∫

	

(−λω + ψy∂xω0 − ψx∂yω0
)
φdxdy

which means that (ψ, ω) is a weak solution of (11).
Taking the derivative ∂x on the right hand side of (25), we get the expression

∂x
(
g′ (ψ0) ψ (x, y)

)− ∂x
(
g′ (ψ0)

) ∫ 0

−∞
λeλsψ (X (s) , Y (s)) ds − g′ (ψ0)

×
∫ 0

−∞
λeλs

(
∂xψ (X (s) , Y (s))

∂X(s; x, y)
∂x

+ ∂yψ (X (s) , Y (s))
∂Y (s; x, y)

∂x

)
ds.
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If (x, y) is not in the critical set, then the fluid particle with the initial position (x, y)

has a periodic trajectory. So ∂X(s;x,y)
∂x

and ∂Y (s;x,y)
∂x

can only have linear growth and the
third term above is finite. Since the other terms are also finite, we prove that ω defined
by (25) is differentiable if (x, y) is not in the critical set. ��

Note that in [1], it was shown that if the growth rate Re λ is greater than the Liapunov
exponent of the steady flow, then the growing mode ω ∈ H1 (	) .

Next we study some properties of Aλ.

Lemma 3.3. Aλ is a densely defined closed operator and for any ξ in its resolvent set
ρ (Aλ) , (ξ − Aλ)

−1 is a trace class operator. The eigenvalues of Aλ appear in complex
conjugate pairs and they are all discrete with finite multiplicity.

Proof. Denote

A = −�

with D (A) = X.Then clearly (ξ − A)−1 is a trace class operator for any ξ ∈ ρ (A).
We have ∥∥∥(A + l)−1

∥∥∥ ≤ 1

l

for any l > 0. By Remark 3.1, Aλ − A = Kλ are uniformly bounded operators with
‖Kλ‖ ≤ 2

∥∥g′ (ψ0)
∥∥∞. We have

Aλ + l = A + l + Kλ =
(

1 + Kλ (A + l)−1
)
(A + l) .

So if 2
∥∥g′ (ψ0)

∥∥∞ < l, then −l ∈ ρ (Aλ) and

(Aλ + l)−1 = (A + l)−1
(

1 + Kλ (A + l)−1
)−1

.

This is the multiplication of a bounded operator with a trace class operator, so it is also
in trace class. For any ξ ∈ ρ (Aλ) , from formula

(ξ − Aλ)
−1 = (−l − Aλ)

−1 + (ξ + l) (ξ − Aλ)
−1 (−l − Aλ)

−1 ,

we can see that (ξ − Aλ)
−1 is in trace class.

Now the conclusions about the eigenvalues ofAλ follow from the trace class property
just proved and the fact that Aλ commutes with complex conjugation. ��

Lemma 3.4. There exists 
0 > 0 such that if λ > 
0 then Aλ has no negative eigen-
values.

Proof. First we show that for all ψ ∈ H 1
0 (	) ,

‖Kλψ‖2 ≤ |ω0|C1

λ
‖∇ψ‖2 .
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In fact, for any φ ∈ L2 (	),

|(Kλψ, φ)| ≤
∫ ∫

	

∫ 0

−∞
eλs

∣∣ψy∂xω0 − ψx∂yω0
∣∣ (X (s) , Y (s)) . |φ| dxdyds

≤ |ω0|C1

∫ 0

−∞
eλs

∫ ∫
	

|∇ψ | (X (s) , Y (s)) |φ| dxdyds

≤ |ω0|C1

∫ 0

−∞
eλs

(∫ ∫
	

|∇ψ |2 (X (s) , Y (s)) dxdy

) 1
2

(∫ ∫
	

|φ|2 dxdy
) 1

2

ds = |ω0|C1
1

λ
‖∇ψ‖2 ‖φ‖2 .

Suppose there exists some negative eigenvalue for Aλ, that is

−�ψ + Kλψ = kψ, (26)

for some k < 0, 0 �= ψ ∈ H 1
0 (	) . By Poincaré’s inequality, ‖ψ‖2 ≤ c0 ‖∇ψ‖2 for

some constant c0. So taking the inner product of (26) with φ, we have

0 > (kψ,ψ) = ‖∇ψ‖2
2 + (Kλψ,ψ)

≥ ‖∇ψ‖2
2 − ‖Kλψ‖2 ‖ψ‖2

≥ ‖∇ψ‖2
2 − c0 |ω0|C1

λ
‖∇ψ‖2

2

> 0,

which is a contradiction if λ > 
0 = c0 |ω0|C1 . ��

3.2. Infinite determinant and an abstract theorem. In this part, we prove the following
abstract result using the infinite determinant method developed in [13].

Theorem 3.1. Consider a continuous family of operators Aλ : H → L,
Aλ = A + Bλ,

(
λ ∈ R+) .

We assume that:

(I) Bλ are uniformly bounded operators and Aλ commute with complex conjugation.
(II) The self-adjoint operator −A generates a generalized parabolic semigroup, that

is, exp (−tA) is in the trace class and A exp (−tA) is bounded. Furthermore, the
embedding i : (H, ‖.‖A) → (L, ‖.‖) is compact. Here ‖.‖A is the graph norm of
operator A and ‖.‖ is the norm in L.

(III) When λ is sufficiently large, Aλ has no negative eigenvalue.
(IV) When λ tends to 0, Aλ tends to A0 strongly in the sense that: for any u ∈ H,

Aλu → A0u and A∗
λu → A∗

0u strongly, as λ → 0 + (27)

for any function u ∈ H.

Then if A0 has an odd number of negative eigenvalues and no kernel, there must exist
some λ0 > 0 such that Aλ0 has a nontrivial kernel.
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Note that here the condition (IV) is weaker than that in [13], where it is required that

‖(Aλ − A0) φ‖ ≤ c (λ) (‖Aφ‖ + ‖φ‖) , (28)

for some function c (λ) approaching 0 as λ → 0+. Condition (28) can not be proved for
the case of Theorem 1.2, and only (27) is available.

Proof. The line of proof follows that of in [13]. So we just sketch it and indicate some
differences caused by the weaker assumption (IV). Denote all the distinct eigenvalues
of Aλ (arranged with non-decreasing real parts) by

µ1 (λ) , µ2 (λ) , · · · , µk (λ) , · · · ,
with multiplicities n1, n2, · · · , nk, · · · . We define

d (λ) =
∞∏
k=1

(1 − exp (−µk (λ)))
nk ,

which is the infinite determinant of the operator exp (−Aλ) . By assumptions (I) (II),
exp (−Aλ) is a trace class operator. Since µk (λ) appears in complex conjugate pairs,
d (λ) is a finite real number. From the definition of d (λ), we know that the sign of d (λ)
is determined by the number of negative eigenvalues of Aλ. If this number is odd, then
d (λ) is negative and d (λ) is positive if this number is even. Here we assume that Aλ

has no kernel, since otherwise we have already found the growing mode. The main idea
is to keep track of the sign change of d (λ), especially as λ tends to zero and infinity. By
assumption (III) , d (λ) is nonnegative when λ is large. So if d (λ) is negative for small
λ, by the continuity argument as that of [13] we conclude that there exists some λ0 such
that d (λ0) = 0, which implies the singularity of Aλ0 . We show that when λ is small
enough, the sign of d (λ) can be determined by the number of negative eigenvalues of
A0. If the number is odd as assumed in the theorem, then d (λ) is negative for small λ.
So the key issue is to show that the negative spectrum of A0 is stable when perturbed
to Aλ. Since only the weaker convergence (27) is available, the regular perturbation
theory as that of in [13] is not applicable. We deal with this issue by using ideas from
the asymptotic perturbation theory for Schrödinger operators (see [7]).

First we show the following:

(i) For any eigenvalue µ (λ) of Aλ, we have |Im µ (λ)| < M (here M is such that
‖Bλ‖ < M).

(ii) Let b > 0 be such that there are no eigenvalues of A0 with real part b. There exists
positive ε1, δ1 such that if λ < δ1, then for any eigenvalue µ (λ) of Aλ, we have
|Reµ (λ) − b| > ε1.

(iii) Define

P (A) =
{
z|Rk (z) = (z − Aλ)

−1 exists and is uniformly bounded for small λ
}

and P (A∗) is defined in a similar way. Then we have

ρ (A0) ⊂ P (A) , (ρ (A0))
∗ ⊂ P

(
A∗) .
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The proof of (i) is obvious by our assumptions.
Now we prove (ii): Supposing it were false, we could find a sequence λn → 0, µn

being an eigenvalue of Aλn, and Reµn → b. Let un be the corresponding eigenfunction
and ‖un‖ = 1.By (i), {µn} is a bounded sequence. We can find a subsequenceµnk → µ0
and Reµ0 = b. For convenience, we still denote the subsequence by {µn} . It is easy
to see that ‖un‖A ≤ C (independent of n). So by assumption (II), there exists some u0
with un → u0 strongly in L and ‖u0‖ = 1. Moreover, Aλnun → A0u0 weakly in L. To
see that, we take any function v ∈ L, then

lim
n→∞

(
Aλnun, v

) = lim
n→∞

(
un,A

∗
λn
v
) = (

u0, A
∗
0v
)

(by assumption (IV))

= (A0u0, v) .

Combining the above with Aλnun = µnu0, we get A0u0 = µ0u0 in the limit n → ∞.
This is a contradiction since Reµ0 = b.

To prove (iii), we note that z ∈ P (A) is equivalent to the following: there exists some
ε > 0 such that

‖(z − Aλ) u‖ ≥ ε, for small λ and any u ∈ H. (29)

Indeed assuming z /∈ P (A), we have∥∥(z − Aλk

)
uk
∥∥ → 0

for some sequence {λk} → 0 and uk ∈ H with ‖uk‖ = 1. By the same argument as
in the proof of (ii), we have (z − A0) u0 = 0 for some nontrivial function u0. This is a
contradiction. The proof for P (A∗) is the same since

(ρ (A0))
∗ = ρ

(
A∗

0

)
.

This proves (i)–(iii).
Let 
 be the minimum of the real part of eigenvalues of Aλ. The number 
 is finite

since Aλ are uniformly bounded from below. Define

D =
{
(x, y) |
 − 1 < x < −ε1

2
+ b, − M < y < M

}

and � = ∂D. By taking M, 
 large, we can assume � ⊂ ρ (A0). By claim (ii) just
proved, if λ < δ1 then all eigenvalues of Aλ with negative real part lie in D. Define the
Riesz projection as

Pλ = 1

2πi

∮
�

Rλ (k) dk (30)

and R (Pλ) its range. Similarly we define

P0 = 1

2πi

∮
�

R0 (k) dk.

Here the �-integral is in the counterclockwise sense.
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Now we show that

dim (R(Pλ)) = dim (R(P0)) , if λ is small enough, (31)

which together with (34) implies that

‖Pλ − P0‖ → 0 as λ → 0 (32)

(see [8, Lemma 1.21 of Chapter VIII]).
Let us prove (31). Since � ⊂ ρ (A0) is compact, by claim (iii) above there exists

δ > 0 such that if λ < δ and k ∈ �, then

‖Rλ (k)‖ ,
∥∥R∗

λ (k)
∥∥ ≤ C1 (33)

for some constant C1. It follows that Rλ (k) , R
∗
λ (k) are strongly continuous at λ = 0.

Indeed for any u ∈ H, we have

‖(Rλ (k) − R0 (k)) u‖ = ‖Rλ (k) (Aλ − A0) u‖
≤ C1 ‖(Aλ − A0) u‖ → 0 (by (27)).

The strong continuity of R∗
λ (k) can be shown in the same way. So we have

Pλ → P0 and P ∗
λ → P ∗

0 strongly. (34)

Therefore dim Pλ ≥ dim P0 for small λ. To show (31), we only need to prove

dim Pλ ≤ dim P0, for small λ. (35)

Supposing otherwise, then we can find a sequence {λn} → 0 and {un} ⊂ H with
‖un‖ = 1, such that

Pλnun = un and P0un = 0. (36)

By passing to a subsequence we can assume that un → u0 weakly. By (27), we have
Pλnun → P0u0 weakly. So passing to the limit in (36), we have

P0u0 = u0 and P0u0 = 0,

which implies that u0 = 0 and un → 0 weakly. But by (33) and the definition of
Pλ (30), ∥∥Aλnun

∥∥ = ∥∥AλnPλnun
∥∥ ≤ ∥∥AλnPλn

∥∥ ≤ const, for small λn.

This implies the bound ‖un‖A ≤ const, from which we deduce that un → 0 strongly in
L by assumption (II). This is a contradiction and ends the proof of (31).

Let µ1, µ2, · · · , µN be all the distinct eigenvalues of A0 in D. Let mk be the multi-
plicity of µk . For each µk , we can pick a small ball Bk = B (µk; rk), inside which µk

is the isolated eigenvalue of A0. And by taking rk small enough we can ensure that Bk

does not intersect with the imaginary axis if Reµk �= 0, and Bk does not intersect with
the real axis if Reµk = 0. We also assume {Bk} does intersect with �. The disks {Bk}
are disjoint and for the conjugate of µk we take the disk with the same radius. Then if
λ is small enough, by the same proof as that of (31), there are exactly mk eigenvalues
(counting multiplicity) of Aλ in each Bk . Since dim (R (Pλ)) = dim

(
R(Pλ0)

)
, these

are all the eigenvalues of Aλ in D. By our construction of Bk , if we multiply all the
eigenvalues of Aλ contained in them, the sign is the same as that of A0. Thus in the
definition of d (λ) the product corresponding to all the eigenvalue of Aλ with real part
smaller than b has the same sign as that of A0. Thus it is negative if λ is small. Since the
other part of the product is always positive, we have proved that d (λ) is negative when
λ is small. This finishes the proof of the theorem. ��
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Remark 3.2. If A0 has a kernel, we denote by e (A0) the number of null vectors in ker A0
perturbed to be negative eigenfunctions of Aλ as λ > 0 is small and n (A0) the num-
ber of negative eigenvalues of A0. Then the conclusion of the theorem still holds if
n (A0) + e (A0) is odd. The proof is the same as above.

3.3. Proof of Theorem 1.2. Now we use the abstract theorem above to prove Theorem
1.2. The operator Aλ is defined by (21) with A = −�, Bλ = Kλ, H = X, L = L2 (	) .

Now we check the assumptions in Theorem 3.1. Assumption (I) is proved in Remark 3.1.
Assumption (II) is standard for the Laplacian defined in a bounded domain. Assumption
(III) is proved in Lemma 3.4. Moreover A0 has an odd number of negative eigenvalues
and no kernel as assumed in Theorem 1.2. So we only need to prove assumption (IV).
This is in the following lemma.

Lemma 3.5. For any φ ∈ X,

Aλφ → A0φ and A∗
λφ → A0φ strongly in L2 (	) , as λ → 0 + .

Proof. It is easy to show that

A∗
λψ := −�ψ − g′ (ψ0) ψ + g′ (ψ0) λ

∫ 0

−∞
eλsψ (X (−s; x, y) ,Y (−s; x, y)) ds,

where (X (s; x, y) , Y (s; x, y)) is the solution to the characteristic equation (22). So we
only need to show the strong convergence of Aλ since the proof for A∗

λ is the same.
For any φ ∈ X, denote

φλ = g′ (ψ0) λ

∫ 0

−∞
eλsφ (X (s; x, y) , Y (s; x, y)) ds

and φ0 = g′ (ψ0) P̃ φ, where P̃ is defined in the introduction and given by the formula
(17). We have

‖Aλφ − A0φ‖2
2 = (Aλφ − A0φ,Aλφ − A0φ)

= (φλ − φ0, φλ − φ0)

= (φλ, φλ) − 2 (φλ, φ0) + (φ0, φ0) .

We analyze the first term

(φλ, φλ) =
∫ ∫

	

(
g′ (ψ0)

)2
λ2
∫ 0

−∞

∫ 0

−∞
eλseλt

·φ (X (s; x, y) , Y (s; x, y)) φ (X (t; x, y) ,Y (t; x, y)) dsdtdxdy
=
∫ ∫

	

fλ (x, y) dxdy,

where

fλ (x, y) = (
g′ (ψ0)

)2
λ2
∫ 0

−∞

∫ 0

−∞
eλseλtφ (X (s; x, y) , Y (s; x, y))

·φ (X (t; x, y) ,Y (t; x, y)) dsdt.
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We claim the following:

(i) As λ → 0+, fλ (x, y) → φ2
0 almost everywhere.

(ii) {fλ}
(
λ ∈ R+) are uniformly integrable.

Proof of claim (i). First we study the characteristic equation (22) for the fluid particle.
For each initial position (x, y) not on the critical level sets, we know that the trajectory
(X (s; x, y) , Y (s; x, y)) always lies in some component of {ψ0 = ψ0 (x, y)} which is a
closed curve denoted by �. If we denote by γ the arc length variable of � and by L (�)

the length, then the particle has a periodic trajectory according to the law

dγ (s)

ds
= |∇ψ0| (X (s; x, y) , Y (s; x, y))

with the period

T (�) =
∫ L(�)

0

dγ

|∇ψ0| .

In the following we identify the point (X (s; x, y) , Y (s; x, y)) with its arc length var-
iable γ (s). We recall the following fact proved in [12]: For any T - periodic function
A (x) ∈ L1 (0, T ) ,

lim
λ→0+

∫ 0

−∞
esA

( s
λ

)
ds = 1

T

∫ T

0
A (s) ds .

Using this, we have

lim
λ→0+

λ

∫ 0

−∞
eλsφ (X (s; x, y) , Y (s; x, y)) ds

= lim
λ→0+

∫ 0

−∞
esφ

(
X
( s
λ

; x, y
)
,Y

( s
λ

; x, y
))

ds

= 1

T (�)

∫ T (�)

0
φ (X (s; x, y) , Y (s; x, y)) ds

= 1

T (�)

∫ L(�)

0

φ (γ ) dγ

|∇ψ0|

=
∮
�

φ
|∇ψ0|∮

�
1

|∇ψ0|
.

The last expression is exactly the formula (17) for P̃ φ, so claim (i) is proved.

Proof of claim (ii). For any δ > 0, there exists ε0 > 0, such that for any set B ⊂ 	 with
|B| < ε0, we have

∫ ∫
B

|ψ |2 dxdy < δ.
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Then∫ ∫
B

|fλ (x, y)| dxdy

≤ ∣∣g′ (ψ0)
∣∣2∞

∫ 0

−∞

∫ 0

−∞
λ2eλseλt

·
∫ ∫

B

|φ (X (s; x, y) , Y (s; x, y)) φ (X (t; x, y) ,Y (t; x, y))| dxdydsdt

≤ ∣∣g′(ψ0)
∣∣2∞

∫ 0

−∞

∫ 0

−∞
λ2eλseλt

(∫ ∫
B

|φ (X (s; x, y) , Y (s; x, y))|2 dxdy
) 1

2

·
(∫ ∫

B

|φ (X (t; x, y) ,Y (t; x, y))|2 dxdy
) 1

2

dsdt

= ∣∣g′ (ψ0)
∣∣2∞

∫ 0

−∞

∫ 0

−∞
λ2eλseλt

(∫ ∫
Cs(B)

|φ (x, y)|2 dxdy
) 1

2

·
(∫ ∫

Ct (B)

|φ (x, y)|2 dxdy
) 1

2

dsdt

≤ ∣∣g′ (ψ0)
∣∣2∞

∫ 0

−∞

∫ 0

−∞
λ2eλseλt δ2dsdt = ∣∣g′ (ψ0)

∣∣2∞ δ2.

We thus prove claim (ii). Here Cs denotes the mapping

(x, y) → (X (s; x, y) , Y (s; x, y))

and we use the fact |Cs (B)| = |B| < ε0.

Now by claims (i), (ii) and the Dominant Convergence Theorem, we have

lim
λ→0+ (φλ, φλ) = lim

λ→0+

∫ ∫
	

fλ (x, y) dxdy

=
∫ ∫

	

lim
λ→0+

fλ (x, y) dxdy

=
∫ ∫

	

φ2
0 = (φ0, φ0) .

By the same proof we have

lim
λ→0+ (φλ, φ0) = (φ0, φ0) .

So

lim
λ→0+

‖Aλφ − A0φ‖2
2 = lim

λ→0+ (φλ, φλ) − 2 (φλ, φ0) + (φ0, φ0)

= (φ0, φ0) − 2 (φ0, φ0) + (φ0, φ0) = 0.

��
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4. An Enstrophy-Stable but Energy-Unstable Steady Flow

In this section, we consider a bounded simply connected domain 	 ⊂ R2 with a smooth
boundary ∂	. Let λ0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · be all the eigenvalues of −� with
Dirichlet boundary condition. Denote φ0, φ1, · · · , φn, · · · the corresponding normal-
ized orthogonal eigenfunctions. We show that φ0 is a nonlinearly stable steady state of
the 2-D incompressible Euler equation (2) in the L2-norm of the vorticity (enstrophy).
This can be deduced from Theorem 1.1 (i). But in the following we give a direct proof.
Denote ω0 = −λ0φ0.

Theorem 4.1. The steady flow with the stream function φ0 is nonlinearly stable in the
following sense: for any ε > 0, there exists some δ > 0 such that

‖ω (., 0) − ω0‖L2 < δ �⇒ sup
t>0

‖ω (., t) − ω0‖L2 < ε.

Proof. For ψ ∈ X, we define the following energy-Casimir functional:

H (ψ) = 1

2

∫ ∫
	

(
− |∇ψ |2 + 1

λ0
|ω|2

)
dxdy.

Then

H (ψ) − H (φ0) =
∫ ∫

	

−1

2
|∇ (ψ − φ0)|2 − Re ∇ (ψ − φ0) .∇φ0

+ 1

2λ0
|ω − ω0|2 + 1

λ0
Re (ω − ω0) ω0

=
∫ ∫

	

−1

2
|∇ (ψ − φ0)|2 + 1

2λ0
|ω − ω0|2

+ Re (ω − ω0)

(
1

λ0
ω0 + φ0

)

=
∫ ∫

	

−1

2
|∇ (ψ − φ0)|2 + 1

2λ0
|ω − ω0|2

=
∫ ∫

	

1

2
|∇ (ψ − φ0)|2 − |∇ (ψ − φ0)|2 + 1

2λ0
|ω − ω0|2

=
∫ ∫

	

1

2
|∇ (ψ − φ0)|2 + (ω − ω0) (ψ − φ0)

∗ + 1

2λ0
|ω − ω0|2

=
∫ ∫

	

1

2
|∇ (ψ − φ0)|2 + 1

2λ0
|(ω − ω0) + λ0 (ψ − φ0)|2

−1

2
λ0 |ψ − φ0|2 .

So if we denote

ψ − φ0 =
∞∑
i=0

aiφi ,

then

ω − ω0 = �(ψ − φ0) = −
∞∑
i=0

λiaiφi



Some Stability and Instability Criteria for Ideal Plane Flows 21

and

H (ψ) − H (φ0) ≥ 1

2λ0
|(ω − ω0) + λ0 (ψ − φ0)|2

= 1

2λ0

∞∑
i=1

(λi − λ0)
2 |ai |2

≥ 1

2λ0

(
1 − λ0

λ1

)2 ∞∑
i=1

λ2
i |ai |2 .

Thus if

H (ψ) − H (φ0) < b,

then
∞∑
i=1

λ2
i |ai |2 <

2bλ0(
1 − λ0

λ1

)2 . (37)

Let

C (ω) =
∫ ∫

	

|ω|2 dxdy,

then

C (ω) − C (ω0) =
∫ ∫

	

|ω − ω0|2 + 2 Re (ω − ω0) ω0 (38)

= λ2
0

(
|a0|2 + 2 Re a0

)
+

∞∑
i=1

λ2
i |ai |2 .

Notice that H (ψ) and C (ω) are both invariants of (2).
Now

a0 (t) =
∫ ∫

	

(ψ − φ0)φ0dxdy

is a continuous function of t , so for ε > 0 small we can find some d (ε) > 0 such that

|a0 (0)| < ε√
2λ0

,

∣∣∣|a0 (t)|2 + 2 Re a0 (t)

∣∣∣ < d (ε) ⇒ |a0 (t)| < ε√
2λ0

. (39)

Choose δ > 0 such that ‖ω (., 0) − ω0‖L2 < δ to satisfy

|C (ω (0)) − c (ω0)| <
d (ε) λ2

0

2

and

H (ψ (0)) − H (φ0) <
1

2λ0

(
1 − λ0

λ1

)2

min

(
1

2
ε2,

d (ε) λ2
0

2

)
.
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Then from (37), (38) and (39) , we see that for all t > 0,

‖ω (., t) − ω0‖2
L2 = λ2

0 |a0|2 +
∞∑
i=1

λ2
i |ai |2 < ε2.

This finishes the stability proof. ��
By Theorem 1.1(ii), the steady flow with the stream function φ0 is also linearly stable

in the norm ‖·‖X. However, in the following we will show that for some domain 	,
this flow is linearly unstable in the L2−norm of the velocity (energy norm). Starting
with Echhoff in the 1970s (see [3]), there are lots of papers using geometric optics or
the WKB asymptotic method to treat the local instability in fluid dynamics. Typically,
it allows one to estimate from below the growth rate of the solutions of the initial value
problem for the linearized equation in terms of the growth rate of solutions of an ODE
system. For Euler equation of 3D inviscid incompressible fluid, the ODE system (see
e.g. [11]) is 


Ẋ=−U0 (X) ,

K̇ =
(
∂U0
∂X

)T
K,

ȧ= − ∂U0
∂X

a + 2 ∂U0
∂X

a · K K
|K|2 ,

with initial conditions at t = 0,

X = X0,K = K0, a = a0,

where K0 ·a0 = 0. Here U0 (X) is the steady flow velocity field and the matrix ∂U0/∂X

has components ∂U0i/∂Xj , i, j = 1, 2, 3.

Theorem 4.2. [11, 4]. If

sup
X0,K0,a0|K0|=|a0|=1,K0·a0=0

lim
t→∞ |a (t;X0,K0, a0)| = ∞, (40)

then the steady flow U0 (X) is linearly unstable in the sense that for suitable initial
data, the L2−norm of the velocity of the corresponding solution of the linearized Euler
equation is not bounded in time.

We said a point x0 is a hyperbolic stagnation point of the flow U0 (X), if U0 (x0) = 0
and the matrix ∂U0/∂X has at least one positive real eigenvalue. It is shown by Fried-
lander and Vishik (see [5]) that

Lemma 4.1. Let the 3-D flow dX
dt

= U0 (X) have a hyperbolic stagnation point at some
point x0. Then U0 (X) is linearly unstable in the L2−norm of the velocity, as a steady
flow of an ideal fluid.

For the 2D case, let the corresponding stream function of U0 (X) be φ0 (X). Then for
U0 (X) to have a hyperbolic stagnation point, it is equivalent that φ0 has a saddle point.
In the following, we construct a stable flow with a hyperbolic stagnation point.

Lemma 4.2. There exists some domain 	 with smooth boundary such that the eigen-
function with the lowest eigenvalue of −� on H1

0 (	) has a saddle point.
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Proof. First we consider a smooth domain 	0 composed of two circular disks of radius
R smoothly connected by a thin channel of width 2ε (see the graph). We also make 	0
symmetric with respect to the middle vertical axis. Let φ0 be the eigenfunction with the
lowest eigenvalue λ0 of −� on H1

0 (	0) . From the standard theory, we know that φ0 is
positive and is symmetric with respect to the axis.

We shall prove the following estimate:

sup
	̄0

|∇φ0| ≤
(
k0 +

√
k2

0 + λ0

)
sup
	0

φ0. (41)

Here k0 is a positive number such that the curvature k ≥ −k0 at each point of ∂	0.
The proof of (41) follows from an idea in [14], see also [16, Chapter 5]. Let τ =
sup	̄0

|∇φ0| ,M = sup	0
φ0 and α = 2k0τ. Define

P = |∇φ0|2 + λ2
0φ

2
0 + αφ0.

Then by a direct computation

�P + LiPi

|∇φ0|2
= (λ0φ0 + α) α > 0,

here

Li = −Pi − 2∂iφ0 (λ0φ0 + α) .

So by the Maximum principle, the maximum of P is either obtained on the boundary
∂	0 or at some point in 	0, where ∇φ0 = 0. For the first case, supposing the maximum
of P is obtained at x0 ∈ ∂	0, we have

∂P

∂n
|x0 > 0 (42)

by Hopf’s principle. Here n is the outward normal direction. But (see [16, p. 76])

∂P

∂n
|x0 = 2

∂φ0

∂n

∂2φ0

∂n2 + α
∂φ0

∂n
= −2 |∇φ0| (α + 2k (x0) |∇φ0|) .

Since

α + 2k (x0) |∇φ0| ≥ α − 2k0 sup
	̄0

|∇φ0| ≥ 0,
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we get a contradiction to (42). Thus P can obtain the maximum only at a point in 	0
where ∇φ0 = 0. So we get

τ 2 ≤ λ2
0M

2 + αM = λ2
0M

2 + 2k0Mτ

from which (41) follows.
For any point D in the channel, the distance to the nearest boundary point is at most

ε. So by the mean value theorem

φ0 (D) ≤ ετ ≤ ε

(
k0 +

√
k2

0 + λ0

)
sup
	0

φ0. (43)

Since a disk BR/2 with radius R
2 is contained in 	0, by the monotonicity of the eigen-

values of −� with respect to the domain, we have λ0 < λ
(
BR/2

)
(the lowest eigenvalue

of −� in BR/2). We can make k0 bounded (with a bound independent of ε) as long as
the domain 	0 is smooth. So from (43), we can see that if ε is small then φ0 can not
obtain its maximum in the channel. But since φ0 is symmetric with respect to the middle
vertical axis, φ0 must have at least two maximum points, one on each disk. We cannot
ensure the two maximum points we get are non-degenerate. But we can deform 	0 to
make them non-degenerate in the following way.

We quote a result of K. Uhlenbeck ([18]). First we introduce some notations as in
[18]. Let N be a compact n-manifold with boundary which can be embedded in Rn

and B = Embk (N,Rn) be the set of Ck embedding of N in Rn. We associate with
the embedding F : N → Rn the Laplace operator on the image of F with Dirichlet
boundary condition, which we denote by �Im(F ). Consider the following properties of
�Im(F ) :

A. One dimensional eigenspaces.
B. Zero is not a critical value of the eigenfunction restricted to the interior of the do-

main of the
operator.

C. The eigenfunctions are Morse functions on the interior of the domain of the oper-
ator.

Theorem 9 in [18] is

Lemma 4.3. Let k > n + 2. Then the set{
F ∈ Embk

(
N,Rn

)
: properties A, B, and C hold for �Im(F )

}
is residual in Embk (N,Rn) .

Using this result, we can deform 	0 slightly to get a new domain 	. This domain 	

is still symmetric to its middle vertical axis with the curvature condition

k ≥ −2k0 on ∂	,

and the first eigenfunction φ of −� on 	 is a Morse function. Then by the same argu-
ment as above for the domain 	0, φ still has at least two maximum points. By the strong
maximum principle, the normal derivative ∂φ/∂n is negative everywhere on ∂	. So the
vector field U0 (x, y) = (−∂yφ, ∂xφ

)
is always nonzero on ∂	. It defines a non-degen-

erate vector field on 	, tangential to ∂	. Denote the number of equilibria of U0 with
index +1(−1) by n+1 (n−1). We have

n+1 − n−1 = 1. (44)
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For the proof of (44), we introduce the double manifold 	̃ of 	, which is obtained from
	 by attaching a second copy of 	 along ∂	. By doing so we identify each point on ∂	

with its copy in the boundary of the second copy. In this way we get a 2-dimensional
manifold 	̃ without boundary, which is clearly diffeomorphic to S2. The vector field U0

is extended to Ũ0 on 	̃ in the natural way. And we have that the number of equilibria of
Ũ0 with index +1(−1) is ñ+1 (ñ−1) = 2n+1 (n−1). By Hopf’s Theorem,

ñ+1 − ñ−1 = χ
(
	̃
)

= 2,

where χ
(
	̃
)

is the Euler characteristic of 	̃. So (44) follows. Noticing that n+1 is the

number of maximum and minimum points of φ on 	 which is at least 2 and n−1 is
the number of saddle points of U0, we conclude that there exists some non-degenerate
saddle point of φ. ��

Combining the above results in this section, we get the following theorem.

Theorem 4.3. Let φ be the eigenfunction with the lowest eigenvalue of −� on H1
0 (	),

where 	 is constructed in Lemma 4.2. Then the steady flow U0 (x, y) = (−∂yφ, ∂xφ
)

is
nonlinearly stable in the L2−norm of the vorticity, but linearly unstable in the L2−norm
of the velocity.

We note that it was proved in [10] that a steady flow with a saddle point is nonlinearly
unstable in the C1,α norm of the velocity. However the nonlinearly stability or instability
in the energy space is unknown.

5. Remarks on the Case of a Non-Simply Connected Domain

The results in Theorem 1.1, 1.2 can be generalized to the non-simply connected case.
For this case, the boundary conditions for the vorticity equation is now (3a), (3b ). So
we have to change the function space for the stability and instability results. Define

X :=
{
ψ ∈ H2 (	) |ψ = �i on 
i ,

∮

i

∂ψ

∂n
= 0 and

∫ ∫
	

ψ = 0

}
, (45)

Y :=
{
ψ ∈ H1 (	) |ψ = �i on 
i ,

∮

i

∂ψ

∂n
= 0 and

∫ ∫
	

ψ = 0

}
, (46)

L2
0 :=

{
ψ ∈ L2 (	) |

∫ ∫
	

ψ = 0

}

with

‖ψ‖X =
∫ ∫

	

|�ψ |2 dxdy, ‖ψ‖Y =
∫ ∫

	

|∇ψ |2 dxdy, ‖ψ‖L2
0

=
∫ ∫

	

|ψ |2 dxdy.

Here �i are unspecified constants. We define the functionals a, b on Y and the operators
Aλ,A0 : X → L2

0 in the same way as in the simply connected case. Then the conclusions
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of Theorem 1.1, 1.2 still hold true. The proofs are similar, so we skip them here. Now we
explain why the spaces defined by (45) and (46) are natural for non-simply connected
domains. The first condition (ψ = �i on 
i) is the requirement of (3a). The zero inte-
gral condition is used to get rid of the arbitrary constant which might add to the stream
function ψ. For the zero circulation condition, we recall that for the Euler equation the
circulation is invariant, and this is also true for the linearized Euler equation. So for a
growing mode eλtφ satisfying the linearized Euler equation, we must have∮


i

∂φ

∂n
= 0.

So we only need consider function spaces defined by (45) and (46) when studying the
existence of growing modes. For the stability study, we can decompose any function ψ

satisfying the boundary conditions (3a),(3b) as ψ = ψ ′ + ψ0, where ψ ′ is in X or Y
and ψ0 is a harmonic function with 
i− circulation∮


i

∂ψ

∂n
.

When ψ is the stream function for a solution of Euler equation, the circulation is fixed
and thus ψ0 is independent of time. We can use the energy-Casimir method as in [17]
to control ψ ′ under the vorticity norm.
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