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Abstract. The dynamics of collisionless galaxy can be described by the Vlasov-

Poisson system. By the Jean’s theorem, all the spherically symmetric steady
galaxy models are given by a distribution of Φ(E,L), where E is the particle
energy and L the angular momentum. In a celebrated Doremus-Feix-Baumann
Theorem [7], the galaxy model Φ(E,L) is stable if the distribution Φ is mono-

tonically decreasing with respect to the particle energy E. On the other hand,
the stability of Φ(E,L) remains largely open otherwise. Based on a recent ab-
stract instability criterion of Guo-Lin [11], we constuct examples of unstable

galaxy models of f(E,L) and f (E) in which f fails to be monotone in E.

1. Introduction

A galaxy is an ensemble of billions of stars, which interact by the gravitational
field they create collectively. For galaxies, the collisional relaxation time is much
longer than the age of the universe ([6]). The collisions can therefore be ignored and
the galactic dynamics is well described by the Vlasov - Poisson system (collisionless
Boltzmann equation)

(1) ∂tf + v · ∇xf −∇xUf · ∇vf = 0, ∆Uf = 4π

∫
R3

f(t, x, v)dv,

where (x, v) ∈ R3 × R3, f(t, x, v) is the distribution function and Uf (t, x) is its
self-consistent gravitational potential. The Vlasov-Poisson system can also be used
to describe the dynamics of globular clusters over their period of orbital revolutions
([9]). One of the central questions in such galactic problems, which has attracted
considerable attention in the astrophysics literature, of [5], [6], [9], [16] and the
references there, is to determine dynamical stability of steady galaxy models. Sta-
bility study can be used to test a proposed configuration as a model for a real stellar
system. On the other hand, instabilities of steady galaxy models can be used to
explain some of the striking irregularities of galaxies, such as spiral arms as arising
from the instability of an initially featureless galaxy disk ([5]), ([17]).

In this article, we consider stability of spherical galaxies, which are the simplest
elliptical galaxy models. Though most elliptical galaxies are known to be non-
spherical, the study of instability and dynamical evolution of spherical galaxies
could be useful to understand more complicated and practical galaxy models. By
Jeans’s Theorem, a steady spherical galaxy is of the form f(x, v) ≡ µ(E,L), where
the particle energy and total momentum are E = 1

2 |v|
2 + U(x), L = |x× v| , and

Uµ(x) = U (|x|) satisfies the self-consistent nonlinear Poisson equation

∆U = 4π

∫
R3

µ(E,L)dv

The isotropic models take the form f(x, v) ≡ µ(E). The case when µ′(E) < 0 (on
the support of µ(E)) has been widely studied and these models are known to be
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stable ([1], [2], [7], [2], [8], [19], [14], [18], [13]). To understand such a stability, we
expand the well-known Casimir-Energy functional (as a Liapunov functional)

(2) H ≡
∫ ∫

Q(f) +
1

2

∫ ∫
|v|2f − 1

8π

∫
|∇xU |2

which is conserved for all time with

(3) Q′(µ(E)) ≡ −E

(this is possible only if µ′ < 0!). Upon using Taylor expansion around a steady
galaxy model of [f(E,L), U ], the first order variation vanishes due to the choice of
(3), and the second order variation takes the form of

(4) H′′
f [g, g] ≡

1

2

∫ ∫
f>0

g2

−f ′(E)
− 1

8π

∫
|∇xUg|2.

The remarkable feature for stability lies in the fact that H′′
µ[g, g] > 0 if µ′ < 0

([1], [2], [7], [14]). This crucial observation leads to the conclusion that galaxy
models with monotonically decreasing energy µ′ < 0 are linearly stable. On the
other hand, for the case µ is not monotone in E, (3) breaks down, and H′′

µ is
not well-defined, which indicates possible formation of instability. It is important
to note that a negative direction of the quadratic form H′′

f [g, g] < 0 does not

imply instability. In [12], an oscillatory instability was found for certain generalized

polytropes f (E,L) = f0L
−2m (E0 − E)

n− 3
2 with n < 3

2 ,m < 0, by using N-body
code. This instability was later reanalyzed by more sophisticated N-body code in
[3]. Despite progresses made over the years (e.g., [3], [10], [16], [17]), no explicit
example of isotropic galaxy model µ(E) are known to be unstable.

The difficulty of finding instability lies in the complexity of the linearized Vlasov-
Poisson system around a spatially non-homogeneous µ(E,L) :

(5) ∂tg + v · ∇xg −∇xUg · ∇vµ−∇xU · ∇vg = 0, ∆Ug = 4π

∫
R3

g(x, v)dv

for which the construction for dispersion relation for a growing mode is mathemat-
ically very challenging. In a recent paper ([11]), a sufficient condition was derived
rigorously as follows:

Theorem 1. Let [f(E,L), U ] be a steady galaxy model. Assume that f(E,L) has
a compact support in x and v, and µ′ is bounded. Define auxiliary quadratic form
for a spherically symmetric function ϕ(|x|) as
(6)

[A0ϕ, ϕ] ≡
∫
R3

|∇ϕ|2dx+32π3

∫
f ′(E,L)

∫ r2(E,L)

r1(E,L)

(
ϕ− ϕ̄

)2 2LdrdEdL√
2(E − U(r)− L2/2r2)

,

where r1(E,L) and r2(E,L) are two distinct roots to the equation

(7) E − U(r)− L2/2r2 = 0

and the average ϕ̄ is defined as

ϕ̄(E,L) =

∫ r2(E,L)

r1(E,L)
ϕ(r)dr√

2(E−U0(r)−L2/2r2)∫ r2(E,L)

r1(E,L)
dr√

2(E−U0(r)−L2/2r2)

.

If there exists ϕ(|x|) such that [A0ϕ, ϕ] < 0, then there exists an exponentially
growing mode to the linearized Vlasov-Poisson system (5).
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The quadratic form [A0ϕ, ϕ] in the above instability criterion involves delicate
integrals along particle paths. The purpose of the current paper is to use numerical
computations to construct two explicit examples of galaxy models for which a test
function ϕ satisfying [A0ϕ, ϕ] < 0 exists. This ensures their radial instability by
Guo-Lin’s Theorem 1. The first example is an anisotropic model with radial insta-
bility. There are two differences to the oscillatory instability found in [12] and [3]:
here the distribution function is non-singular and the instability is non-oscillatory.
The second example is a non-singular isotropic model with radial instability. To
our knowledge, this provides the first example of unstable isotropic model.

Even though the galaxy models studied here are not actual ones observed, our re-
sults demonstrates how to apply Guo-Lin’s Theorem 1 to detect possible instability
for a given galaxy model. It is our hope to foster interactions between mathemat-
ical and astronomical communities and to advance the study of instability of real
galaxy models.

2. Examples of Unstable galaxy models

Example 1. Unstable Galaxy Model Depending on E and L. We define
the distribution function f0 (E,L) = µ(E)L4 where

(8) µ(E) =


0 E < 4
2.25(E − 4)2 4 ≤ E ≤ 4.4
(5− E)2 4.4 ≤ E ≤ 5
0 E > 5

The graph of µ(E) is showed in Figure 1 below. Choosing U(0) = 3, we numerically

Figure 1. µ(E)

calculate U(r), and the graph of U(r) is showed in Figure 2. By choosing the test
function ϕ = e−r, then numerical computation below shows

[A0ϕ, ϕ] < π − 45 < 0,

and hence f0 is unstable by Theorem 1.
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Figure 2. U(r)

Example 2. Unstable Galaxy Model Depending Only on E. Let f0(E) =
µ(E), where

(9) µ(E) =


0 E < a
C1t

k
1(E − a)k a ≤ E ≤ E1

C1(E0 − E)k E1 ≤ E ≤ E0

0 E > E0

We choose

C1 = 2, E0 = 5.1, a = 1.9, k = 2.01, t1 = 1.5.

Choose U0 = −15.1, the graphs of µ(E) and U are shown in Figures 3 and 4. We

Figure 3. µ(E)

choose the test function

ϕ = v1e
−r + v2e

− 1
2 r + v3e

− 1
3 r + v4e

−2r + v5e
−3r + v6e

−4r + v7e
−5r,
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Figure 4. U(r)

with v1, v2, ...v7 given by (16). Then [A0ϕ, ϕ] = −24. 016 < 0, and instability of the
profile (9) follows from Theorem 1.

3. Numerical implementation

3.1. Numerical computation for Example 1. By the results in [20], for a steady
state with f0 (E,L) = µ (E)L2l of Vlasov-Poisson system, the steady potential
U (r) satisfies the equation

(10) U ′(r) =
2l+7/2π2cl,−1/2

r2

∫ r

0

s2l+2gl+1/2(U(s))ds, r > 0

with gm(u) =
∫∞
u

µ(E)(E − u)mdE, u ∈ (−∞,∞), and

ca,b =

∫ 1

0

sa(1− s)bds =
Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)
, a > −1, b > −1,

where Γ denotes the gamma function. The boundary condition is limr→∞ U(r) = 0.
The computation of finding ϕ with [A0ϕ, ϕ] < 0 is carried out in the following

steps.
Step 1. Computation of potential U. For Example 1, f0 (E,L) = µ (E)L4 where

µ (E) is given by (8), so l = 2 and

gl+1/2(u) =

∫ 4.4

u

2.25(E − 4)2(E − u)2.5dE +

∫ 5

4.4

(5− E)2(E − u)2.5dE.

Letting M = 2l+7/2π2cl,−1/2, we obtain from (10)

r2U ′′(r) + 2rU(r) = Mr2l+2gl+1/2(U(r)),

which is equivalent to

U ′′(r) = −2

r
U ′(r) +Mr2lgl+1/2(U(r)).
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Table 1. Lmax for different E

E Lmax

3.2 0.452787235493472
3.4 0.731586885359610
3.6 0.969996239842229
3.8 1.186531828839693
4.0 1.388987957485868
4.2 1.581703995145215
4.4 1.767449993848502
4.6 1.948250754546466
4.8 2.125722162034805
5.0 2.301341325775183

We use the boundary conditions U ′(0) = 0 and U(0) = 3. Let u1(r) = U(r), u2(r) =
u′
1(r), we transform the above equation to the following system

(11)

{
u′
1(r) = u2

u′
2(r) = − 2

ru2 +Mr2lgl+1/2(u1)

with u1(r) = 3 and u2(0) = 0. We remark that we can subtract the finite limit of
U at infinity from U and redefine E0 accordingly. We apply Runge-Kutta method
to solve equations (11), as follows

yn+1 = yn +
h

6
(K1 + 2K2 + 2K3 +K4)

K1 = f(xn,yn)
K2 = f(xn + h

2 ,yn + h
2K1)

K3 = f(xn + h
2 ,yn + h

2K2)
K4 = f(xn + h,yn + hK2).

First let h = 0.1 to get the values of U and U ′ at points xn = nh, then we use
piecewise cubic Hermite interpolation to get an approximation of U (r).

Step 2. Computation of roots of the equation

(12) E − U(r)− L2/2r2 = 0.

For fixed E, this equation has two solutions r1 < r2 when L < Lmax, one solution
r∗ when L = Lmax and no solution when L > Lmax. Here, Lmax (E) =

√
r∗3U ′(r∗)

and r∗ (E) satisfies the equation

(13) E − U(r)− r

2
U ′(r) = 0,

which comes from the combination of the equations −U ′(r) + L2/r3 = 0 and (12).
We employ Newton method to find the unique root r∗ of (13) by the Newton
iteration

rn+1 = rn −
E − U(r)− r

2U
′(r)

− 3
2U

′(r)− r
2U

′′(r)

Chose an initial point r0 = 1, we get r∗(with the stopping criterion |rn − rn+1| < 10−10).
Table 1 and Figure 5 show the relation of Lmax to E.
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Figure 5. relationship of Lmax and E

Figure 6. E=4.5,L=0.5 Figure 7. E=4.8,L=1.2

For L < Lmax, we apply Newton’s iteration

rn+1 = rn − E − U(r)− L2/2r2

−U ′(r) + L2/r3

to solve (12) with the choice of initial value

r1,0 =

{
0.1 when L > 0.05,
0.001 when L ≤ 0.05

, r2,0 = 2,

and the stopping criterion |rn − rn+1| < 10−10. We show two graphs of E−U(r)−
L2/2r2 in Figures 6, and 7 and the computation results are

r1 = 0.288701795314679, r2 = 1.843722113067511 for Figure 6

r1 = 0.634700793130700, r2 = 1.938943620330099 for Figure 7

Figures 8 and 9 show how r1 and r2 (r1 < r2) change with respect to L, when E
is given. (Note that the equation (12) has a unique root r∗ when L = Lmax, thus
when L approaches Lmax, the distance r2 − r1tends to zero.)
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Figure 8. E=3.4,
how r1, r2 change with L

Figure 9. E=4,
how r1, r2 change with L

Table 2. the value of I(E,L) for given E and L

(E,L) intergrand(E,L)
(4.1,0.6) 0.002530474111772
(4.3,1) 0.053619816035575
(4.5,1.2) -0.086444987713539
(4.7,1.3) -0.086591041429108
(4.9,1.7) -0.066267498867856

Step 3. Computing A(ϕ, ϕ) in (6). Denote the integrand

I(E,L) = f ′
0(E,L)

∫ r2(E,L)

r1(E,L)

(ϕ− ϕ)2
2Ldr√

2(E − U0(r)− L2/2r2)
.

Choose ϕ = e−r, Table 2 shows some of the values of I(E,L).
For given E, the integration interval of I(E,L) in (6) is [0, Lmax] for L. When

L = 0 and L = Lmax, (7) has only one solution instead of two. To avoid this
problem, we integrate I(E,L) for L in the truncated interval [a1, Lmax−a2], where

a1, a2 > 0. Choose a2 = 10−5, and compare the value of
∫ Lmax−a2

a1
I(E,L)dL when

a1 = 0.01 and a1 = 0.001 in Table 3. We see that the error is approximately 10−7.

Table 3. Value of
∫ Lmax−a2

a1
I(E,L)dL for a1 = 0.01 and a1 = 0.001

a1 = 0.01 a1 = 0.001
intergrandE(4.3) 0.057831884696931 0.057831864357174
intergrandE(4.5) -0.084810940209437 -0.084810952811088
intergrandE(4.7) -0.095869703408813 -0.095869701098749
intergrandE(4.9) -0.058302133990229 -0.058302146458761

Step 4. Error Estimate. Next we give a theoretical estimate for the error intro-

duced by the truncation. Let A(E) =
∫ r(E)

0
dr√

2(E−U(r))
, where r(E) is the unique
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solution of E − U(r) = 0. For ϕ(r) = e−r, the error term for L on [0, a1] is∣∣∣∣∣32π3

∫ 5

4

∫ a1

0

µ′ (E)L4

∫ r2(E,L)

r1(E,L)

(ϕ− ϕ)2
2LdrdLdE√

2(E − U(r)− L2/2r2)

∣∣∣∣∣(14)

≤ 64

6
π3

∫ 5

4

|µ′(E)|max {A (E) , T (E, a1)} dE a61.

In the above, we use the estimate

T (E,L) =

∫ r2(E,L)

r1(E,L)

dr√
2(E − U0 − L2/2r2)

≤ max{A(E), T (E, a1)}

due to the facts that limL→0+ T (E,L) = A (E) and T (E,L) is monotone for L on
the small interval [0, a1]. We numerically compute the coefficient on the right side
of (14) by choosing a1 = 0.01, then

64

6
π3

∫ 5

4

|µ′(E)|max {A (E) , T (E, a1)} dE = 3.787856674901141× 102.

Thus a1 = 0.01 is enough to make the first error to be of order 10−10.
The error on [Lmax − a2, Lmax] is

∣∣∣∣∣32π3

∫ 5

4

∫ Lmax

Lmax−a2

µ′ (E)L4

∫ r2(E,L)

r1(E,L)

(ϕ− ϕ)2
2LdrdLdE√

2(E − U(r)− L2/2r2)

∣∣∣∣∣
(15)

≤ 64π3

∫ 5

4

Lmax(E)5|µ′(E)|max

{
π√

ϕ′′
eff (r

∗;Lmax)
, T (E,Lmax − a2)

}
dE a2.

where the effective potential

ϕeff(r) = U0(r) + L2/2r2

Since

T (E,L) ≤ max

{
π√

ϕ′′
eff (r

∗;Lmax)
, T (E,Lmax − a2)

}
, L ∈ [Lmax − a2, Lmax] ,

due to the facts that limL→Lmax− T (E,L) = π√
ϕ′′
eff(r

∗;Lmax)
and T (E,L) is mono-

tone for L on [Lmax − a2, Lmax].
Numerically computing the coefficient before a2 in the right hand side of (15),

we get 0.605275913474830. Choose a2 = 10−5, the right side of (15) if of order
10−5, which is good enough for what we need later on.

Step 5. Conclusion. We choose ϕ(r) = e−r. The first term of (6) is
∫
|∇ϕ|2 =

π, and the second term is computed to be −31.733535998660550, by choosing
h = 0.1 in Runga-Kutta Method when solving U(r). Therefore (Aϕ, ϕ) = π −
31.733535998660550 < 0. We gradually decrease h, and repeat the whole process
to calculate the second term of (6). The result is shown in Table 4. Thus when
h becomes smaller, the second term of (6) is less than −45. Combining with the
error estimates of (14) and (15) in Step 4, we can ensure (A0ϕ, ϕ) < 0.
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Table 4. results for different h

h the second term
0.1 -31.733535998660550
0.05 -38.227746546049751
0.025 -41.848643231095494
0.01 -44.146480909452201
0.005 -44.933896897054382
0.0025 -45.331673900274509
0.001 -45.571655158578380

3.2. Numerical Computation for Example 2. With profile (9), we choose ϕ(r)
to be a linear combination of several functions e−αir, 1 ≤ i ≤ n, ϕ(r) =

∑
aie

−αir,
with ai to be determined. In the quadratic form (6), the first term is computed to
be ∫

|∇ϕ|2 = 4π(
∑ a2i

4αi
+
∑ 4αiαj

(αi + αj)3
aiaj) ,

∑
bia

2
i + 2

∑
bijaiaj

and the second term is

32π3

∫
f ′
0(E,L)

∫ r2(E,L)

r1(E,L)

(
∑

aiϕi −
∑

aiϕi)
2 2LdrdEdL√

2(E − U0(r)− L2/2r2)

=
∑

32π3

∫
f ′
0(E,L)

∫ r2(E,L)

r1(E,L)

(ϕi − ϕi)
2 2LdrdEdL√

2(E − U0(r)− L2/2r2)
a2i+

∑
32π3

∫
f ′
0(E,L)

∫ r2(E,L)

r1(E,L)

(ϕi − ϕi)(ϕj − ϕj)
2LdrdEdL√

2(E − U0(r)− L2/2r2)
2aiaj

,
∑

cia
2
i +

∑
2cijaiaj

Now (A0ϕ, ϕ) =
∑

(bi + ci)a
2
i + 2

∑
(bij + cij)aiaj . The corresponding matrix for

this quadratic form is S = (sij), where sii = bi + ci, sij = bij + cij . Denote λmin

to be the minimum eigenvalue of the matrix S, then λmin < 0 guarantees that there
exists ϕ such that (A0ϕ, ϕ) < 0. We choose

ϕ1 = e−r, ϕ2 = e−
1
2 r, ϕ3 = e−

1
3 r, ϕ4 = e−2r, ϕ5 = e−3r, ϕ6 = e−4r, ϕ7 = e−5r.

In (9), there are five free parameters in µ: a, k, t1, E0, C1 and E1 is determined
by E1 = (E0 + t1a)/(t1 + 1). Using U0 (the initial value of the potential) as an
additional parameter, there are totally six parameters in our calculations. The idea
is to view λmin as a function of these parameters λmin = λmin(a, k, t1, E0, C1, U0).
Our goal now is to find proper parameters such that λmin < 0. The numerical
methods are the same as in Step 1 -Step 3 in the computation of Example 1, except
that now we use self-adaptive Runge-Kutta Method to solve (11). We next verify
that the following choice of parameters

C1 = 2, E0 = 5.1, a = 1.9, k = 2.01, t1 = 1.5, U0 = −15.1,

would lead to λmin < 0 and (A0ϕ, ϕ) < 0. In Table 5 we show the results of λmin

under different accuracies. where a1 and a2 are the parameters used to truncate
[0, Lmax] to [a1, Lmax − a2]. We also calculate the eigenvector corresponding to
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Table 5. λmin under different accuracies

integration accuracy a1 a2 accuracy of the roots λmin

10−8 10−5 10−6 10−10 −1.808068979998836× 10−5

10−9 10−3 10−4 10−10 −3.403231868973289× 10−6

10−9 10−5 10−6 10−11 −3.739973399333609× 10−6

10−10 10−5 10−6 10−11 −3.196606813186484× 10−6

10−11 10−5 10−6 10−11 −3.025099283901562× 10−6

10−12 10−6 10−7 10−11 −3.087487453314562× 10−6

10−13 10−6 10−7 10−11 −3.080483943121587× 10−6

10−13 10−6 10−7 10−11 −3.089704058599446× 10−6

10−14 10−7 10−7 10−11 −3.089187445892979× 10−6

Figure 10. ϕ(r)

λmin by v = (v1, v2, v3, v4, v5, v6, v7)
T , where

(16)

v1 = 41.702767064740

v2 = −14.949618378683

v3 = 4.856846351504

v4 = −201.361293458803

v5 = 571.694416252419

v6 = −723.292461038838

v7 = 327.842857021134.

Let

ϕ(r) = v1e
−r + v2e

− 1
2 r + v3e

− 1
3 r + v4e

−2r + v5e
−3r + v6e

−4r + v7e
−5r.

We draw a picture of this function ϕ in Figure 10. Using (6), we obtain

(Aϕ, ϕ) = 35.231484866282720− 59.247837621248109 < 0,

when the integration accuracy is 10−13, a1 = 10−6, a2 = 10−7, and the root accu-
racy is 10−11.
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Step 4. Error Estimate. We obtain theoretical error estimate as in Example 1.
For any test function ϕ, the error for L on [0, a1] is∣∣∣∣∣32π3

∫
{E|µ′(E)>0}

µ′(E)

∫ a1

0

∫ r2(E,L)

r1(E,L)

(ϕ− ϕ)2
2LdrdLdE√

2(E − U0 − L2/2r2)

∣∣∣∣∣
≤32π3|maxϕ−minϕ|2a21

∫
{E|µ′(E)>0}

µ′(E)max{A(E), T (E, a1)}dE

Numerically compute the right hand side, and note

|maxϕ−minϕ| ≤ 2max |ϕ| ≤ 2
∑

|vi| = 3.7714× 103.

Choose a1 = 10−5, the error is no more than

4.322× 102 × (3.7714× 103)2 × (10−5)2 = 6.1474× 10−1

Next we estimate the error for L on [Lmax − a2, Lmax]. When r ∈ [r1, r2], we use
|ϕ− ϕ| ≤ max |ϕ′|(r2 − r1) by the Mean Value Theorem. So the error is

32π3

∫
{E|µ′(E)>0}

∫ Lmax

Lmax−a2

∫ r2(E,L)

r1(E,L)

µ′(E)(ϕ− ϕ)2
2LdrdLdE√

2(E − U0 − L2/2r2)

≤ 64π3a2 |ϕ′|2L∞

∫
{E| µ′(E)>0}

µ′ (E)Lmax (E) (r2(E,Lmax − a2)− r1(E,Lmax − a2))
2 ·

max

{
π√

ϕ′′
eff (r

∗;Lmax)
, T (E,Lmax − a2)

}
dE .

Note that

max |ϕ′| ≤ 5
∑

|vi| = 9.4285× 103.

Numerically computation of this error with a2 = 10−7 yields a bound of

1.41722× 10−13 × (9.4285× 103)2 = 1.3362× 10−6

So the total error is at most of order 10−1, which guarantees (Aϕ, ϕ) < 0.

4. Summary

We study the instability of spherical galaxy models in the Vlasov theory for
collisionless stars. Based on the instability criterion of Theorem 1 and careful
numerical computations, we have constructed two explicit unstable galaxy models
f0(E,L) and f0(E) with distributions (8) and (9) respectively. In particular, f0(E)
in Example 2 provides the first example of unstable isotropic galaxy which has
not been found in literature. The instability in these examples are radial and
non-oscillatory. Compared with the usual N-body codes of finding instability of
galaxy models, our method only requires numerical evaluation of certain explicit
integrals. Therefore, it is much more reliable and easier to implement. It is hoped
that Theorem 1 can be employed to detest instability for other galaxy models in
the future.
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