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Abstract

We consider the linear stability problem for a symmetric equilibrium of the rel-
ativistic Vlasov-Maxwell (RVM) system. For an equilibrium whose distribution
function depends monotonically on the particle energy, we obtain a sharp linear
stability criterion. The growing mode is proved to be purely growing and we get
a sharp estimate of the maximal growth rate. In this paper we specifically treat
the periodic 1 1

2 D case and the 3D whole-space case with cylindrical symme-
try. We explicitly illustrate, using the linear stability criterion in the 1 1

2 D case,
several stable and unstable examples.
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1 Introduction

We consider a plasma at high temperature, of low density such that collisions
can be ignored compared with the electromagnetic forces. Such a collisionless
plasma is modeled by the relativistic Vlasov-Maxwell (RVM) system. We assume
all physical constants like the speed of light and the mass of particles to be 1, for
the sole purpose of simplifying our notation. All the results we obtained below can
be modified straightforwardly to apply to the true physical situations with masses,
charges, etc.

Communications on Pure and Applied Mathematics, Vol. 000, 0001–0061 (2000)
c© 2000 Wiley Periodicals, Inc.



2 Z. LIN AND W. STRAUSS

Let f± (t,x,v) be the ion and electron distribution functions, E(t,x) and B(t,x)
be the electric and magnetic fields and Eext ,Bext be the external fields. Then we
have the RVM system

(1.1a) ∂t f±+ v̂ ·∇x f±± (
E+Eext + v̂× (

B+Bext)) ·∇v f± = 0,

(1.1b) ∂tE = ∇×B− j, ∇ ·E = ρ, ρ =
∫ (

f +− f−
)

dv,

(1.1c) ∂tB =−∇×E, ∇ ·B = 0, j =
∫

v̂
(

f +− f−
)

dv,

where v̂ = v/〈v〉and 〈v〉=
√

1+ |v|2. In many physical problems ([3], [4]), a non-
neutral plasma is also considered, where there is only a single species of particle.
One of the central problems in the theory of plasmas is to understand plasma sta-
bility and instability ([27], [30]). Most stability studies ([6], [7]) are based on
macroscopic MHD models. However, many plasma instability phenomena have
an essentially microscopic nature, for which kinetic models like Vlasov-Maxwell
are required. Moreover, the collision-dominant assumption required in deriving
MHD models is often not justified in physical situations, such as in nuclear fusion
([6]) and in astrophysics ([28]). The Vlasov-Maxwell system is a rather accurate
description of a plasma when collisions are negligible, as occurs in many physical
situations. So we expect that an understanding of stability of Vlasov plasmas could
also provide the necessary theoretical ground to compare and test stability results
from various approximating models like MHD.

The stability problem of Vlasov plasmas is very complicated partly because
of its collective nature. More precisely, the instability in Vlasov plasmas is usu-
ally due to the collective behavior of all the particles. This makes the instability
problem highly nonlocal and difficult to study both analytically and numerically.
In the physics literature (e.g. [30]), usually only the stability of a homogeneous
equilibrium with vanishing electromagnetic fields is treated. In this case, one can
get a dispersion relation which is often an explicit algebraic equation and is rather
easy to study analytically. A beautiful classical result of this type is Penrose’s
sharp linear instability criterion (see [27]) for a homogeneous equilibrium of the
Vlasov-Poisson system. However, even for a homogeneous equilibrium the stabil-
ity problem becomes quite complicated when magnetic effects are included, as for
the Bernstein modes in a constant magnetic field ([30]).

The stability problem for inhomogeneous (spatially-dependent) equilibria with
nonzero electromagnetic fields is much more complicated and so far there are few
results. In [11], Guo and Strauss developed a sophisticated perturbation argument
to obtain the instability of weakly inhomogeneous BGK waves of the Vlasov-
Poisson system that are close to Penrose’s unstable homogeneous equilibrium. This
idea was further developed in their subsequent papers ([14], [12], [13]). In [20],
Z. Lin proved that an arbitrary periodic BGK wave is unstable under perturbations
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of double the period, using a new method of dispersion operators together with a
continuation argument.

In the present paper we study the linear stability of a symmetric equilibrium of
RVM under perturbations with certain symmetries. We consider two RVM models,
the 1 1

2 D periodic case with x ∈ R,v ∈ R2 and the 3D case in the whole space
with cylindrical symmetry. However, our methods are certainly applicable to other
RVM models and will yield similar results. In a subsequent paper [25], we study
the nonlinear stability and instability problem for 1 1

2 D RVM.

THE 3D CASE. Now we state our main result for the cylindrical 3D case. As
mentioned in the appendix, there exists no plasma equilibrium of the 3D RVM
model in the whole space without external fields. So it is necessary to include an
external field. To simplify notation we consider a 3D nonneutral electron plasma
with an external field, which indeed occurs in many important physical situations
([3], [4]). Instead of f−, we use the notation f in (1.1) for the electrons. The
equilibrium we consider is cylindrically symmetric with electron distribution f 0 =
µ (e, p) , where

e =
√

1+ |v|2−φ 0 (r,z)−φ ext (r,z) ,

p = r
(
vθ −A0

θ (r,z)−Aext
θ (r,z)

)

and with equilibrium fields

E0 =−∂rφ 0~er−∂zφ 0~ez, B0 =−∂zA0
θ~er +

1
r

∂r
(
rA0

θ
)
~ez.

To be an equilibrium,
(
A0

θ ,φ 0
)

must satisfy the elliptic system

(1.2) ∆φ 0 = ∂zzφ 0 +∂rrφ 0 +
1
r

∂rφ 0 =
∫

µdv

(1.3)
(

∆− 1
r2

)
A0

θ = ∂zzA0
θ +∂rrA0

θ +
1
r

∂rA0
θ −

1
r2 A0

θ =
∫

v̂θ µdv.

The derivation of this system from (1.1) can be found in [3] or [1]. Here we use
cylindrical coordinates (r,θ ,z) and denote by (~er,~eθ ,~ez) the standard basis. We
also assume axisymmetry of the external fields in the form

Eext =−∂rφ ext (r,z)~er−∂zφ ext~ez,

Bext =−∂zAext
θ (r,z)~er +

1
r

∂r
(
rAext

θ
)
~ez.

We assume a confined plasma equilibrium with compact support S for f 0. Com-
pact support is a realistic assumption for a confined plasma. We make the further
assumption that f 0 and E0,B0 are continuous everywhere, including on the bound-
ary of the support. In the appendix we show that with properly chosen external
fields, an example of a continuous nonneutral plasma equilibrium with support in a
torus is constructed. For such an equilibrium, the internal modes have distribution
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functions supported in S. Another important assumption is that ∂ µ/∂e = µe < 0
inside S. This condition is widely believed to make the equilibrium more likely
to be stable ([3], [29]). We consider the stability of such an equilibrium under
perturbations preserving cylindrical symmetry.

In order to state our theorem, we define certain operators acting on the cylindri-
cally symmetric functions h ∈ L2(R3) by

(1.4) A 0
1 h =−∂zzh−∂rrh− 1

r
∂rh−

∫
µedvh+

∫
µeP (h)dv,

(1.5) A 0
2 h =−∂zzh−∂rrh− 1

r
∂rh+

1
r2 h−

∫
v̂θ µpdv rh−

∫
v̂θ µeP (v̂θ h)dv,

(1.6) B0h =
∫

µeP (v̂θ h)dv−
∫

v̂θ µedv h,

and

(1.7) L 0 =
(
B0)∗ (A 0

1
)−1

B0 +A 0
2 .

where P is the projection operator of L2
|µe| onto kerD. Here D denotes the transport

operator associated with the steady fields, namely

D = v̂ ·∇x +
(
E0 +Eext + v̂×(

B0 +Bext)) ·∇v

and L2
|µe| is the |µe|-weighted L2

x,v space. We will prove in Lemma 3.1 that these
operators are well-defined and that L 0 is self-adjoint. Our main result is

Theorem 1.1. Consider a nonnegative axisymmetric equilibrium
(

f 0 = µ (e, p) ,E0,B0
)

as defined above. Assume µe < 0 inside S. For axisymmetric perturbations, we
have following results.

(i) L 0 ≥ 0 implies spectral stability. That is, if L 0 ≥ 0 then there does not
exist a growing mode.

(ii) Any growing mode must be purely growing, that is, if

[eλ t f (x,v),eλ tE(x),eλ tB(x)] (Reλ > 0)

is a solution of the linearized system, then λ is real.
(iii) If L 0 � 0, denote by −α2 the lowest eigenvalue of the operator L 0. Then

the maximal growth rate λ cannot exceed α .

Theorem 1.1(i) gives us the linear stability criterion L 0 ≥ 0. In physics, it is a
practical and important problem to study σ -stability ([7]): the equilibrium is said
to be σ -stable if the growth rate does not exceed σ . Theorem 1.1 (iii) asserts that
σ ≤ α for a Vlasov plasma. We can also compare Theorem 1.1 with the classical
energy principle for the stability of a static equilibrium in ideal MHD ([6], [7]), for
which the conclusions are rather similar. So Theorem 1.1 can be regarded as the
analogue of the energy principle for the case of a symmetric Vlasov plasma.
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We note that the projection P in the definition of L 0 is a highly nonlocal
operator since Ph(x,v) turns out to be essentially the average of h in the phase
space occupied by the particle trajectory in the steady field

(
E0,B0

)
starting at

(x,v). So our stability criterion L 0 ≥ 0 is also highly nonlocal, which reflects the
collective nature of Vlasov instabilities as mentioned above. In [10], Y. Guo con-
sidered the stability of a two-species plasma satisfying 3D RVM without external
fields, in a bounded domain with perfectly conducting boundary condition. In a
similar setting to ours, a sufficient condition for stability was obtained in [10] by
the energy-Casimir method. Extending the calculations in [10] to the whole space
case, we obtain the stability condition that L0 > 0 where L0 is the local operator

(1.8) L0 =−∂zz−∂rr− 1
r

∂r +
1
r2 − r

∫
v̂θ µpdv.

Since L 0 > L0, the stability criterion L 0 ≥ 0 in our Theorem 1.1 is a significant
improvement because of the additional stabilizing effects from the nonlocal terms
in L 0. More importantly, in the simpler 1 1

2 D case discussed below, we will show
that these nonlocal stabilizing terms are indispensable to prove the stability of any
equilibrium, even a homogeneous one. We believe that the nonlocal stabilizing
terms must also play an important role in plasma stability in the 3D case.

THE 1 1
2 D CASE. The simplest case that permits a magnetic field is the so-

called 1 1
2 dimensional case. In this case, physical space is one-dimensional x ∈ R

and the momentum is two-dimensional v = (v1,v2)∈R2. Moreover, E = (E1,E2,0)
and B = (0,0,B). We refer to [28] for astrophysical applications of this system.
Assuming no external field and setting all physical constants to be 1, system (1.1)
reduces to the following 1 1

2 RVM system

(1.9a) ∂t f±+ v̂1∂x f±± (E1 + v̂2B)∂v1 f±± (E2− v̂1B)∂v2 f± = 0

(1.9b) ∂tE1 =− j1, ∂tE2 +∂xB =− j2

(1.9c) ∂tB =−∂xE2, ∂xE1 = ρ
with

ρ =
∫

( f +− f−)dv, ji =
∫

v̂i( f +− f−)dv (i = 1,2) .

The main reason for considering 1 1
2 D RVM is its simplicity, and yet it preserves

many of the essential features of 3D RVM. So we expect that a good understanding
of the 1 1

2 D case can provide us new tools and insights in the 3D case. We also note
that the global existence of classical solutions of 1 1

2 D RVM is known [17], while
the global existence of classical solutions and the uniqueness of weak solutions of
3D RVM are still open questions.

We consider solutions of the system (1.9) that are periodic in the variable x with
a given period P. Consider the P−periodic equilibrium

(1.10) f 0,± = µ±(e±, p±) = µ±(〈v〉±φ 0(x),v2±ψ0(x)),
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and
E0

1 =−∂xφ 0, E0
2 = 0, B0 = ∂xψ0,

where
(
φ 0,ψ0

)
satisfy the ODE system

(1.11)

∂ 2
x φ 0 =−ρ0 =−

∫
( f 0,+− f 0,−)dv, ∂ 2

x ψ0 =− j0
2 =−

∫
v̂2( f 0,+− f 0,−)dv.

In the appendix we show that there exist infinitely many periodic electromagnetic
equilibria of the above form. We assume that

(1.12) µ± ≥ 0, µ± ∈C1, µ±e < 0, |µ±e |+ |µ±p | ≤ c(1+ |e|)−α

for some α > 2.
We denote

D± = v̂1∂x± (E0
1 + v̂2B0)∂v1 ∓ v̂1B0∂v2 ,

L2
|µ±e | =

{
f

∣∣∣ f periodic in x, ‖ f‖2
± ≡

∫ P

0

∫ ∞

−∞
| f |2|µ±e |dvdx < ∞

}
,

and P± = the projection operator of L2
|µ±e | onto kerD±. We define the following

operators acting on L2
P(R), where the subscript P refers to the periodicity.

(1.13) A 0
1 h =−∂ 2

x h−
(

∑
±

∫
µedv

)
h+∑

±

∫
µ±e P±h dv.

(1.14) A 0
2 h =−∂ 2

x h−
(

∑
±

∫
v̂2µ±p dv

)
h−∑

±

∫
µ±e v̂2 P±(v̂2h)dv.

(1.15) B0h =

(
∑
±

∫
µ±p dv

)
h+∑

±

∫
µ±e P±(v̂2h) dv

and

(1.16) L 0 = (B0)∗(A 0
1 )−1B0 +A 0

2 .

As in the 3D case, we have the following result in 1 1
2 D.

Theorem 1.2. Consider the 1 1
2 D case under the assumptions (1.12). Then

(i) L 0 ≥ 0 implies spectral stability.
(ii) Any growing mode must be purely growing.
(iii) Denote by −α2 the lowest eigenvalue of the operator L 0. The maximal

growth rate cannot exceed α .

Moreover, we have the following additional theorem asserting the existence of
growing modes in 1 1

2 D and showing that the condition L 0 ≥ 0 is sharp.

Theorem 1.3. If (1.12) holds, and ψ0,φ 0 are even in [0,P], and L 0 has an even
eigenfunction corresponding to a negative eigenvalue, then there exists a real grow-
ing mode [eλ t f (x,v),eλ tE(x),eλ tB(x)] with f ,E,B ∈W 1,1 and λ > 0.
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Theorem 1.3 is applicable for instance to the even periodic equilibrium con-
structed in the appendix. In Section 4, we show that if L 0 � 0 for a homogeneous
equilibrium or a purely magnetic equilibrium (φ 0 = 0), then there indeed exists an
even eigenfunction corresponding to a negative eigenvalue. Thus combining Theo-
rems 1.2 and 1.3, we get the sharp stability criterion L 0 ≥ 0 for any homogeneous
equilibrium or purely magnetic equilibrium.

In Section 4, we construct various stable and unstable 1 1
2 D examples using our

criterion. First we show that any homogeneous equilibrium is either stable to per-
turbations of arbitrary period or stable only up to a critical period. This improves
the results of [15] where the homogeneous equilibria are assumed to be even in
v2. In particular, in [15] stability for subcritical period is only proven under the
implicit assumption that the perturbed magnetic field is even. Our result removes
this restriction by utilizing the stabilizing nonlocal term in L 0. Perturbing from
the unstable homogeneous equilibrium, we can easily construct weakly inhomo-
geneous purely magnetic equilibria that are unstable under perturbations of double
the period. It is more interesting that we construct an inhomogeneous purely mag-
netic example that is stable under perturbations of minimum period but becomes
unstable under perturbations of double the period. Note that for homogeneous
equilibria the perturbations of longer wavelength are more unstable (by Theorem
4.1 in Section 4). So our example shows that for the RVM system long waves
might be always more unstable, even for inhomogeneous equilibria. The proof of
stability for inhomogeneous equilibria is rather tricky and the nonlocal stabilizing
term in L 0 plays the crucial role once again. In our subsequent paper [25], we will
show that the linear stability and instability results stated above are also true on the
nonlinear dynamical level.

We now sketch the main ideas in the proofs of these results. To prove the
spectral stability in Theorems 1.1 and 1.2, we start by finding all the invariants
of the linearized RVM system. The first invariant I corresponds to the quadratic
term of the Taylor expansion of the usual energy-Casimir functional introduced in
the nonlinear stability analysis. The second set of invariants, which is due to the
special structure of the linearized equation, is less obvious. For the 3D case the
invariants are

Kg =
∫∫

( f + µev̂ ·A+ rµpAθ )gdxdv

for all g ∈ kerD, where A is the magnetic potential. For a growing mode, all the
invariants I and Kg must vanish. We then use the same strategy as in the study
of spectral stability of ideal plane Euler flows ([21]), namely, to minimize I under
the constraints that Kg = 0 for all g ∈ kerD. This minimization problem is rather
delicate for 3D RVM. Nevertheless, we are able to show that L 0 ≥ 0 implies
that the constrained minimum Imin is positive, which excludes the existence of any
growing mode.
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To estimate the maximal growth rate and prove the purely growing property,
we borrow some ideas from stellar dynamics and MHD. Recall that to derive the
MHD energy principle one reduces the linearized MHD system to the second order
system

(1.17) ρ
d2ξ
dt2 = Fξ

where F is self-adjoint and ρ > 0. Then the purely growing property follows im-
mediately. The spectral stability and the estimate of the growth rate follows ([19])
from the two identities

(1.18)
d
dt

(K−W ) = 0 and
d2

dt2 N = K +W

where

K =
(

ρξ̇ , ξ̇
)

, N =
1
2

(ρξ ,ξ ) , W = (Fξ ,ξ ) .

On the other hand, the linearized RVM system is a first-order system and there is
no easy way to reduce it to a second-order system of the form (1.17). In the study
of stellar stability modeled by 3D Vlasov-Poisson, Antonov introduced an ele-
gant splitting argument which allowed him to write the linearized Vlasov-Poisson
system in the form (1.17) and to derive his famous energy principle for stellar sta-
bility ([2]). We use a similar splitting idea here. For the 1 1

2 D case, the splitting is
f = fev + fod with fev = 1

2 ( f (x,v1,v2)+ f (x,−v1,v2)). Unlike the Vlasov-Poisson
case, the linearized RVM system cannot be written in the form (1.17) by this split-
ting. However, by lengthy calculations we are able to derive two identities of the
form (1.18); see Lemmas 2.9 and 2.10. This allows us to prove spectral stability
and to control the maximal growth rate. But we cannot obtain the existence of a
exponentially growing solution as in the usual energy principle for (1.17) because
the linearized RVM is not a second-order system.

In order to construct growing modes, we use the method of dispersion operators
together with continuation, an argument first introduced in [20] for the 1D Vlasov-
Poisson system. In [20] the idea is to express f in terms of the electric potential
φ by integrating the Vlasov equation along the particle trajectory, then to plug
f into the Poisson equation to get a self-adjoint dispersion operator for φ , and
finally to use a continuation argument to get growing modes. There are several
difficulties in extending this approach to RVM models. In the 1 1

2 D case, assume
the growing mode has periodic electromagnetic potentials (φ ,ψ), and express f
in term of them by integration along the trajectory. Plugging f into the Maxwell
system, we unfortunately do not get a self-adjoint problem for (φ ,ψ). However,
using the condition µe < 0, we can eliminate φ to get a self-adjoint dispersion
operator for ψ alone and can then apply the continuation argument as in [20]. One
difficulty with this approach is that the equation

(1.19) ∂tE1 =− j1
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(part of Maxwell’s) is not taken care of by the dispersion operators. For the 1 1
2 D

RVM system (1.9), equation (1.19) and the Poisson equation

(1.20) ∂xE1 = ρ

are somewhat redundant but not equivalent. To derive (1.19) from (1.20), it is
enough to check that both E1 and j1 have zero mean. Under the assumption of
Theorem 1.3, we show by means of a parity argument that if ψ is even, then j1
indeed has zero mean. Then (1.19) is satisfied and we get a growing mode. In
the 3D case, an analogous difficulty exists with the dispersion operator approach.
However, the difficulty cannot be solved by a parity argument similar to the 1 1

2 D
case and we have not succeeded in handling it.

This paper is organized as follows. In Section 2, we prove Theorems 1.2 and
1.3. To simply our notation, we only give the proof for the single species case. In
Section 3, we prove Theorem 1.1 in the 3D case. In Section 4, we discuss the 1 1

2 D
stability criterion for the special cases of homogeneous and of purely magnetic
equilibria. In particular, a stable inhomogeneous example is explicitly constructed.
In the appendix we show that there exists infinitely many periodic electromagnetic
equilibria in 1 1

2 D. With properly chosen external fields, a confined equilibrium
with support in a torus is constructed.

2 Linear stability of periodic 11
2 dimensional RVM

In the following discussions of stability (until the end of this section), with the
sole purpose of simplifying our notation, we consider a constant ion background
n0. All the proofs remain almost unchanged for the more general two-species case.
The 1 1

2 D RVM for one species becomes

(2.1a) ∂t f + v̂1∂x f − (E1 + v̂2B)∂v1 f − (E2− v̂1B)∂v2 f = 0

(2.1b) ∂tE1 =− j1 =
∫

v̂1 f dv, ∂tB =−∂xE2

(2.1c) ∂tE2 +∂xB =− j2 =
∫

v̂2 f dv

with the constraint

(2.2) ∂xE1 = n0−
∫

f dv.

Fixing any such equilibrium with a period P, we will consider the system (21) with
periodic boundary conditions of the same period P.

The equilibrium is assumed to have the form f 0 = µ(e, p), E0
1 = −∂xφ 0,E0

2 =
0,B0 = ∂xψ0, where the electromagnetic potentials

(
φ 0,ψ0

)
satisfy the ODE sys-

tem
∂ 2

x φ 0 = n0−
∫

µ(e, p)dv, ∂ 2
x ψ0 =

∫
v̂2µ(e, p)dv
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with the electron energy and the “angular momentum” defined by

(2.3) e = 〈v〉−φ 0(x), p = v2−ψ0(x).

(The e is distinguished from the exponential e in context.) The only assumptions
we make on µ are

(2.4) µ ≥ 0, µ ∈C1, µe ≡ ∂ µ
∂e

< 0

and, in order for
∫

(|µe|+ |µp|)dv to be finite,

(2.5) (|µe|+ |µp|)(e, p)≤ c(1+ |e|)−α for some α > 2.

The linearized evolution equations are

(2.6) (∂t +D) f = µev̂1E1−µpv̂1B+(µev̂2 + µp)E2,

where D is the transport operator associated with the steady fields,

D = v̂1∂x−
(
E0

1 + v̂2B0)∂v1 + v̂1B0∂v2(2.7)

= v̂1∂x +∂xφ 0 ∂v1 +∂xψ0 (v̂1∂v2 − v̂2∂v1),

together with

(2.8) ∂xE1 =−
∫

f dv, ∂tE1 =
∫

v̂1 f dv, ∂tE2 +∂xB =
∫

v̂2 f dv, ∂tB+∂xE2 = 0.

We define the Hilbert space

L2
|µe| =

{
f (x,v)

∣∣∣ f periodic in x, ‖ f‖2
|µe|
≡

∫ P

0

∫ ∞

−∞
| f |2|µe|dvdx < ∞

}

and denote its inner product by (·, ·)|µe|. Let P be the projection operator of L2
|µe|

onto the kernel of D. We also denote by Lp
P

(
H2

P
)

the space of P-periodic Lp
x

(
H2

x
)

functions for p≥ 1.
Similarly to the two-species case, we define the following four operators, each

of which acts from H2
P to L2

P,

A 0
1 h =−∂ 2

x h−
(∫

µedv
)

h+
∫

µe Ph dv,

A 0
2 h =−∂ 2

x h−
(∫

v̂2µpdv
)

h−
∫

µev̂2P(v̂2h) dv,

B0h =
(∫

µpdv
)

h+
∫

µe P(v̂2h) dv

and
L 0 = (B0)∗(A 0

1 )−1B0 +A 0
2 .

In these definitions one should keep in mind that µ ≥ 0 is a function of x and v,
that µe = ∂ µ/∂e < 0 and that µp = ∂ µ/∂ p. We will show in Lemma 2.4 that A 0

1
is invertible on the range of B0 so that L 0 will be well-defined.
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By spectral stability of the system (2.1) with respect to the given equilibrium,
we mean that there is no exponentially growing mode

(eλ t fg(x,v),eλ tEg(x),eλ tBg(x))

with Reλ > 0 of the linearized equations (2.6), (2.8) which has period P in x, where
Eg,Bg ∈ L2

P and fg ∈ L1
x,v. On the other hand, if there exists such a growing mode,

the system is called spectrally unstable. The following two theorems are just the
one-species versions of Theorems 1.2 and 1.3.

Theorem 2.1. Assume (2.4) and (2.5).
(i) The system is spectrally stable if L 0 ≥ 0 as an self-adjoint operator on L2

P .
(ii) If [eλ t fg(x,v),eλ tEg(x),eλ tBg(x)] is a growing mode, then λ is real.
(iii) The maximal growth rate λ of a growing mode cannot exceed α , where −α2

is the lowest eigenvalue of L 0.

For the existence of growing modes, we consider a periodic equilibrium with
even ψ0 and φ 0. The simplest example is a purely growing magnetic equilibrium
with φ 0 = 0, in which case ψ0 satisfies a second order ODE and can always be
assumed to be even by adjusting its starting point. In the appendix we will show
that there exist infinitely many periodic, even electromagnetic equilibria in the case
of two species.

Theorem 2.2. Assume (2.4), (2.5) and that ψ0,φ 0 are even. If L 0 has an even
eigenfunction corresponding to a negative eigenvalue, then there exists a growing
mode [eλ t fg(x,v),eλ tEg(x),eλ tBg(x)] with f ∈W 1,1

x,v and (E,B) ∈W 1,1
P .

2.1 The Operators
We begin by discussing the operator D.

Lemma 2.3. D is a skew-adjoint operator on L2
|µe|. Its nullspace kerD consists of

all functions g = g(x,v) in L2
|µe| that are constant on each connected component

in R×R2 of {e = 〈v〉 − φ 0(x) = constant and p = v2 −ψ0(x) = constant}. In
particular, kerD contains all functions of e and p.

Proof. The skew-adjointness follows from an integration by parts. The domain of
D is { f ∈ L2

|µe| | D f ∈ L2
|µe|}. The characteristics of D are given by the ODEs

(2.9) Ẋ = V̂1, V̇1 = ∂xφ 0(X)−V̂2∂xψ0(X), V̇2 = V̂1∂xψ0(X)

We verify that De = 0 and Dp = 0 and then use the chain rule. ¤
We also introduce the particle paths (X(t;x,v),V (t;x,v)), which are the charac-

teristics of D. They are defined as the solutions of (2.9) with the initial conditions
X(0) = x, V (0) = v. Now we introduce some additional operators depending on a
parameter λ . For any λ with Reλ > 0, we define the following three operators

A λ
1 h =−∂ 2

x h−
(∫

µedv
)

h+
∫

µe

∫ 0

−∞
λeλ sh(X(s))dsdv,
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A λ
2 h =−∂ 2

x h+λ 2h−
(∫

v̂2µpdv
)

h−
∫

v̂2µe

∫ 0

−∞
λeλ sV̂2(s)h(X(s))dsdv,

Bλ h =
(∫

µpdv
)

h+
∫

µe

∫ 0

−∞
λeλ sV̂2(s)h(X(s))dsdv.

We will show that A λ
1 is invertible on the range of Bλ , so that the operator

L λ = (Bλ )∗(A λ
1 )−1Bλ +A λ

2 .

is also well-defined.

Lemma 2.4. Assume λ > 0.
(i) The operators A λ

j ,A 0
j ,L λ and L 0 ( j = 1,2) are self-adjoint on L2

P with the
common domain H2

P. Their spectra are discrete.
(ii) A λ

1 ≥ 0 for all λ ≥ 0.
(iii) The nullspace N(A λ

1 ) consists of the constant functions. The inverse (A λ
1 )−1

is bounded from {h ∈ L2
P |

∫ P
0 hdx = 0}= N(A λ

1 )⊥ ⊃ R(Bλ ) into H2
P.

(iv) If ψ0,φ 0 are even functions, then the operators A λ
j ,A 0

j ,L λ and L 0 preserve
parity ( j = 1,2).

Proof. We first claim that A λ
j + ∂ 2

x and Bλ are bounded operators on L2
P for all

λ ≥ 0. For instance, for λ = 0 a typical one of these operators L is estimated as

(Lh,k) =
∫∫

µePhdv · kdx≤
(∫

sup
x
|µe|dv

)
‖h‖‖k‖ ≤C‖h‖‖k‖

by the decay assumption on µe. For λ > 0, a typical one of these operators L is
given by

(Lh,k) =
∫∫∫

λeλ sµeh(X(s))k(x)dsdvdx.

We use Schwarz’ inequality and then, in the factor involving h(X(s)), we use the
change of variables x,v 7→ X ,V which has Jacobian = 1. Thereby we obtain

(Lh,k)≤
(∫

sup
x
|µe|dv

)
‖h‖‖k‖ ≤C‖h‖‖k‖.

The other operators L have extra factors of v̂2 and V̂2, which do not change the
estimates.

Secondly, we prove the symmetry of the operators A . Of course, −∂ 2
x is sym-

metric (and unbounded). In order to prove the symmetry of A 0
2 , we notice that

∫∫
v̂2µeP(v̂2h)dv · kdx =

∫∫
µeP (v̂2h)P(v̂2k)dvdx ,
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which is clearly symmetric in h and k, because of the definition of P . In order to
prove the symmetry of A λ

2 , we calculate
∫∫∫

λeλ sv̂2µeV̂2(s;x,v)h(X(s;x,v))dsdv · k(x)dx

=
∫∫∫

λeλ sµeh(y)ŵ2V̂2(−s;y,w)k(X(−s;y,w))dsdwdy,

where we have changed variables y = X(s;x,v),w = V (s;x,v) and used the invari-
ance of e and p and hence of µe. Notice that X(−s;y,−w1,w2) = X(s;y,w1,w2),
−V1(−s;y,−w1,w2) =V1(s;y,w1,w2) and V2(−s;y,−w1,w2) =V2(s;y,w1,w2). So
we can change w1 7→ −w1,w2 →+w2,y 7→+y to obtain

∫∫∫
λeλ sµeh(y)ŵ2V̂2(s;y,w)k(X(s;y,w))dsdwdy.

If we replace y,w by x,v, this is the symmetric expression that we desired. The
symmetry of A λ

1 is proven in the same way by omitting the v̂ factors.
However, the operators Bλ are not symmetric. But by almost the same calcu-

lation, we find the formula for the adjoint of Bλ as

Bλ∗h =
∫

µpdvh+
∫

v̂2µe

∫ 0

−∞
λeλ sh(X(s))dsdv(2.10)

=
∫

v̂2µe

{
−h+

∫ 0

−∞
λeλ sh(X(s))ds

}
.

Thirdly, we prove the discreteness of the spectra of the A λ
j . All of the bounded

operators discussed above are relatively compact, that is, relative to the operator
∂ 2

x . By the Kato-Rellich Theorem, A λ
j are self-adjoint with domain H2

P for j = 1,2
and λ ≥ 0. By Weyl’s Theorem, these operators have the same essential spectra as
−∂ 2

x . Since the latter has purely discrete spectrum, so do the operators A λ
j .

Fourthly, we prove (ii). For λ > 0, we have (A λ
1 h,h) = I + II + III where

I =
∫
(∂xh)2dx≥ 0, II =

∫∫ |µe|h2dvdx≥ 0 and

|III| ≤
∫∫∫

λeλ s|µe||h(X(s))||h(x)|dsdvdx

≤
∫

λeλ s
{∫∫

|µe||h(X(s))|2dvdx
} 1

2
{∫∫

|µe||h(x)|2dvdx
} 1

2

ds

=
∫ 0

−∞
λeλ sds

∫∫
|µe||h(x)|2dvdx = II.

Thus (A λ
1 h,h) ≥ ∫

(∂xh)2dx ≥ 0 for all h ∈ L2
P. In case λ = 0, we write A 0

1 =
I + II + III in the same way and estimate

|III|=
∫∫

|µe| |P(h)|2dvdx≤
∫∫

|µe| |h|2 dvdx = II.

This proves (ii).
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Fifthly, we prove (iii). By the inequality just above, N(A λ
1 ) ⊂ {constants}.

On the other hand, a direct calculation shows that A λ
1 1 = 0 for all λ ≥ 0. Thus

N(A λ
1 ) = {constants} and 1⊥ = {h∈ L2

P |
∫ P

0 hdx = 0}. Since the spectrum of A λ
1

is discrete, it follows that the restriction of A λ
1 to 1⊥ is invertible. Now it is easy

to see that R(Bλ )⊂ 1⊥. Indeed, for λ > 0,
∫ P

0
Bλ hdx =−

∫∫
v̂2µehdvdx+

∫∫∫
µeλeλ sV̂2h(X(s))dsdvdx

=−
∫∫

v̂2µehdvdx+
∫∫∫

µeλeλ sv̂2h(x)dsdvdx = 0.

A similar proof is valid in the case λ = 0. This proves (iii). The self-adjointness
and discrete spectrum of L λ for any λ ≥ 0 follows immediately for the same
reasons as above.

Finally, to prove (iv), first we observe that if ψ0,φ 0 are even in [0,P], then
(2.11)
(X(t;P− x,−v1,v2),V (t;P− x,−v1,v2)) = (P−X(t;x,v),−V1(t;x,v),V2 (t;x,v)).

So if h is even, then for a typical nonlocal term appeared in the definition of
A λ

j ,Bλ ,L λ

K h =
∫

µe

∫ 0

−∞
λeλ sh(X(s))dsdv

we have

K h(P− x) =
∫

µe

∫ 0

−∞
λeλ sh(X(s;P− x,−v1,v2))dsdv

=
∫

µe

∫ 0

−∞
λeλ sh(P−X(s;x,v))dsdv (by (2.11))

=
∫

µe

∫ 0

−∞
λeλ sh(X(s;x,v))dsdv = K h(x) .

By the same calculation, K h is odd is h is odd, so K preserves parity. Similarly,
we can show that the operators A λ

j ,L λ preserve parity. By the proof of Lemma
2.6 below, A λ

j ,Bλ ,L λ converge to A 0
j ,B0,L 0 strongly, so A 0

j ,B0,L 0 also
preserve parity. ¤

The following lemma explains why we introduced the operators discussed above.

Lemma 2.5. Assume that ψ0,φ 0 are even periodic functions. If L λ has a non-
trivial nullspace of even functions for some λ > 0, then there exists a purely grow-
ing mode of (2.6), (2.8).

Proof. Assume 0 6= ψ ∈ H2
P is such that L λ ψ = 0 and ψ is even. We define

φ = (A λ
1 )−1Bλ ψ then clearly φ ∈ H2

P and φ is even by Lemma 2.4. Define f as

(2.12) f (x,v) =−µeφ(x)−µpψ(x)+ µe

∫ 0

−∞
λeλ s [φ(X(s))−V̂2(s)ψ(X(s))

]
ds.
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From (2.12) it is obvious that f ∈ L2
x,v∩L1

x,v ,
∫∫

f dxdv =
∫∫

(−µeφ(x)−µpψ(x))dxdv

+
∫ 0

−∞
λeλ s

∫∫
µe

[
φ(X(s))−V̂2(s)ψ(X(s))

]
dxdvds

=
∫∫

(−µeφ(x)−µpψ(x))dxdv+
∫ 0

−∞
λeλ s

∫∫
µe [φ(x))− v̂2ψ(x)]dxdvds

=
∫∫

(−µeφ(x)−µpψ(x))dxdv+
∫∫

µe [φ(x))− v̂2ψ(x)]dxdv = 0.

We also have
∫

j1dx =
∫∫

v̂1 f dxdv = 0, since as in the proof of Lemma 2.4 (iv)

j1 (P− x)

=
∫

v̂1µe

∫ 0

−∞
λeλ s [φ(X(s;P− x,v1,v2))−V̂2(s;P− x,v1,v2)ψ(X(s;P− x,v1,v2))

]
dsdv

=−
∫

v̂1µe

∫ 0

−∞
λeλ s [φ(X(s;P− x,−v1,v2))−V̂2(s;P− x,−v1,v2)ψ(X(s;P− x,−v1,v2))

]
dsdv

=−
∫

v̂1µe

∫ 0

−∞
λeλ s [φ(P−X(s;x,v1,v2))−V̂2(s;x,v1,v2)ψ(P−X(s;x,v1,v2))

]
dsdv

=−
∫

v̂1µe

∫ 0

−∞
λeλ s [φ(X(s))−V̂2(s)ψ(X(s))

]
dsdv =− j1 (x) .

In [25] we show that although the function f may not be differentiable everywhere,
we have f ∈W 1,1

x,v . Here we use this fact, which follows by the same proof as in
[22]; see also Lemma 5 in [25]. Define

B = ∂xψ, E2 =−λψ, E1 =−∂xφ .

We shall show that [eλ t f (x,v),eλ tE(x),eλ tB(x)] is a growing mode satisfying the
linearized system (2.6), (2.8). This is equivalent to checking that [ f (x,v),E(x),B(x)]
satisfy

(2.13) λ f +D f =−µev̂1∂xφ −µpv̂1∂xψ− (λ µev̂2 +λ µp)ψ.

and

(2.14) ∂xE1 = ρ, λE1 =− j1, λE2 +∂xB =− j2, λB+∂xE2 = 0

with ρ = −∫
f dv and ji = −∫

v̂i f dv. By definition, A λ
1 φ = Bλ ψ and A λ

2 ψ +(
Bλ )∗ φ = 0, which implies that ∂xE1 =−∂ 2

x φ =−∫
f dv = ρ and λE2 +∂xB =

∂ 2
x ψ −λ 2ψ =

∫
v̂2 f dv = − j2, according the formula (2.12) and the definition of

A λ
i ,Bλ . We also have λB+∂xE2 = λ∂xψ−λψx = 0. Thus three of the four equa-

tions in (2.14) are true. To check (2.13), we look at (2.12) at the point (X(t),V (t)),
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as follows.

f (X(t),V (t))

=−µeφ(X(t)−µpψ(X(t)

+ µe

∫ 0

−∞
λeλ s [φ(X(s;0,X(t),V (t)))−V̂2(s;0,X(t),V (t))ψ(X(s;0,X(t),V (t)))

]
ds

=−µeφ(X(t)−µpψ(X(t)+ µe

∫ 0

−∞
λeλ s [φ(X(t + s))−V̂2(t + s)ψ(X(t + s))

]
ds

=−µeφ(X(t)−µpψ(X(t)+ µee−λ t
∫ t

−∞

(
∂
ds

(
eλ s

)
φ(X(s))−λeλ sV̂2(s)ψ(X(s))

)
ds

=−µpψ(X(t)−µee−λ t
∫ t

−∞

(
eλ s ∂φ(X (s))

∂ s
+λeλ sV̂2(s)ψ(X(s))

)
ds.

Thus
eλ t f (X(t),V (t))

=
∫ t

−∞
− ∂

∂ s

{
eλ sµpψ(X (s))

}
−µe

(
eλ s ∂φ(X (s))

∂ s
+λeλ sV̂2(s)ψ(X(s))

)
ds.

Differentiating this expression, we have
d
dt

{
eλ t f (X(t),V (t))

}

=− ∂
∂ t

{
eλ t µpψ(X (t))

}
− eλ t µe

∂φ(X (t))
∂ t

−λeλ t µeV̂2 (t)ψ(X (t)),

which is equivalent to (2.13). Finally, we still need to check the equation λE1 =
− j1. Integrating (2.13) in v, we get λρ + ∂x j1 = 0 since all the other terms
have vanishing integrals in either x or v. Combining it with ∂xE1 = ρ , we have
∂x (λE1 + j1) = 0, which implies that λE1 =− j1 since

∫ P

0
E1dx =−

∫ P

0
j1dx = 0.

This completes the proof of Lemma 2.5. ¤

Lemma 2.6. If L 0 6≥ 0, then there exists λ > 0 such that L λ has a non-trivial
nullspace. In particular, if L 0 has an even eigenfunction corresponding to a neg-
ative eigenvalue, then L λ has a non-trivial even nullspace for some λ > 0.

Proof. We first claim that L λ ≥ 0 for sufficiently large λ . Indeed, A λ
1 ≥ 0 so that

(Bλ )∗(A λ
1 )−1Bλ ≥ 0. Now let us write A λ

2 h =−∂ 2
x h+λ 2h− (

∫
v̂2µpdv)h+Ξ,

where (as in the proof of Lemma 2.4)

‖Ξ‖=
∥∥∥∥
∫

v̂2µe

∫ 0

−∞
λeλ sV̂2(s)h(X(s))dsdv

∥∥∥∥≤C‖h‖

with a constant C independent of λ . Thus there is a constant C′ such that (A λ
2 h,h)≥

λ 2(h,h)−C′(h,h)≥ 0 for large λ .
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Secondly we claim that

lim
λ↘0

∫ 0

−∞
λeλ sm(X(s),V (s))ds = Pm

in the norm of L2
|µe| for all m ∈ L2

|µe|. Indeed, letting M denote the spectral measure
of the self-adjoint operator R = −iD in the space L2

|µe|, we have m(X(s),V (s)) =
exp(sD)m = exp(isR)m , so that
∫ 0

−∞
λeλ sm(X(s),V (s))ds =

∫ 0

−∞
λeλ s

∫

R
eiαsdM(α)m ds =

∫

R

λ
λ + iα

dM(α)m.

On the other hand, the projection is P = M({0}) =
∫
R χdM where χ(α) = 0 for

α 6= 0 and χ(1) = 0. Therefore
∥∥∥∥
∫ 0

−∞
λeλ sm(X(s),V (s))ds−Pm

∥∥∥∥
2

L2
|µe|

=
∫

R

∣∣∣∣
λ

λ + iα
−χ(α)

∣∣∣∣
2

d‖M(α)m‖2
L2
|µe|

by orthogonality of the spectral projections. By the dominated convergence theo-
rem this expression tends to 0 as λ → 0, as we wished to prove.

Thirdly we claim that L λ −L 0 → 0 strongly as λ → 0. Indeed, for all h ∈ L2
P,

A λ
2 h−A0

2h =−
∫

v̂2µe

∫ 0

−∞
λeλ s {V̂2(s)h(X(s))−P(v̂2h)

}
dsdv

so that

‖A λ
2 h−A 0

2 h‖2 ≤C
∫∫ [∫ 0

−∞
λeλ s {V̂2(s)h(X(s))−P(v̂2h)

}
ds

]2

|µe| dvdx

= C
∥∥∥∥
∫ 0

−∞
λeλ s{m(X(s),V (s))−Pm}ds

∥∥∥∥
2

L2
|µe|

where m(x,v) = v̂2h(x) and C = supx
∫ |µe|dv. By the second claim, ‖A λ

2 h−
A0

2h‖ → 0 as λ → 0. By essentially the same proof, A λ
1 also tends strongly to

A 0
1 and Bλ to B0. It follows that L λ tends strongly to L 0. From the hypothesis

L 0 6≥ 0, it now follows that L λ 6≥ 0 for sufficiently small λ .
Fourthly we claim that, for σ > 0, ‖L λ h−L σ h‖ → 0 as λ → σ . Indeed,

estimating as in the proof of Lemma 2.4,

|(A λ
2 h,k)− (A σ

2 h,k)| ≤
∫∫∫

|(λeλ s−σeσs)µeh(X(s)|dsdv|k(x)|dx

≤C‖h‖‖k‖
∫ 0

−∞
|λeλ s−σeσs|ds

≤C‖h‖‖k‖| logλ − logσ | → 0.

Thus ‖A λ
2 h−A σ

2 h‖ → 0. Similarly, ‖A λ
1 h−A σ

1 h‖+ ‖Bλ h−Bσ h‖ → 0. It
follows from Lemma 2.4 that ‖(A λ

1 )−1h− (A σ
1 )−1h‖ → 0 and hence ‖L λ h−

L σ h‖→ 0.
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Finally suppose that L 0 has a smallest negative eigenvalue κ0. By the third
claim L λ also has a smallest negative eigenvalue κλ for λ small enough. Because
of the self-adjointness,

κλ = inf
h∈H2

P,‖h‖=1
(L λ h,h)

is the smallest eigenvalue of L λ for every λ . By the fourth claim κλ is a contin-
uous function of λ > 0. But we now know that κλ < 0 for small λ , while κλ > 0
for large λ . Therefore κλ = 0 for some λ > 0 and L λ has a nontrivial kernel. If
L 0 has an even eigenfunction corresponding to a negative eigenvalue, by Lemma
2.4 (iv) we can restrict all operators in the space of even functions. Then repeating
above proof, we get a nontrivial even kernel of L λ for some λ > 0. This completes
the proof of Lemma 2.6. ¤

Theorem 2.2 on the existence of growing modes follows immediately by com-
bining Lemma 2.5 and Lemma 2.6.

2.2 Invariants
In order to prove Theorem 2.1(i) on spectral stability, we will introduce the tem-

poral invariants of the system. First we briefly discuss the well-posedness of the
Cauchy problem for the linear system with periodic boundary conditions. Denote
by L the linearized operator corresponding to the linearized Vlasov-Maxwell sys-
tem (2.6), (2.8) excluding the constraint equation ∂xE1 =−ρ . That is, ( f (t) ,E (t) ,B(t))=
etL ( f (0) ,E (0) ,B(0)) is the solution to the linearized system and the constraint
∂xE1 =−ρ is clearly preserved in time. Define

L1 = L1
x,v×

(
L1

P
)3

, W 1,1 = W 1,1
x,v ×

(
W 1,1

P

)3
,

where W 1,1
P is the space of P−periodic functions in W 1,1

x . By Lemma 8 of [25], the
semigroup etL is well-defined from L1 to L1. Furthermore, it is also easy to prove
that etL is well defined from W 1,1 to W 1,1.

We consider initial data ( f (0) ,E (0) ,B(0)) ∈W 1,1 with the set of constraints

C =
{∫∫

f (0)dvdx = 0, ∂xE1 (0) =−
∫

f (0)dv and
∫

B(0)dx = 0
}

,

which are clearly preserved for all time, for any solution of the linearized system
(2.6), (2.8). Since

∫
B(t)dx = 0, we can define a periodic magnetic potential ψ (t)

such that B(t) = ∂xψ (t). Now we are ready to define the functional

(2.15) J( f ,E1,ψ) =
∫∫ 1

|µe|( f + µpψ)2dvdx+
∫

[E1]2dx.

In the following discussion we consider initial data ( f (0) ,E (0) ,B(0))∈W 1,1 with
the constraint C and J( f (0) ,ψ (0)) < ∞.

Remark. It is important for our discussion that any possible growing mode(
eλ t fg (x,v) ,eλ tEg,eλ tBg

)
with fg ∈ L1

x,v and Eg,Bg ∈ L2
P satisfies these conditions.
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Indeed, by the regularity result mentioned in the proof of Lemma 2.5, we have
( fg,Eg,Bg) ∈W 1,1. Also

∫
eλ tBgdx and

∫ ∫
eλ t fgdvdx are constant in time, which

forces
∫ ∫

fgdvdx =
∫

Bg = 0. So ( fg,Eg,Bg) ∈ C . So there exists a periodic mag-
netic potential ψg such that Bg = ∂xψg,Eg2 =−λψg. We now check J( fg,ψg) < ∞.
From the linearized Vlasov equation, we have

λ fg +D fg = µev̂1Eg1−µpv̂1∂xψg− (λ µev̂2 +λ µp)ψg.

Along the particle trajectory (X(s),V (s)), we have

{
V̂1∂xψg(X(s))+λψg(X(s))

}
eλ s =

∂
∂ s

{
eλ sψg(X(s)

}
.

On almost every trajectory, f (X(s),V (s)) is a bounded function of s so that, upon
integration,
(2.16)

fg(x,v) =−µpψg(x)+ µe

∫ 0

−∞
eλ s (V̂1 (s)Eg1(X(s))−λV̂2(s)ψg(X(s))

)
ds.

So we can extract the factor µe from fg +µpψg, which implies that J( fg,E1g,ψg) <
∞. ¤

Here are the invariants.

Lemma 2.7. Consider initial data ( f (0) ,E (0) ,B(0))∈ L1 in the constraint set C
satisfying J( f (0),E1(0),ψ (0)) < ∞. The functional

(2.17) I( f ,E1,ψ) = J( f ,E1,ψ)−
∫∫

v̂2µpψ2dvdx+
∫

[(∂tψ)2 +(∂xψ)2]dx

is independent of t for the solution of the linearized system (2.6), (2.8) with such
initial data. Furthermore, for all g ∈ kerD, the functionals

(2.18) Kg( f ,ψ) =
∫∫

[ f +(v̂2µe + µp)ψ] g dvdx

are also independent of t.

Proof. By a standard approximation we may assume that the solution is smooth.
We calculate

1
2 ∂tI

=
∫∫ 1

|µe|( f + µpψ)(∂t f + µp∂tψ)dvdx

−
∫∫

v̂2µpψ∂tψdvdx+ 1
2

∫
∂t [(E1)2 +(∂tψ)2 +(∂xψ)2]dx

=
∫∫ 1

|µe|( f + µpψ){−D f + µev̂1E1−µpv̂1∂xψ−µev̂2∂tψ}−
∫∫

v̂2µpψ∂tψdvdx

+
∫ {

E1

∫
v̂1 f dv+∂tψ

(
∂ 2

x ψ−
∫

v̂2 f dv
)

+∂xψ∂x∂tψ
}

dx
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by (2.6) and (2.8). In this expression three terms vanish because D is skew and
v̂1µe, v̂1µp and v̂1µ2

p/µe are odd functions of v1. Furthermore, eight other terms
cancel pairwise. We end up with

1
2 ∂tI =−

∫∫ µp

|µe|{v̂1 f ∂xψ +ψ D f}dvdx =
∫∫

D
{

µp

|µe| f ψ
}

dvdx = 0.

This proves the invariance of I. Next let g ∈ kerD. Then by (2.6),

∂tKg =
∫∫

{∂t f +(µev̂2 + µp)∂tψ} gdvdx

=
∫∫

{−D f −µev̂1E1−µpv̂1∂xψ} gdvdx = 0

because the first term is−D( f g) while the second and third terms are odd functions
of v̂1. ¤

Next we get a lower bound for the functional J defined in (2.15).

Lemma 2.8. For any E1,ψ ∈ L2
P and f ∈ L1

x,v with
∫∫

f dvdx = 0, ∂xE1 =−
∫

f dv, J( f ,E1,ψ) < ∞, ( f +(v̂2µe + µp)ψ,g) = 0

∀g ∈ kerD, we have

(2.19) J( f ,E1,ψ)≥
∫∫

|P(v̂2ψ)|2 |µe|dvdx+((B0)∗(A 0
1 )−1B0ψ,ψ).

Proof. Our strategy is to fix ψ and to minimize J over all f and E1 satisfying the
conditions of the lemma. By means of a minimizing sequence, it follows easily that
for each ψ there exists a minimum of J( f ,E1,ψ). Call the minimizer ( f ψ ,Eψ

1 ). It
satisfies

0 =
〈 ∂J

∂ f
( f ψ ,Eψ

1 ,ψ), f
〉

+
〈 ∂J

∂E1
( f ψ ,Eψ

1 ,ψ),E1

〉

= 2
∫∫

( f ψ + µpψ) f
dvdx
|µe| +2

∫
Eψ

1 E1dx

for all test function pairs ( f ,E1) in the constraint set C . Let kψ = 1
P

∫ P
0 Eψ

1 dx
and k = 1

P

∫ P
0 E1dx. Since Eψ

1 − kψ is periodic with zero mean, there is a periodic
function φ ψ such that Eψ

1 = kψ −∂xφ ψ . Then
∫ P

0
Eψ

1 E1dx =
∫ P

0
(kψ −∂xφ ψ)E1dx

= Pkψk +
∫ P

0
φ ψ∂xE1dx = Pkψk−

∫ P

0

∫
φ ψ f dvdx.

Thus the minimizer satisfies

0 =
∫∫ f ψ + µpψ−|µe|φ

|µe|
f
|µe| |µe|dvdx+Pkψk.
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We can choose the test function f so that the integral vanishes. Since k is arbitrary,
it follows that kψ = 0 and hence

f ψ + µpψ + µeφ ψ

µe
∈ (kerD)⊥⊥ = kerD = kerD.

Writing this result in terms of the projection P onto kerD, we have (I −
P)(( f ψ + µpψ + µeφ ψ)/µe) = 0 and the constraint is equivalent to P(( f ψ +
µpψ + v̂2µeψ)/µe) = 0. We add to obtain

(2.20) f ψ + µpψ + µeφ ψ = µeP(−v̂2ψ +φ ψ).

Therefore since
∫
(µp + µev̂2)dv =

∫
∂ µ/∂v2dv = 0,

∂ 2
x φ ψ =

∫
f ψdv =

∫
[ f ψ +(µp + µev̂2)ψ]dv =

∫
µe(1−P)(−φ ψ + v̂2ψ)dv.

Thus

∂ 2
x φ ψ +

∫
µedvφ ψ −

∫
µeP(φ ψ)dv =−

∫
µpdvψ−

∫
µeP(v̂2ψ)dv,

which means that

(2.21) −A 0
1 φ ψ =−B0ψ.

The equations (2.20) and (2.21) are satisfied by the minimum. It follows from
(2.20) that

J( f ψ ,ψ) =
∫∫ 1

|µe|( f ψ + µpψ)2dvdx+
∫

(∂xφ ψ)2 dx

=
∫∫

|µe| [−φ ψ +P(−v̂2ψ +φ ψ)]2 dvdx+
∫

(∂xφ ψ)2 dx

=
∫∫

|µe|[(I−P)(φ ψ)]2dvdx+
∫∫

|µe|[P(v̂2ψ)]2dvdx+
∫

(∂xφ ψ)2 dx

by orthogonality. The first term in the last expression can be rewritten as
∫

φ ψ
{∫

|µe|(I−P)(φ ψ)dv
}

dx =
∫

φ ψ
{
−

∫
µedvφ ψ +

∫
µeP(φ ψ)dv

}
dx.

So from the definition of A 0
1 , the functional J equals

J( f ψ ,ψ) =
∫∫

|µe|[P(v̂2ψ)]2dvdx+(φ ψ ,A 0
1 φ ψ)

at the minimum. By (2.21) the last term equals

(B0ψ,
(
A 0

1
)−1

B0ψ) = (
(
B0)∗ (A 0

1
)−1

B0ψ,ψ).

¤
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Proof of Theorem 2.1 (i). To prove spectral stability, suppose there is a growing
mode [eλ t f ,eλ tE,eλ tB] with Reλ > 0. Later we will show that λ must be real
and positive. We assume this here. We must prove that L 0 6≥ 0. As mentioned
in the remark before Lemma 2.7, both the mean of B and the mean of f vanish.
We also have J ( f ,E1,ψ) < ∞ where ψ is the periodic magnetic potential such that
B = ∂xψ . By (2.17) and (2.18), we get exponential growth in time unless

I( f ,E1,ψ) = 0 and f +(v̂2µe + µp)ψ ∈ (kerD)⊥ .

Thus Lemma 2.8 is applicable. We deduce from (2.17) and (2.19) that

0 = I( f ,ψ)

≥ ((B0)∗(A 0
1 )−1B0ψ,ψ)

+
∫∫ {|µe||P(v̂2ψ)|2− v̂2µpψ2}dvdx+

∫
{λ 2ψ2 +(∂xψ)2}dx

= ((B0)∗(A 0
1 )−1B0ψ,ψ)+(A 0

2 ψ,ψ)+λ 2(ψ,ψ).

Thus
(L 0ψ +λ 2ψ,ψ)≤ 0.

Since λ > 0 and ψ 6= 0, it is impossible if L 0 ≥ 0. This proves the spectral stability
when L 0 ≥ 0. ¤

2.3 Splitting Method
In the following discussion we introduce a new invariant, based on the splitting

of f into even and odd parts. It will provide more information on the nature of
the instability. First we will use the invariant to prove that every growing mode is
real. Secondly, in the unstable case when L 0 has a negative eigenvalue, we will
get an upper bound of the growth rate which we believe is sharp. These are stated
as Theorem 2.1 (ii), (iii).

The derivation of the invariant is based on the splitting of the electron density
f into its even and odd parts in the variable v1:

f = fev + fod , where fev(x,v1,v2) = 1
2{ f (x,v1,v2)+ f (x,−v1,v2)}.

The operator D takes even functions into odd ones, and vice versa. So we can
eliminate fev from the linearized Vlasov equation and thereby obtain a second-
order equation for fod , as follows:

(2.22) (∂ 2
t −D2) fod =−µeD(E2v̂2)+

(∫
v̂1 fod dv

)
v̂1µe,

where of course D is given by (2.7). In order to derive (2.22), we equate the even
and odd parts of the linearized Vlasov equation (2.6) to obtain

(2.23) ∂t fod +D fev = (E1 + v̂2B)∂v1 f 0− v̂1B∂v2 f 0

and

(2.24) ∂t fev +D fod = E2∂v2 f 0.



LINEAR STABILITY AND INSTABILITY OF RVM 23

Eliminating fev, we find

∂ 2
t fod −D2 fod

=−D(E2∂v2 f 0)+(∂tE1 + v̂2∂tB)∂v1 f 0− v̂1∂tB∂v2 f 0

=−D[E2(v̂2µe + µp)]+
(∫

v̂1 foddv− v̂2∂xE2

)
+ v̂1∂xE2(v̂2µe + µp)

=−µeD(E2v̂2)+
(∫

v̂1 fod dv
)

v̂1µe,

which is (2.22). This has the appearance of a second-order wave equation. It is
convenient to rewrite it as

(2.25) {∂ 2
t −D2}

(
fod

|µe|
)

= D(E2v̂2)−
(∫

v̂1 fod dv
)

v̂1.

In the next lemma we derive the energy invariant.

Lemma 2.9. Define the “kinetic” and “potential” energies by

K =
∫∫ 1

|µe| |∂t fod |2 dvdx+
∫
|∂tE2|2 dx

and

W =
∫∫ 1

|µe| |D fod −µev̂2E2|2 dvdx+
∫
|∂xE2|2 dx

+
∫ ∣∣∣∣

∫
v̂1 foddv

∣∣∣∣
2

dx−
∫∫

µpv̂2 |E2|2 dvdx.

Then K +W is independent of t for any complex-valued solution. Some regularity
is required but it is true in particular for any growing mode.

Proof. By approximation we can assume that the solution is as smooth as we wish.
We begin with (2.8):

(2.26) ∂xE1 =−
∫

f dv, ∂tE1 =
∫

v̂1 f dv,

∂tE2 +∂xB =
∫

v̂2 f dv, ∂tB+∂xE2 = 0.

We denote the complex conjugate of f by f ∗. Multiplying (2.25) by ∂t f ∗od , inte-
grating over x and v and taking the real part, we find

1
2

d
dt

∫∫ |∂t fod |2 + |D fod |2
|µe| dvdx

=−Re
∫∫

E2v̂2∂tD f ∗oddvdx− 1
2

d
dt

∫ ∣∣∣∣
∫

v̂1 foddv
∣∣∣∣
2

dx.
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The first term on the right is

−Re
∫∫

E2v̂2∂tD f ∗oddvdx

=− d
dt

Re
∫∫

E2v̂2D f ∗oddvdx+Re
∫∫

(∂tE2)v̂2D f ∗oddvdx.

Substituting D fod = E2∂v2 f 0−∂t fev, we have

Re
∫∫

(∂tE2)v̂2D f ∗oddvdx

=
1
2

d
dt

∫
|E2|2

∫
v̂2∂v2 f 0dvdx−Re

∫
∂tE2 ∂t(∂tE∗2 +∂xB∗)dx

=
1
2

d
dt

∫
|E2|2(v̂2

2µe + µp)dvdx− 1
2

d
dt

∫
|∂tE2|2dx− 1

2
d
dt

∫
|∂xE2|2dx

by (2.26). Combining these identities, we obtain dK/dt +dW/dt = 0. ¤

Another important identity is the following.

Lemma 2.10.

d2

dt2

{
1
2

∫∫ 1
|µe| | fod |2 dvdx+

1
2

∫
|E2|2 dx

}
= K−W

for any complex-valued solution. Some regularity is required but it is true in par-
ticular for any growing mode.

Proof. We now multiply (2.25) by f ∗od , integrate and take the real part. The first
term on the left gives

Re
∫∫

∂ 2
t

{
fod

|µe|
}

f ∗oddvdx =
d2

dt2
1
2

∫∫ | fod |2
|µe| dvdx−

∫∫ |∂t fod |2
|µe| dvdx.

The first term on the right in (2.25) gives, using (2.24), the real part of

∫∫
D(E2v̂2) f ∗oddxdv

(2.27)

=−
∫∫

E2v̂2D f ∗od =−2
∫∫

E2v̂2D f ∗od +
∫∫

E2v̂2(E∗2 ∂v2 f 0−∂t f ∗ev)

=−2
∫∫

E2v̂2D f ∗od +
∫∫

|E2|2 v̂2(v̂2µe + µp)dvdx−
∫

E2∂t

(∫
v̂2 f ∗evdv

)
dx

=−2
∫∫

E2v̂2D f ∗od +
∫∫

|E2|2 v̂2(v̂2µe + µp)dvdx−
∫

E2(∂ 2
t −∂ 2

x )E∗2 dx,



LINEAR STABILITY AND INSTABILITY OF RVM 25

using (2.26) at the last step. Combining all the terms from (2.25) multiplied by f ∗od ,
we find

d2

dt2
1
2

∫∫ | fod |2
|µe| dvdx

(2.28)

=
∫∫ |∂t fod |2

|µe| dvdx−
∫∫ |D fod |2

|µe| dvdx−2Re
∫∫

E2v̂2D f ∗oddvdx

+
∫∫

|E2|2 v̂2(v̂2µe + µp)dvdx−Re
∫

E2 ∂ 2
t E∗2 dx−

∫
|∂xE2|2−

∫ ∣∣∣∣
∫

v̂1 foddv
∣∣∣∣
2

dx.

Finally,

−Re
∫

E2∂ 2
t E∗2 dx =− d2

dt2
1
2

∫
|E2|2 dx+

∫
|∂tE2|2 dx.

Combining terms, we deduce Lemma 2.10. ¤

Remark. For any growing mode [eλ t f (x,v),eλ tE(x),eλ tB(x)] with Reλ > 0,
we show that (K +W )(0) < ∞ and thus Lemmas 2.9 and 2.10 are applicable. In-
deed, let ψ (x) be the magnetic potential such that E2 = −λψ and B = ∂xψ . By
(2.16),

f (x,v) =−µpψ(x)+ µe

∫ 0

−∞
eλ s (V̂1 (s)E1(X(s))−λV̂2(s)ψ(X(s))

)
ds

=−µpψ(x)+ µek (x,v) .

So fod = µekod (x,v) and fev =−µpψ(x)+ µekev (x,v). Thus by (2.24),

(2.29) D fod = E2 (v̂2µe + µp)−λ fev = µe (E2v̂2−λkev (x,v)) .

Because E,ψ ∈ L∞
P , k ∈ L∞ and µe ∈ L1

x,v, we have k (x,v) ∈ L2
|µe|, we have

∫∫ 1
|µe| | fod |2 dvdx+

∫∫ 1
|µe| |D fod −µev̂2E2|2 dvdx < ∞. ¤

Proof of Theorem 2.1 (ii), (iii). Suppose now that there exists a growing mode

[eλ t f (x,v),eλ tE(x),eλ tB(x)]
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with exponent λ = a+ ib,a > 0. By the Remark above, Lemmas 2.9 and 2.10 are
applicable. By (2.25) we have

∫∫
∂ 2

t

{
fod

|µe|
}

f ∗od dvdx+
∫∫ |D fod |2

|µe| dvdx

(2.30)

=
∫∫

D(E2v̂2) f ∗od dvdx−
∫ ∣∣∣∣

∫
v̂1 foddv

∣∣∣∣
2

dx

=−
∫∫

|E2|2 v̂2(v̂2µe + µp)dvdx+
∫

E2 ∂ 2
t E∗2 dx+

∫
|∂xE2|2−

∫ ∣∣∣∣
∫

v̂1 foddv
∣∣∣∣
2

dx

as in (2.27). From (2.30) we have

λ 2
∫∫ | fod |2

|µe| dvdx =−
∫∫ |D fod |2

|µe| dvdx−
∫∫

|E2|2 v̂2(v̂2µe + µp)dvdx

+(λ ∗)2
∫
|E2|2 dx+

∫
|∂xE2|2 +

∫ ∣∣∣∣
∫

v̂1 foddv
∣∣∣∣
2

dx.

Taking the imaginary part, we have

2ab

(∫∫ | fod |2
|µe| dvdx+

∫
|E2|2 dx

)
= 0,

which implies b = 0 as desired. This proves part (ii) of Theorem 2.1.
Now we take a growing mode, which is necessarily real. We claim that

W ≥ (L 0E2,E2).

To prove this claim, we apply Lemma 2.8 with ψ replaced by E2 and f replaced
by g ≡ D fod − (v̂2µe + µp)E2. There are several conditions to check. First, E2 ∈
L2

P. Secondly, g +(v̂2µe + µp)E2 = D fod ∈ kerD⊥. Thirdly, g has zero mean due
to the fact that v̂2µe + µp is the derivative of µ with respect to v̂2. Finally, by
(2.29),J (g,E2) < ∞. So, applying Lemma 2.8, we find that

W = J(g,E2)+
∫
|∂xE2|2dx−

∫∫
v̂2µp|E2|2dvdx

≥ ((B0)∗(A 0
1 )−1B0E2,E2)+

∫∫
|P(v̂2E2)|2|µe|dvdx

+
∫
|∂xE2|2dx−

∫∫
v̂2µp|E2|2dvdx = (L 0E2,E2),

by definition of L 0.
Thus letting

N =
1
2

∫∫ 1
|µe| | fod |2 dvdx+

1
2

∫
|E2|2 dx,
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we have W ≥ (L 0E2,E2)≥−α2 ∫ |E2|2dx≥−2α2N. Hence from Lemma 2.10

d2N
dt2 = K−W = K +W −2W ≤ c0 +4α2N

by Lemma 2.9. For a growing mode, we have N = exp(2λ t)N(0), so that 4λ 2 ≤
4α2 or λ ≤ α . This proves part (iii) of Theorem 2.1 and completes the proof of
Theorem 2.1. ¤

3 Linear Stability of Axisymmetric 3D RVM

In this section, we prove Theorem 1.1. The 3D RVM for a non-neutral electron
plasma with external fields is

∂t f + v̂ ·∇x f − (E+Eext + v̂× (
B+Bext)) ·∇v f = 0

∂tE−∇×B =
∫

v̂ f dv =−j

∂tB+∇×E = 0

∇ ·E =−
∫

f dv = ρ , ∇ ·B = 0

where x ∈ R3,v ∈ R3. We consider solutions of finite energy. Thus they vanish in
some sense as |x| → ∞.

We use the notation of the introduction. The equilibrium distribution function
is assumed to have the form f 0 = µ (e, p) , with

e =
√

1+ |v|2−φ 0 (r,z)−φ ext (r,z) ,

p = r
(
vθ −A0

θ (r,z)−Aext
θ (r,z)

)

and equilibrium fields

E0 =−∂rφ 0~er−∂zφ 0~ez, B0 =−∂zA0
θ~er +

1
r

∂r
(
rA0

θ
)
~ez,

with
(
A0

θ ,φ 0
)

satisfying the elliptic system (1.2), (1.3). We assume f 0 to have
compact support S in the (x,v) space and f 0,E0,B0 to be differentiable in the whole
space. Such an equilibrium is easily constructed in the appendix by choosing φ ext ,
Aext

θ and µ properly. We assume that µe < 0 on the set {µ > 0}.
We will consider axisymmetric perturbations only. Our results and methods in

this section are analogous to the 1 1
2 dimensional case. However, the problem of

constructing growing modes in 3D is more complicated and we do not discuss it
in this paper. The solutions now live in the whole space with vanishing boundary
conditions at infinity and this will bring in some new technical issues.

We introduce the vector potential A = Ar~er +Aθ~eθ +Az~ez and the scalar poten-
tial φ for the perturbation of electromagnetic fields, with Ar, Aθ , Az and φ indepen-
dent of θ . We impose the Coulomb gauge ∇ ·A = 0. (It is not necessarily true that
A and φ vanish at infinity.) The corresponding fields are

E =−∇φ −∂tA and B = ∇×A
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or

E = (Er,Eθ ,Ez) =
(
−∂rφ − ∂Ar

∂ t
, −∂Aθ

∂ t
, −∂zφ − ∂Az

∂ t

)
,

B = (Br,Bθ ,Bz) =
(
−∂zAθ , ∂zAr−∂rAz,

1
r

∂r (rAθ )
)

.

Then the linearized Vlasov equation becomes

(3.1) ∂t f +D f =−µeDφ −µev̂ ·∂tA− rµp∂tAθ −µpD(rAθ ) ,

where
D = v̂ ·∇x−

(
E0 +Eext + v̂× (

B0 +Bext)) ·∇v,

and the Maxwell equations become

(3.2) ∆φ =−ρ
together with the vector equation

(3.3)
∂ 2

∂ t2 A+
∂
∂ t

∇φ −∆A = j.

It is worthwhile to recall that ∆ = ∂ 2
z +∂ 2

r + 1
r ∂r + 1

r2 ∂ 2
θ , that the θ -component

of 1
r2 ∂ 2

θ A is − 1
r2 Aθ and that {∆A}θ 6= ∆{Aθ}. Let the spaces L2

S,H
2
S consist of the

cylindrically symmetric functions (functions of r and z only) in L2
(
R3

)
,H2

(
R3

)
.

Let

H2† =
{

ψ ∈ H2
S
(
R3) ∣∣∣ 1

r2 ψ ∈ L2 (
R3)

}

with the norm

‖ψ‖H2† = ‖ψ‖2
H2

P(R3) +
∥∥∥∥

1
r2 ψ

∥∥∥∥
2

L2
.

As pointed out to us by Fanghua Lin, for any function ψ (r,z) we have

(3.4) −∆
(

ψeiθ
)

=
(
−∂zzψ−∂rrψ− 1

r
∂rψ +

1
r2 ψ

)
eiθ .

Furthermore, ψ (r,z) ∈ H2†
(
R3

)
is equivalent to ψeiθ ∈ H2

(
R3

)
, because ψeiθ ∈

H2 implies that (1
r ∂θ )2(ψeiθ ) ∈ L2, which in turn implies 1

r2 ψ ∈ L2. Thus the
singular factor 1/r2 is artificial, introduced merely by the change of coordinates.
We can apply the usual elliptic regularity theorem to the operator −∂zz − ∂rr −
1
r ∂r + 1

r2 . This is important when we consider the regularity of the steady states
(in the appendix) and it will allow us to prove the continuity of steady fields in the
whole space. Recall that the 0−operators A 0

i ,B0,L 0 are defined by (1.4), (1.5),
(1.6) and (1.7). We shall prove that these operators are well-defined.

By a growing mode we mean a solution of the linearized axisymmetric system
of the form (eλ t fg(x,v),eλ tEg(x),eλ tBg(x)) with Reλ > 0 where Eg,Bg ∈ L2

S and
fg ∈ L1

xv∩L∞
xv.

In analogy with the 1 1
2 dimensional case, we also introduce the following op-

erators depending on a positive parameter λ . Even though we do not use these
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λ−operators to find growing modes in the 3D case, it is still worthwhile to study
them. On the one hand, they are more explicit than the 0−operators which are
their limits. On the other hand, the λ−operators will still be useful in the future
search for growing modes, as we can see from the 1 1

2 D case. First we introduce
the particle paths (X(t;x,v),V (t;x,v)), which are the characteristics of D. They are
defined as the solutions of the ODE

(3.5) Ẋ = V̂ , V̇ =−(
E0 +Eext)(X)−V̂ × (

B0 +Bext)(X)

with initial conditions X(0) = x, V (0) = v. Let λ > 0 and define

A λ
1 h =−∂zzh−∂rrh− 1

r
∂rh−

∫
µedvh+

∫
µe

∫ 0

−∞
λeλ sh(X (s))dsdv,

A λ
2 (h) =−∂zzh−∂rrh− 1

r
∂rh+

1
r2 h+λ 2h− rh

∫
v̂θ µpdv

−
∫

v̂θ µe

∫ 0

−∞
λeλ sV̂θ (s)h(X (s))dsdv,

Bλ (h) =
∫

µe

∫ 0

−∞
λeλ sV̂θ (s)h(X (s))dsdv−h

∫
v̂θ µedv

and

L λ =
(
Bλ

)∗(
A λ

1

)−1
Bλ +Aλ

2 ,

which will be shown to be well-defined. First we discuss the basic properties of
these λ−operators and 0−operators.

Lemma 3.1. (i) The operators A λ
1 ,A 0

1 are self-adjoint operators on L2
S with the

common domain H2
S . The operators A λ

2 ,A 0
2 ,L λ and L 0 : H2† → L2

S are self-
adjoint .
(ii) A λ

1 > 0 for all λ ≥ 0.
(iii) The essential spectrum of each of the operators A λ

1 ,A 0
1 ,A 0

2 ,L 0 is [0,∞) and
the essential spectrum of both of the operators A λ

2 ,L λ is [λ 2,∞) .
(iv) L λ →L 0 strongly in L2

S.

Proof. First we show that the operators A λ
i ,A 0

i ,L λ and L 0 map a cylindrically
symmetric function to another cylindrically symmetric function. It can be checked
directly that the particle trajectory (3.5) has the property

(X(t;Rx,Rv),V (t;Rx,Rv)) = (RX(t;x,v),RV (t;x,v))
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for any matrix R representing a rotation with respect to the z-axis. So
∫

µe

∫ 0

−∞
λeλ sφ (X (s;Rx,v))dsdv =

∫
µe

∫ 0

−∞
λeλ sφ (X (s;Rx,Rv))dsdv

=
∫

µe

∫ 0

−∞
λeλ sφ (RX (s;x,v))dsdv

=
∫

µe

∫ 0

−∞
λeλ sφ (X (s;x,v))dsdv

and thus A λ
1 is symmetry preserving. Similarly A λ

2 ,Bλ ,L λ can be proved to be
symmetry preserving. As in the proof of Lemma 2.6, A λ

1 ,A λ
2 ,Bλ converge to

A 0
1 ,A 0

2 ,B0 strongly, so A 0
1 ,A 0

2 ,B0 and L 0 are also symmetry preserving.
The proofs of self-adjointness of these operators and the positivity of the oper-

ators A λ
1 ,A 0

1 are essentially the same as in the 1 1
2 D case, so we skip them here. It

is also easy to see that Bλ and B0 are bounded operators on L2
S. We concentrate

on part (iii) of the lemma, dealing with the essential spectra of the operators.
The spectra are entirely different from the periodic 1 1

2 D case because of the
unboundedness of the spatial variables. To find their essential spectra, we shall use
Weyl’s theorem. Define

Kλ φ =
∫

µedvφ −
∫

µe

∫ 0

−∞
λeλ sφ (X (s))dsdv.

Note that A λ
1 =−∆−K λ and Kλ ≤ 0, as in the proof of Lemma 2.4.

We claim that Kλ is relatively compact with respect to −∆. For the proof in
case λ > 0, we notice that Kλ φ =

∫
f dv where f = µeφ −µe

∫ 0
−∞ λeλ sφ (X (s))ds

satisfies the equation

(3.6) λ f +
(
v̂ ·∇x−

(
E0 +Eext + v̂× (

B0 +Bext)) ·∇v
)

f = µev̂ ·∇xφ ,

which can be seen by considering (3.6) along a trajectory, multiplying by exp(λ s)
and integrating. So

(3.7) v̂ ·∇x f = µev̂ ·∇xφ −λ f +∇v ·
((

E0 +Eext + v̂×(
B0 +Bext)) f

)
.

As in the proof of Lemma 2.4, we have

‖ f‖L2
xv
≤

(∫
sup

x
|µe|dv

)
‖φ‖L2 .

and also
∥∥(

E0 +Eext + v̂× (
B0 +Bext)) f

∥∥
L2

xv
+‖µev̂ ·∇xφ‖L2

xv
≤C‖φ‖H1 .

Thus by (3.7) we have

‖v̂ ·∇x f‖L2
xv
≤C‖φ‖H1 .
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Since µe is smooth and has compact support in x,v (so that f also has compact
support) and since ∂ v̂ is bounded, equation (3.7) and the estimates above imply
that

(3.8)
∥∥∥Kλ φ

∥∥∥
H

1
4 (R3

x)
≤C‖φ‖H1(R3

x)

for some constant C, by the averaging lemma in [5]. Since Kλ φ has compact sup-
port, estimate (3.8) implies that Kλ maps a bounded set in H1(R3

x) into a compact
set in L2

(
R3

x
)
. Thus Kλ is relatively compact with respect to −∆. It follows from

Weyl’s Theorem that σess
(
A λ

1

)
= σess

(−∆−Kλ )
= [0,∞). The operator A 0

1 can
be written as −∆−K0 where K0φ =

∫
f dv with f = µeφ −P (µeφ) . By the same

reasoning, K0 is relatively compact with respect to −∆ and σess
(
A 0

1

)
= [0,∞).

Now define the unitary operator U : L2
(
R3

)→ L2
(
R3

)
by Uφ = φeiθ . By (3.4),

the operator (−∆)mag :=−∂zz−∂rr− 1
r ∂r + 1

r2 , which is defined on the space H2†,
can be written as (−∆)mag = U∗ (−∆)U . Thus (−∆)mag is self-adjoint with essen-
tial spectrum [0,∞). We will show that for any λ ≥ 0, L λ is a relatively compact
perturbation of (−∆)mag +λ 2. For λ > 0, we write

L λ = (−∆)mag +λ 2 +Gλ .

For Aθ ∈ H2†, we have Gλ Aθ =~eθ ·
∫

v̂ f dv , where f is defined by
(3.9)

f =−µeφ + µe

∫ 0

−∞
λeλ sφ (X (s))ds−µe

∫ 0

−∞
λeλ sV̂θ (s)Aθ (X (s))ds+ µprAθ .

with φ solving

−∆φ −
∫

µedvφ +
∫

µe

∫ 0

−∞
λeλ sφ (X (s))dsdv(3.10)

=
∫

µe

∫ 0

−∞
λeλ sV̂θ (s)Aθ (X (s))dsdv+ rAθ

∫
µpdv.

This follows from the definition of λ−operators by simple calculation. We will
show that Gλ is relatively compact with respect to −∆mag. Define the electromag-
netic fields that correspond to Aθ and φ (with Ar = Az = 0) by

E = (Er,Eθ ,Ez) = (−∂rφ ,−λAθ ,−∂zφ)

B = (Br,Bθ ,Bz) =
(
−∂zAθ ,0,

1
r

∂r (rAθ )
)

.

Then the equation (3.9) satisfied by f can be written as

λ f +
(
v̂ ·∇x−

(
E0 +Eext + v̂× (

B0 +Bext)) ·∇v
)

f(3.11)

= (E+ v̂×B) ·∇v f 0 ,
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which comes directly from the original linearized Vlasov equation. Now A λ
1 ≥

−∆, as in the proof of Lemma 2.4(ii). By (3.10) and the Hölder inequality we have

‖∇φ‖2
2 ≤ (A λ

1 φ ,φ) =
(
Bλ Aθ ,φ

)
≤C‖Aθ‖2 ‖∇φ‖2 .

The last inequality is true because

(Bλ Aθ ,φ) =
∫∫

µe

∫ 0

−∞
λeλ sV̂θ (s)Aθ (X (s))dsdv φ dx−

∫∫
v̂θ µedvAθ φ dx.

The last integral is bounded by ‖Aθ‖2‖φ‖6‖
∫

v̂θ µe dv‖3. The first integral is bounded
by

∫ ∞

0
λeλ s

[∫∫
|µe||Aθ (X)|2dV dX

]1/2 [∫∫
|µeφ 6|dvdx

]1/6 [∫∫
|µe|dvdx

]1/3

ds

≤
(

sup
x

∫
|µe|dv

)
‖Aθ‖2‖φ‖6 ≤C‖Aθ‖2‖∇φ‖2.

So ‖∇φ‖2 ≤ C‖Aθ ‖2 and thus ‖E‖2 ≤ (C +λ )‖Aθ‖2. By the definition of
H2†, we have ‖B‖2 ≤ ‖Aθ‖H2† . From (3.11) we have

v̂ ·∇x f =−λ f +∇v ·
{(

E0 +Eext + v̂× (
B0 +Bext)) f +(E+ v̂×B) f 0} .

So for i = 1,2,3 we have

v̂ ·∇x (v̂i f ) =−λ v̂i f +∇v ·
{(

E0 +Eext + v̂× (
B0 +Bext)) v̂i f +(E+ v̂×B) v̂i f 0}

(3.12)

−∇v (v̂i) ·
{(

E0 +Eext + v̂× (
B0 +Bext)) f +(E+ v̂×B) f 0} .

Integrating (3.11) along the trajectory, we have

f =
∫ 0

−∞
eλ s ((E+ v̂×B) ·∇v f 0)(X(s;x,v),V (s;x,v))ds,

whence ‖ f‖L2
xv
≤ C

λ (‖E‖2 +‖B‖2)≤C (λ )‖Aθ‖H2† . Since
∥∥(

E0 +Eext + v̂× (
B0 +Bext)) f +(E+ v̂×B) f 0∥∥

2

≤C (‖E‖2 +‖B‖2)≤C (λ )‖Aθ‖H2†

and |∇v (v̂)| ≤C, we have∥∥∥∥
∫

v̂i f dv
∥∥∥∥

H1/4
≤C (λ )‖Aθ‖H2† (i = 1,2,3)

by (3.12) and the averaging lemma. Thus for any fixed bounded sequence
{

An
θ
}

in H2†, there exists a convergent subsequence of jn in L2
(
R3

x
)

where jn =
∫

v̂ f ndv
with f n defined by (3.9) and (3.10) from An

θ . This implies the existence of a con-
vergent subsequence of Gλ An

θ =~eθ ·
∫

v̂ f ndv in L2
(
R3

x
)

and thus Gλ is relatively
compact to (−∆)mag and the essential spectrum of L λ is [λ 2,∞) by Weyl’s theo-
rem.
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We use the same strategy to deal with the operator L 0. We write L 0 =
(−∆)mag +G0. Using the previous definitions, for Aθ ∈H2†, we can write G0Aθ =
~eθ ·

∫
v̂ f dv, where f is defined by

(3.13) f =−µeφ + µeP (φ)−µeP (v̂θ Aθ )−µprAθ

with φ satisfying

(3.14) −∆φ −
∫

µedvφ +
∫

P (µeφ)dv =
∫

P (µev̂θ Aθ )dv+
∫

µpdvrAθ .

We have D f =−µeDφ −µpD(rAθ ) which can be written as

v̂ ·∇x f = ∇v ·
((

E0 +Eext + v̂× (
B0 +Bext)) f +(E+ v̂×B) f 0)

with E and B defined by

E = (−∂rφ ,0,−∂zφ) ,B =
(
−∂zAθ ,0,

1
r

∂r (rAθ )
)

.

Similarly, from (3.14) we have ‖φ‖6 ≤‖E‖2 ≤C‖Aθ‖2. Then from (3.13) we have
‖ f‖L2

xv
≤C (‖φ‖6 +‖Aθ‖2)≤C′ ‖Aθ‖2. By the same argument as we used to prove

the relative compactness of Gλ , we deduce that G0 too is relatively compact with
respect to (−∆)mag. Thus the essential spectrum of L 0 is [0,∞).

Now we prove (iv), that L λ →L 0 strongly as λ → 0+. Compared with the
1 1

2 D case, the main difficulty here is that
(
A λ

1

)−1
and

(
A 0

1

)−1 are unbounded
operators. Given Aθ ∈ H2†, we define φ λ and φ (0) by

A λ
1 φ λ =

(
−∆−Kλ

)
φ λ = Bλ Aθ

and

A 0
1 φ (0) =

(−∆−K0)φ (0) = B0Aθ .

We will show that
∥∥φ λ −φ (0)

∥∥
6 → 0. We have

A λ
1

(
φ λ −φ (0)

)
= Bλ Aθ −B0Aθ +

(
Kλ −K0

)
φ (0).

Multiplying this expression by φ λ −φ (0) and integrating, we have
∥∥∥∇

(
φ λ −φ (0)

)∥∥∥
2

2
≤

(
Bλ Aθ −B0Aθ ,φ λ −φ (0)

)
+

((
Kλ −K0

)
φ (0),φ λ −φ (0)

)

= I + II

since Kλ ≤ 0. As in the proof of Lemma 2.6, we have

(3.15)
∫ 0

−∞
λeλ sm(X(s),V (s))ds→Pm in L2

|µe|, as λ → 0+
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for any m ∈ L2
|µe|. So

I =
∫ ∫

µe

(∫ 0

−∞
λeλ sV̂θ (s)Aθ (X (s))ds−P (v̂θ Aθ )

)(
φ λ −φ (0)

)
dvdx

≤
∥∥∥|µe|

1
6

(
φ λ −φ (0)

)∥∥∥
L6

xv

∥∥∥|µe|
1
3

∥∥∥
L3

xv

∥∥∥∥
∫ 0

−∞
λeλ sV̂θ (s)Aθ (X (s))ds−P (v̂θ Aθ )

∥∥∥∥
L2
|µe|

≤ ω1 (λ )
∥∥∥φ λ −φ (0)

∥∥∥
6

where ω1 (λ )→ 0 as λ → 0+. As in the proof of Lemma 3.1, we have
∥∥φ (0)

∥∥
6 ≤

C‖Aθ‖2. Then by the same estimate as above, II ≤ ω2 (λ )
∥∥φ λ −φ (0)

∥∥
6 with

ω2 (λ )→ 0 as λ → 0+. So
∥∥∥∇

(
φ λ −φ (0)

)∥∥∥
2

2
≤ (ω1 (λ )+ω2 (λ ))

∥∥∥φ λ −φ (0)
∥∥∥

6

≤C (ω1 (λ )+ω2 (λ ))
∥∥∥∇

(
φ λ −φ (0)

)∥∥∥
2

which implies that
∥∥∇

(
φ λ −φ (0)

)∥∥
2 → 0 and

∥∥φ λ −φ (0)
∥∥

6 → 0 as λ → 0+.

By definition, L λ Aθ =
(
Bλ )∗ φ λ +A λ

2 Aθ and L 0Aθ =
(
B0

)∗ φ (0)+A 0
2 Aθ .Using

(3.15), we have
∥∥A λ

2 Aθ −A 0
2 Aθ

∥∥
2 → 0 as λ → 0+ . By the same proof as above,

∥∥∥
(
Bλ

)∗
φ λ −(

B0)∗ φ (0)
∥∥∥

2
≤

∥∥∥
(
Bλ

)∗(
φ λ −φ (0)

)∥∥∥
2
+

∥∥∥
((

Bλ
)∗
− (

B0)∗)φ (0)
∥∥∥

2

≤C
∥∥∥φ λ −φ (0)

∥∥∥
6
+ω3 (λ )

∥∥∥φ (0)
∥∥∥

6

for some ω1 (λ )→ 0 as λ → 0+. Thus
∥∥∥
(
Bλ )∗ φ λ − (

B0
)∗ φ (0)

∥∥∥
2
→ 0 and

∥∥∥L λ Aθ −L 0Aθ

∥∥∥
2
→ 0,

as we wanted to prove. ¤

Lemma 3.2. For any growing mode, fg has support in S and there are potentials
φg and Ag in H2(R3) that satisfy Maxwell’s equations in the Coulomb gauge.

Proof. Consider a symmetric growing mode of the form (eλ t f (x,v),eλ tE(x),eλ tB(x))
with Reλ > 0 where E,B ∈ L2

S and f ∈ L1
xv∩L∞

xv. We have dropped the subscript g.
Now

∫∫
f dvdx =−∫

ρdx is an invariant of the linear system and so it must vanish
for a growing mode. By the linearized Vlasov equation we have

(3.16) λ f +D f = µev̂ ·E− rµp (v̂rBz− v̂zBr) .

Note that the right-hand side h of this equation belongs to L2(R3×R3) with com-
pact support. Along a particle trajectory we have

∂
∂ s

[
eλ s f (X(s),V (s))

]
= h(X(s),V (s)).
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But f is bounded and Reλ > 0 so that eλ s f (X ,V ) vanishes as s→−∞. Integrating,
we therefore have

f = µe

∫ 0

−∞
eλ sV̂(s) ·E(X (s))ds

−µp

∫ 0

−∞
eλ sR(s)

(
V̂r (s)Bz (X (s))− V̂z (s)Br (X (s))

)
ds.

Thus f (x,v) has support in S. We define a scalar potential φ by φ (x) = 1
4π

∫ ρ(y)
|x−y|dy.

It follows that −∆φ = ρ = −∫
f dv also has compact support. Since 1

|x−y| = 1
|x| +

O
(

1
|x|2

)
for large x, we have

φ (x) =
1

4π
1
|x|

∫
ρ (y)dy+O

(
1

|x|2
)

= O

(
1

|x|2
)

which implies that φ ∈ H2(R3). Then we define a vector potential A by solving
the equation (λ 2−∆)A =−λ∇φ+j ∈ L2. Since λ 2 is not a negative real number,
it follows that A ∈ H2(R3). We have

(λ 2−∆)∇ ·A =−λ∆φ+∇ · j = λρ +∇ · j =0

by the continuity equation, and thus ∇ ·A =0. Now we check that (φ ,A) are indeed
the potential functions for E,B. By the Maxwell equations, we have λE−∇×B =
−j, λB+∇×E =0 and ∇ ·E = ρ, ∇ ·B =0. So ∇ ·(E+∇φ +λA) = ∇ ·E−ρ = 0
and

(3.17) ∇× (E+∇φ +λA) =−λ (B−∇×A) .

By the definition of A

(3.18) ∇× (B−∇×A) = λE+ j+∆A = λ (E+∇φ +λA) ,

so taking curl of (3.17) we have

(−∆+λ )(E+∇φ +λA) = 0

which implies that E =−∇φ − λA. Then by (3.18), ∇× (B−∇×A) = 0 from
which it follows that B =∇×A since ∇ · (B−∇×A) = ∇ ·B = 0. This ends the
proof of the lemma. ¤

To prove Theorem 1.1 (i) on spectral stability, we need to introduce the invari-
ants of the linearized 3D RVM system (3.1), (3.2) and (3.3), for which we intro-
duced the electromagnetic potentials (φ ,A) with the Coulomb gauge ∇ ·A = 0.
The invariants are

I =
∫∫

S
− 1

µe
| f + rAθ µp|2 dxdv+

∫ (
|E|2 + |B|2

)
dx

−
∫∫

rv̂θ µp |Aθ |2 dxdv,
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where S is the support of µ , and

Kg =
∫∫

( f + µev̂ ·A+ rµpAθ )gdxdv

for all g ∈ kerD. The proofs that I and Kg are invariant follows by direct calcu-
lations which are somewhat similar to the proofs of Lemma 2.7 in 1 1

2 D and of
Lemma 3.4 below, so we skip them here. Here we assume that f vanishes on the
boundary of S. This is true for the growing modes, which are our only concern in
this paper. In order to prove the stability part of Theorem 1.1, we use the same
strategy as in the 1 1

2 D case. We begin with a simple lemma.

Lemma 3.3. The projection operator P maps a function that is odd or even in
(vr,vz) to another function with the same symmetry property.

Proof. First we show that if a function ξ (r,z,vr,vθ ,vz) is in kerD, then so is ξ− =
ξ (r,z,−vr,vθ ,−vz). Set B̃ = B0 +Bext and Ẽ = E0 +Eext . Then

D = v̂r∂r + v̂z∂z−
(
Ẽr + v̂θ B̃z

)
∂vr

− (
v̂zB̃r− v̂rB̃z

)
∂vθ −

(
Ẽz + v̂θ B̃r

)
∂vz .

So we have D(ξ−) =−(Dξ )− and the conclusion follows.
Given a cylindrically symmetric function h odd in vr and vz, we want to show

that Ph is also odd in vr and vz. By definition, for any ξ ∈ kerD

(3.19)
∫∫

(h−Ph)ξ dxdv = 0.

Without loss of generality, we may assume ξ to be odd (or even) in (vr,vz) by the
property we have just proved. Then by the change of variable (vr,vθ ) to (−vr,−vθ )
in (3.19), we have

∫∫ (−h− (Ph)−
)

ξ dvdx = 0. So (Ph)− = −Ph. The even
case is proven in the same way. ¤

Proof of Theorem 1.1 (i) (Spectral Stability). We merely sketch the proof since it
is similar to the 1 1

2 D case. For a growing mode eλ t [ f (x,v),E,B] with Reλ >
0, assume the associated electromagnetic potentials to be φ(r,z) and A(r,z). We
clearly have the invariant functionals I = 0 and Kg = 0 for any g ∈ kerD. Here I
takes the form

I( f ,φ ,A) =
∫ ∫

− 1
µe
| f + rAθ µp|2 dxdv+

∫ (
|5φ |2 + |∂zAθ |2 +

∣∣∣∣
1
r

∂r (rAθ )
∣∣∣∣
2
)

dx

+
∫ (

|λ |2 |A|2 + |∂zAr−∂rAz|2
)

dx−
∫ ∫

rv̂θ µp |Aθ |2 dxdv.

because ∇ · A = 0. Since
∫∫

( f + µev̂ ·A+ rµpAθ )gdxdv = 0
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for any g∈ kerD, there exists a function h(x,v) such that f +µev̂ ·A+rµpAθ = Dh.
Then

∫
Dhdv =

∫
f dv since

∫
(µev̂ ·A+ rµpAθ )dv =

∫
(µev̂θ Aθ + rµpAθ )dv = Aθ

∫ ∂ µ
∂vθ

dv = 0,

due to the fact that µe is even in vr and vz.
Now define the set

F =
{

h(x,v)
∣∣∣

∫∫ 1
|µe| |Dh|2 dxdv < ∞

}

and the functional

JA (h) =
∫∫ 1

|µe| |Dh−µev̂ ·A|2 dxdv+
∫
|∇φ |2 dx

on F , where ∆φ =
∫

f dv =
∫

Dhdv. Then

I ( f ,φ ,A) = JA (h)+
∫ (

|λ |2 |A|2 + |∂zAr−∂rAz|2
)

dx−
∫∫

rv̂θ µp |Aθ |2 dxdv

+
∫ (

|∂zAθ |2 +
∣∣∣∣
1
r

∂r (rAθ )
∣∣∣∣
2
)

dx.

For fixed A, we shall find the minimum of JA (h) on F . As in the proof of the
1 1

2 D case in Lemma 2.8, the minimizer h0 satisfies

Dh0 = µe (1−P)
(

v̂ ·A−φ (0)
)

=−µeφ (0) + µeP
(

φ (0)
)

+ µev̂θ Aθ −µeP (v̂θ Aθ )

+ µe (v̂rAr + v̂zAz)−µeP (v̂rAr + v̂zAz)

with ∆φ (0) =
∫

Dh0dv. The function v̂rAr + v̂zAz is odd in (vr,vz), so it follows that
P (v̂rAr + v̂zAz) is also odd in (vr,vz) by Lemma 3.3. Similarly, P (v̂θ Aθ ) is even
in (vr,vz). Thus

(3.20)
∫

Dh0dv =
∫ (

−µeφ (0) + µeP
(

φ (0)
)

+ µev̂θ Aθ −µeP (v̂θ Aθ )
)

dv.

Plugging (3.20) into the expression for JA (h),and using similar calculations as in
the 1 1

2 D case, we have

minJA (h) = JA (h0)

=
∫∫

|µe|(P (v̂ ·A))2 dxdv+
((

B0)∗ (A 0
1
)−1

B0Aθ ,Aθ

)

=
∫∫

|µe|(P (v̂θ Aθ ))2 dxdv+
((

B0)∗ (A 0
1
)−1

B0Aθ ,Aθ

)

+
∫∫

|µe|(P (v̂rAr + v̂zAz))
2 dxdv.
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So for a growing mode,

0 = I1

≥
∫∫

|µe|(P (v̂rAr + v̂zAz))
2 dxdv+

(
L 0Aθ ,Aθ

)

+
∫ (

|λ |2 |A|2 + |∂zAr−∂rAz|2
)

dx,

by the definitions of L 0 and A 0
2 . This is impossible if L 0 ≥ 0. Thus L 0 ≥ 0

implies that growing modes cannot exist. ¤

Now we use the splitting technique to study the 3D stability problem. As in
the 1 1

2 D case, we will prove that the growing mode must be purely growing, and
we will control the maximal growth rate. We decompose f as f = fod + fev where
fod ( fev) is odd (even) in (vr,vz) . Then (3.1) can be written as

∂t fod +D fev = µe (v̂rEr + v̂zEz)−µpr (v̂rBz− v̂zBr)

and

∂t fev +D fod = µev̂θ Eθ + µprEθ .

So

∂ 2
t fod −D2 fod

= µe (v̂rEr
t + v̂z∂tEz)−µpr (v̂r∂tBz− v̂z∂tBr)−µeD

(
v̂θ Eθ

)
−µpD(rEθ )

= µe (v̂r∂tEr + v̂z∂tEz)−µeD(v̂θ Eθ ) ,

or

(3.21) ∂ 2
t

fod

µe
= D2 fod

µe
+ v̂r∂tEr + v̂z∂tEz−D(v̂θ Eθ ) ,

since

D(rEθ ) = v̂r∂r

(
rEθ

)
+ v̂z∂z (rEθ ) =− ∂

∂ t
(v̂r∂r (rAθ )+ v̂z∂z (rAθ ))

=−r (v̂r∂tBz− v̂z∂tBr) .

Define

N =
1
2

(∫
−| fod |2

µe
dxdv+

∫
|Eθ |2 + |Bθ |2 dx

)
,

K =

(∫
−|∂t fod |2

µe
dxdv+

∫
|∂tEθ |2 + |∂tBθ |2 dx

)
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and

W =
∫∫ 1

|µe| |D fod −µev̂θ Eθ |2 dxdv−
∫

rv̂θ µp |Eθ |2 dxdv

+
∫ (∣∣∣∣

1
r

∂r (rEθ )
∣∣∣∣
2

+ |∂zEθ |2
)

dx+
∫ (

|∂tEr|2 + |∂tEz|2
)

dx.

Now we state the analogues of Lemmas 2.9 and 2.10.

Lemma 3.4. We have

(3.22)
d2N
dt2 = K−W

and

(3.23)
d
dt

(K +W ) = 0

for any complex-valued solution such that (K +W )(0) < ∞. Some regularity is
required but it is true in particular for any growing mode.

Proof. First we prove (3.22). Multiplying (3.21) by f ∗od and integrating, we have

∫∫ ∂ 2
t fod f ∗od

µe
dxdv

(3.24)

=−
∫∫ |D fod |2

µe
dxdv+

∫∫
(v̂r∂tEr + v̂z∂tEz) f ∗oddxdv−

∫∫
D(v̂θ Eθ ) f ∗oddxdv.

Computing the second integral on the right in (3.24), and using the equation ∂tE =
−∇∂tφ −∂ 2

t A, we have
∫∫

(v̂r∂tEr + v̂z∂tEz) f ∗oddxdv =−
∫ (

∂tEr j∗r +∂tEz j∗z
)

dx

=
∫ (

|∂tEr|2 + |∂tEz|2
)

dx−
∫ (

∂tEr (∇×B∗)r +∂tEz (∇×B∗)z

)
dx

=
∫ (

|∂tEr|2 + |∂tEz|2
)

dx− (−∇φt ,∇×B∗)

−
∫ (

∂ 2
t Ar (∂zBθ )∗−∂ 2

t Az
1
r

∂r (rBθ )∗
)

dx

=
∫ (

|∂tEr|2 + |∂tEz|2
)

dx−2π
∫ (

∂ 2
t Ar∂z (rBθ )∗−∂ 2

t Az∂r (rBθ )∗
)

drdz

=
∫ (

|∂tEr|2 + |∂tEz|2
)

dx+2π
∫

r∂ 2
t (∂zAr−∂rAz)(Bθ )∗ drdz

=
∫ (

|∂tEr|2 + |∂tEz|2
)

dx+
∫

∂ 2
t Bθ (Bθ )∗ dx.
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For the last integral in (3.24) we have
∫∫

D(v̂θ Eθ ) f ∗oddxdv =−2
∫∫

v̂θ Eθ D f ∗oddxdv+
∫∫

v̂θ Eθ D f ∗oddxdv

=−2
∫∫

v̂θ Eθ D f ∗oddxdv−
∫∫

v̂θ Eθ (∂t fev−µev̂θ Eθ −µprEθ )∗ dxdv

=−2
∫∫

v̂θ Eθ D f ∗oddxdv+
∫∫ (

v̂2
θ µe + v̂θ µpr

) |Eθ |2 dxdv+
∫

Eθ ∂t j∗θ dx

=−2
∫∫

v̂θ Eθ D f ∗oddxdv+
∫∫ (

v̂2
θ µe + v̂θ µpr

) |Eθ |2 dxdv−
∫

Eθ
(
∂ 2

t Eθ
)∗

dx

−
∫ (∣∣∣∣

1
r

∂r (rEθ )
∣∣∣∣
2

+ |∂zEθ |2
)

dx

since
∫

Eθ ∂t j∗θ dx =−
∫

Eθ
(
∂ 2

t Eθ − (∇×∂tB)θ
)∗

dx

=−
∫

Eθ
(
∂ 2

t Eθ
)∗

dx−
∫

Eθ ((∇× (∇×E))θ )∗ dx

=−
∫

Eθ
(
∂ 2

t Eθ
)∗

dx+
∫

Eθ

(
∂r

(
1
r

∂r (rEθ )
)

+∂zzEθ

)∗
dx

=−
∫

Eθ
(
∂ 2

t Eθ
)∗

dx−
∫ (∣∣∣∣

1
r

∂r (rEθ )
∣∣∣∣
2

+ |∂zEθ |2
)

dx.

So finally from the identity
(3.25)

d2N/dt2 = K +Re
{
−

∫∫ (∂ 2
t fod) f ∗od

µe
dxdv+

∫ (
Eθ

(
∂ 2

t Eθ
)∗

+(Bθ )∗ ∂ 2
t Bθ

)
dx

}

and the calculations above, we have

d2N/dt2 = K +
∫∫ |D fod |2

µe
dxdv−

∫ (
|∂tEr|2 + |∂tEz|2

)
dx

−
∫ (∣∣∣∣

1
r

∂r (rEθ )
∣∣∣∣
2

+ |∂zEθ |2
)

dx

−2Re
∫∫

v̂θ Eθ D f ∗oddxdv+
∫∫ (

v̂2
θ µe + v̂θ µpr

) |Eθ |2 dxdv

= K +
∫∫ 1

µe
|D fod −µev̂θ Eθ |2 dxdv−

∫ (∣∣∣∣
1
r

∂r (rEθ )
∣∣∣∣
2

+ |∂zEθ |2
)

dx

−
∫ (

|∂tEr|2 + |∂tEz|2
)

dx+
∫

v̂θ µpr |Eθ |2 dxdv

= K−W
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Now we prove (3.23). Multiplying (3.21) by ∂t f ∗od and integrating, we have

Re
∫∫ ∂ 2

t fod∂t f ∗od
µe

dxdv =
d
dt

1
2

∫∫ |∂t fod |2
µe

dxdv

=− d
dt

1
2

∫∫ |D fod |2
µe

dxdv+Re
∫∫

(v̂r∂tEr + v̂z∂tEz)∂t f ∗oddxdv

−Re
∫∫

D(v̂θ Eθ )∂t f ∗oddxdv.

By the same calculations as above, the second term is

Re
∫∫

(v̂r∂tEr + v̂z∂tEz)∂t f ∗oddxdv =
d
dt

1
2

∫ (
|∂tEr|2 + |∂tEz|2 + |∂tBθ |2

)
dx

and the third term is

Re
∫∫

D(v̂θ Eθ )∂t f ∗oddxdv =− d
dt

Re
∫∫

v̂θ Eθ D f ∗oddxdv+Re
∫∫

v̂θ ∂tEθ D f ∗oddxdv.

The last term is

Re
∫∫

v̂θ ∂tEθ D f ∗oddxdv

=−Re
∫∫

v̂θ ∂tEθ (∂t fev−µev̂θ Eθ −µprEθ )∗ dxdv

=
d
dt

1
2

∫∫ (
v̂2

θ µe + v̂θ µpr
) |Eθ |2 dxdv+Re

∫
∂tEθ ∂t j∗θ dx

=
1
2

d
dt

∫∫ (
v̂2

θ µe + v̂θ µpr
) |Eθ |2 dxdv

− 1
2

d
dt

∫ (
|∂tEθ |2 +

∣∣∣∣
1
r

∂r (rEθ )
∣∣∣∣
2

+ |∂zEθ |2
)

dx
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Combining these calculations, we deduce the invariance of the expression

1
2

∫∫ |∂t fod |2
µe

dxdv+
1
2

∫∫ |D fod |2
µe

dxdv− 1
2

∫ (
|∂tEr|2 + |∂tEz|2 + |∂tBθ |2

)
dx

−Re
∫∫

v̂θ Eθ D f ∗oddxdv+
1
2

∫∫ (
v̂2

θ µe + v̂θ µpr
) |Eθ |2 dxdv

− 1
2

∫ (
|∂tEθ |2 +

∣∣∣∣
1
r

∂r (rEθ )
∣∣∣∣
2

+ |∂zEθ |2
)

dx

=
1
2

∫∫ |∂t fod |2
µe

dxdv− 1
2

∫ (
|∂tBθ |2 + |∂tEθ |2

)
dx

+
1
2

∫∫ |D fod −µev̂θ Eθ |2
µe

dxdv− 1
2

∫ (
|∂tEr|2 + |∂tEz|2

)
dx

+
∫∫

rv̂θ µp |Eθ |2 dxdv− 1
2

∫ (∣∣∣∣
1
r

∂r (rEθ )
∣∣∣∣
2

+ |∂zEθ |2
)

dx

=−1
2

K− 1
2

W.

Thus (3.23) is proven. ¤

Proof of Theorem 1.1 (completed). Theorem 1(i) has already been proven. As
in the 1 1

2 D case, we check that for a 3D growing mode (K +W )(0) < ∞, so that
Lemma 3.4 is applicable. The purely growing property, Theorem 1.1(ii), is proven
just as in Theorem 2.1(ii). Now

∆∂tφ =
∫

∂t f dv =−
∫

D foddv.

Following the same kinds of calculations as in the proof of spectral stability for
Theorem 1.1(i), we deduce that W ≥ (

L 0Eθ ,Eθ
)
. The estimate of the maximal

growth rate, Theorem 1.1(iii), follows exactly as in the 1 1
2 D case. ¤

4 Examples in the 11
2D case

In this section, we apply our stability criterion to various examples in 1 1
2 D for

the two species case. We use the notation of the introduction. Recall that Theorems
1.2 and 1.3 tell us that if the operator L 0 (defined by (1.16)) is nonnegative, then
the equilibrium

(
f 0,±,ψ0,φ 0

)
is spectrally stable. If L 0 has an even eigenfunction

for a negative eigenvalue, then there exists a growing mode. In the following, we
use this stability criterion for two simple cases: homogeneous equilibria and purely
magnetic equilibria. We will begin with a remark about the sharp stability criterion
for a general homogeneous equilibria, improving the results in [15].
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For purely magnetic equilibria, the operator L 0 has the simple form of a Sturm-
Liouville operator plus a positive nonlocal term. Using this simpler stability crite-
rion, we can easily prove linear instability of weakly inhomogeneous purely mag-
netic equilibrium under perturbations of double the period by perturbing from the
unstable homogeneous equilibrium. However, the construction of a stable inhomo-
geneous equilibrium is quite involved. We will construct an explicit example for
which the stabilizing nonlocal term can be estimated and the stability condition can
be verified.

4.1 Stability criterion for homogeneous equilibria

As the first, rather simple application of our stability criterion L 0 ≥ 0, we
consider a homogeneous plasma with f 0,± = µ±(〈v〉,v2) and E0 = B0 = 0. Assume
0 < µ± ∈ C2 and µ±e < 0. If one assumes additionally that µ± is even in v2 and
that

D0 =
(

2π
P0

)2

=
∫

R2
∑
±

v̂2µ±p (〈v〉,v2)dv > 0,

then in [15] it was shown that the steady state is unstable (both linearly and nonlin-
early) if the perturbation period P > P0. It was also claimed in [15] that if P > P0,
then the steady state is nonlinearly stable. However in that proof the evenness of
the magnetic field perturbation B was implicitly assumed so that the stability ob-
tained was only conditional. Below, we will deduce the sharp stability criterion
for a general equilibrium without an evenness assumption. We shall see that, even
to get linear stability for a homogeneous equilibrium, the nonlocal term involving
P± in L 0 is indispensable.

In the homogeneous case, D± = v̂1∂x so that P±[η(v)h(x)] = η(v)Qh where
Qh = h̄ denotes the average of h over the perturbation period P. Denote

D1 = ∑
±

∫
µ±p dv, D2 = ∑

±

∫
v̂2µ±e dv =−D1,

D3 =−∑
±

∫
µ±e dv > 0, D4 =−∑

±

∫
µ±e (v̂2)

2 dv > 0,

where µ± = µ±(〈v〉,v2). Then we have

L 0 = (D1 +D2Q)
(−∂ 2

x +D3−D3Q
)−1

(D1 +D2Q)−∂ 2
x −D0 +D4Q.
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Clearly we can study the properties of L 0 for each Fourier mode eik2πx/P sepa-
rately. For k = 0, we have

L 0 (1) = D4−D0 =−
∫

R2
∑
±

v̂2
(
µ±p + µ±e v̂2

)
dv

=−
∫

R2
∑
±

v̂2
∂ µ±

∂v2
=

∫

R2
∑
±

µ±∂v2 (v̂2)dv

=
∫

R2
∑
±

µ±∂ 2
v2

(√
1+ |v|2

)
dv > 0.

For k 6= 0, we have Q
(

eik 2π
P x

)
= 0 and

L 0
(

eik 2π
P x

)
=


D2

1

((
k

2π
P

)2

+D3

)−1

+
(

k
2π
P

)2

−D0


eik 2π

P x = λkeik 2π
P x.

The condition for λk ≥ 0 is that either

(D3 +D0)
2−4D2

1 < 0

or

(D3 +D0)
2−4D2

1 ≥ 0 and k2
(

2π
P

)2

>
D0−D3 +

√
(D3 +D0)

2−4D2
1

2
.

We can always choose the even eigenfunction cos(k2πx/P) for L 0 in this case, so
that Theorem 2.2 is applicable. Summarizing the above computations, we have the
following.

Theorem 4.1. Consider a homogeneous equilibrium with f 0,± = µ±(〈v〉,v2). As-
sume µ±e < 0 and

∫ (|µ±e |+
∣∣µ±p

∣∣)dv≤∞. Then the sharp linear stability condition
is that either

(D3 +D0)
2−4D2

1 < 0

or

(D3 +D0)
2−4D2

1 ≥ 0 and
(

2π
P

)2

≥
D0−D3 +

√
(D3 +D0)

2−4D2
1

2
.

Remark. This theorem shows that if

(D3 +D0)
2−4D2

1 < 0

or

(D3 +D0)
2−4D2

1 ≥ 0 and 0≥
D0−D3 +

√
(D3 +D0)

2−4D2
1

2
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then the equilibrium is linearly stable to arbitrary perturbations of any period P. If

(D3 +D0)
2−4D2

1 ≥ 0 and D5 :=
D0−D3 +

√
(D3 +D0)

2−4D2
1

2
> 0,

then the critical period is Pcr = 2π√
D5

The equilibrium is linearly stable iff P≤ Pcr.

We note that in case µ± are even (in v2), then D1 = 0. So if D0 ≤ 0, the
equilibrium is linearly stable to perturbations of any period. If D0 > 0, then D5 =
D0 and Pcr = 2π√

D0
. In this case, linear instability follows if P > 2π√

D0
which recovers

the instability result in [15]. We also get the linear stability for P≤ 2π√
D0

, improving
the conditional stability result in [15].

4.2 Stability criterion for purely magnetic equilibria
Here we consider the so-called purely magnetic case for which the steady elec-

tric field vanishes. In this case, the stability criterion takes a much simpler form.
For the purely magnetic case we make the assumption that

(4.1) µ+(e, p) = µ−(e,−p).

We claim that there exists a solution with φ 0 ≡ 0 provided ψ0 satisfies the ODE

(4.2) ∂ 2
x ψ0 = 2

∫
v̂2µ−(〈v〉,v2−ψ0(x))dv.

Indeed, let R be the operator that reverses the momentum, that is, R f (x,v) =
f (x,−v). Then with φ 0 ≡ 0 we have

R[µ−(〈v〉,v2−ψ0)] = µ−(〈v〉,−v2−ψ0) = µ+(〈v〉,v2 +ψ0)

so that
ρ0 =

∫
(µ+−µ−)dv =

∫
(Rµ−−µ−)dv = 0

and

∂ 2
x ψ0 =− j0

2 =−
∫

v̂2(µ+−µ−)dv =−
∫

v̂2(Rµ−−µ−)dv = 2
∫

v̂2µ−
(〈v〉,v2−ψ0)dv.

This proves the claim.
Let Tψ0 be the minimal period of the periodic solution ψ0 to (4.2). By adjusting

its starting point, we can always arrange that the solution satisfies the conditions

ψ0(0) = ψ0(Tψ0) = min
0≤x≤Tψ0

ψ0(x), ψ0(
Tψ0

2
) = max

0≤x≤Tψ0
ψ0(x),

ψ0 (x) = ψ0 (
Tψ0 − x

)
, ∀x ∈ [

0,Tψ0

]
,

with ψ0 (x) strictly increasing in
[
0,Tψ0/2

]
. Then ∂xψ0 has exactly two zeros per

period. (In the Appendix, we also construct truly electromagnetic equilibria with
E0 6= 0 such that ψ0 has the same structure.)
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For a purely magnetic equilibrium, the trajectory equation reduces to

Ẋ± = V̂±
1 , V̇±

1 =∓V̂±
2 ∂xψ0(X±), V̇±

2 =±V̂±
1 ∂xψ0(X±)

and it is easy to check that X−(−s;x,−v)= X+(s;x,v) and V−(−s;x,−v)=−V +(s;x,v).
We also have RP− = P+R in the purely magnetic case. [Indeed, f ∈ kerD− iff
R f ∈ kerD+. Hence P− f = f iff P+R f = R f .] For brevity, we shall write

(4.3) µ+ = Rµ−, µ+
e = Rµ−e , µ+

p =−Rµ−p .

Lemma 4.2. For a purely magnetic equilibrium satisfying (4.1) and (4.2), we have
B0 = 0 and hence L 0 = A 0

2 . Furthermore,

(4.4) A 0
2 h =−∂ 2

x h−2
∫

v̂2 µ−p dv h−2
∫

µ−e v̂2P
− (v̂2h)dv,

where µ± = µ±(〈v〉,v2−ψ0(x)).

Proof. For any h ∈ L2
P, we calculate

B0h =

(
∑
±

∫
µ±p dv

)
h+∑

±

∫
µ±e P±(v̂2h) dv

=
(∫ (

µ−p +Rµ+
p
)

dv
)

h+
∫ (

µ−e P−(v̂2h) +Rµ+
e RP+(v̂2h)

)
dv

by changing variables v→−v in two of the + integrals. Using RP− = P+R and
(4.3), we end up with complete cancelation so that B0 = 0. In exactly the same
way, noticing that R

(
v̂2µ+

p
)

= −v̂2R
(
µ+

p
)

= v̂2µ−p and R(µ+
e v̂2) = −v̂2R(µ+

e ) =
−v̂2µ−e , we calculate

A 0
2 h =−∂ 2

x h−
∫ (

R
(
v̂2µ+

p
)
+ v̂2µ−p

)
dvh−

∫ (
R

(
µ+

e v̂2
)

RP+(v̂2h)+ µ−e v̂2 P−(v̂2h)
)

=−∂ 2
x h−2

∫
v̂2µ−p dvh−2

∫
v̂2 µ−e P− (v̂2h)dv.

¤

Lemma 4.3. Consider the operator L 0 to be defined on the space of Tψ0−periodic
functions. If L 0 has a negative eigenvalue, then its ground state is an even function
of x.

Proof. For brevity, we now write µ = µ− and P = P−. We also write L 0 =
M +N where

(4.5) M h =
[
−∂ 2

x −2
∫

v̂2µpdv
]

h, N h =−2
∫

µev̂2 P (v̂2h)dv.

Differentiating the equation satisfied by ψ0, we find that M (∂xψ0) = 0. Since
M is a standard second-order operator, its ground state is even and non-vanishing.
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Since ∂xψ0 is odd with exactly two zeros per period, M must have exactly one
negative eigenvalue. Moreover, N ≥ 0 since

(N h,h) =−2
∫

µe|P(v̂2h)|2 ≥ 0.

We claim that if h(x) is an even function, then P(v̂2h) is an even function of x
for each v. To prove this, recall that D = D− = v̂1∂x−∂xψ0(v̂1∂v2 − v̂2∂v1). Thus h
and Ph have opposite parity. Now µev̂2h−P(µev̂2h) ∈ (kerD)⊥. Let h be even,
say. Changing x to−x, we have (µev̂2h)(x,v)−P(µev̂2h)(−x,v)∈ (kerD)⊥. Thus
P(µev̂2h)−P(µev̂2h)(−x,v) ∈ (kerD)⊥ ∩ kerD = {0}. So P(µev̂2h) is even.
Similarly, if h is odd, so is P(v̂2h). This proves the claim.

Now let −λ be the lowest eigenvalue of L 0, assumed negative. Let h be
the corresponding eigenfunction of unit L2 norm. Since L 0 preserves parity,
(L 0h,h) = (L 0he,he)+ (L 0ho,ho), where he is the even part of h and ho is the
odd part of h. Thus

−λ [1−(ho,ho)]=−λ (he,he)≤ (L 0he,he)= (L 0h,h)−(L 0ho,ho)=−λ−(L 0ho,ho),

whence (L 0ho,ho) ≤ −λ (ho,ho). Therefore either ho is a ground state or else
ho = 0. Similarly, the same is true of he. Now in case v were a normalized ground
state that is odd, then −λ = (L 0v,v) = (M v,v)+ (N v,v) ≥ (M v,v) so that M
would have a negative eigenvalue. However, M has only one negative eigenvalue
and its eigenfunction (the ground state) w is even and non-vanishing. Since v and
w are orthogonal, this is a contradiction. Therefore any ground state of L 0 must
be even. ¤

By this lemma, all we have to check for linear stability is the nonnegativity of
the operator L 0 = A 0

2 restricted to the even functions. Moreover, combining this
lemma with Theorems 1.2 and 1.3, we will deduce that L 0 ≥ 0 is the sharp linear
stability criterion for a purely magnetic equilibrium of minimum period.

4.3 An unstable purely magnetic equilibrium
Now we construct an unstable purely magnetic equilibrium with a small mag-

netic field. The idea is to perturb the unstable homogeneous equilibrium to get an
unstable weakly inhomogeneous equilibrium. A tricky perturbation argument was
developed in [11] to get an unstable electrostatic BGK wave of small amplitude,
but with our explicit stability criterion A 0

2 ≥ 0, the perturbation argument here
becomes almost trivial. We begin with a periodic purely magnetic equilibrium
satisfying (4.2) where µ satisfies:

µ ∈C1, µe < 0 and D0 = 2
∫

v̂2µp (〈v〉 ,v2)dv > 0.

Assume µ+ = µ− is even. If we write (4.2) as ∂ 2
x ψ0 = g(ψ0), then g(0) = 0 by

oddness and g′(0) < 0. Hence the origin is a center. So there exists a family of
periodic solutions ψ0

ε (0 < ε ≤ ε0) with periods Tψ0
ε

satisfying (4.2) such that
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i)
∣∣ψ0

ε
∣∣
C1 → 0 as ε → 0+ and

ii) Tψ0
ε
→ Pcr = 2π√

D0
.

Each ψ0
ε gives us a periodic equilibrium.

Theorem 4.4. For ε sufficiently small, this periodic equilibrium is linearly unsta-
ble under 2Tψ0

ε
−periodic perturbations.

Proof. We use A 0,ε
2 to denote the stability operator for the equilibrium with param-

eter ε . By Theorem 4.1 or by the instability result in [15], the homogeneous equi-
librium with f± = µ (〈v〉 ,v2) and E0 = B0 = 0 is unstable under 2Pcr−periodic per-
turbations. In particular, if we choose the 2Pcr−periodic function φ−,0 = cos(πx/Pcr),
then

(
A 0,0

2 φ−,0,φ−,0
)

< 0. Set φ−,ε = cos
(

πx/Tψ0
ε

)
which is even and has pe-

riod 2Tψ0
ε
. Using the same argument as in [24] for the 1D Vlasov-Poisson case, we

have
(
A 0,ε

2 φ−,ε ,φ−,ε
)

< 0 for ε small enough. By considering A 0,ε
2 on the space

of even functions, it follows that A 0,ε
2 has an even eigenfunction corresponding to a

negative eigenvalue when ε is small. By Theorem 1.3 and Lemma 4.3, this implies
the existence of a growing mode for the ε−equilibrium with magnetic potential
ψ0

ε . ¤

Remark. The form of A 0
2 looks very similar to the operator A 0 used in [20] to

study the linear instability of periodic BGK waves of the 1D Vlasov-Poisson sys-
tem. In [20], linear instability under a double-periodic perturbation is proven for
any periodic BGK wave by constructing a double-periodic test function φ− such
that

(
A 0φ−,φ−

)
< 0. However, the construction in [20] cannot be carried over

to the current purely magnetic case because of the more complicated trajectory
structure. We conjecture that, by using a more delicate construction, an arbitrary
periodic purely magnetic wave can still be proven to be unstable under perturba-
tions of double the period.

4.4 A stable purely magnetic equilibrium
The explicit construction of a stable inhomogeneous example is much more

involved. We consider a periodic purely magnetic equilibrium under perturbations
of minimal period P. As remarked above, it is quite possible that any periodic
purely magnetic equilibrium is unstable under multiply-periodic perturbations, that
is, under perturbations that are allowed to have a period that is a multiple of P. To
see the difficulty of proving stability, we recall that the linear stability condition for
a purely magnetic equilibrium is that L 0 = A 0

2 = M +N ≥0. But the Sturm-
Liouville operator M has a negative eigenvalue, since M ψ0

x = 0 and ψ0
x has a

zero. So in order to get stability we must use the positive operator N to balance the
negative part of M . Because the operator N is highly nonlocal, the construction
of a stable example is rather tricky.
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We choose µ = µ− = µ+ = Cσ(e)
(
1+ p2

)
where C is a constant and either

σ > 0, σ ′ < 0 or σ ≥ 0 with σ ′ < 0 on {σ > 0}. Then

∂ 2
x ψ0 = 2

∫
v̂2Cσ(〈v〉)(1+(v2−ψ0(x))2)dv =−4C

∫
v̂2v2σ(〈v〉)dv ψ0(x).

Because the last integral is positive, we can choose C so that ∂ 2
x ψ0 = −ψ0. We

then choose ψ0(x) = ε cosx, which of course has period 2π .
To indicate the dependence on ε , we now write L 0 = L (ε) = M (ε)+N (ε),

where

M (ε) =−∂ 2
x −2

∫
v̂2µpdv =−∂ 2

x −4C
∫

v̂2σ(〈v〉)(v2− ε cosx)dv =−∂ 2
x −1

because of the definition of C and the oddness with respect to v2 of the term with
ε . Denote µe = µε,−

e = σ ′(〈v〉(1+(v2− ε cosx)2
)
. Then

N (ε)h =−2
∫

v̂2µeP
−
ε [v̂2h]dv.

The parameter ε appears both as the coefficient of the cosine and within the pro-
jection P−

ε . Since C1σ(〈v〉)(
1+ v2

2
) ≤ |µe| ≤ C2σ(〈v〉)(

1+ v2
2
)

for some con-
stants C1,C2 > 0, we can consider P−

ε to be the projection from the µ0−weighted
L2

x,v space L2
µ0 to kerDε , where µ0 = σ(〈v〉)(1+ v2

2
)

and Dε = v̂1∂x− ε v̂2B0∂v1 +
ε v̂1B0∂v2 with B0 = ∂xψ0(x) =−sinx.

In the limiting case ε = 0, D0 = v̂1∂x so that P−
0 [η(v)h(x)] = η(v)h̄ where h̄

denotes the average of h over a period of length 2π . So the limiting operator of N
is

N (0)h = lim
ε→0

N (ε) =−2
∫

(v̂2)2µe(〈v〉,v2)dv h̄ = α h̄,

where

α =−2
∫

(v̂2)2µe(〈v〉,v2)dv =−2
∫

v̂2
∂ µ
∂v2

dv+2
∫

v̂2µpdv

= 2
∫ ∂ v̂2

∂v2
µdv+4C

∫
σ(〈v〉)v2v̂2dv = 2

∫ ∂ 2〈v〉
∂ (v2)2 µ dv+1 > 1

since 〈v〉 is strictly convex in the variable v2. Therefore

L (0)h = lim
ε→0

L (ε) =−∂ 2
x h−h+α h̄.

Now we decompose h = h̄+h⊥ where
∫

h⊥dx = 0. Then

(L (0)h,h) = ((−∂ 2
x −1)h⊥,h⊥)+(α−1)h̄2 ≥ (α−1)h̄2 ≥ 0

since M (0) = −∂ 2
x − 1 takes functions of zero mean into functions of zero mean

and is nonnegative on the periodic functions: L (0)≥ 0. The operator L (0) has a
two-dimensional kernel, spanned by cosx and sinx because if h ∈ kerL (0), then
the mean of h vanishes so that ∂ 2

x h+h = 0.
We will show that for properly chosen σ , L (ε) ≥ 0 for ε > 0 small. This im-

plies that the equilibria with ε > 0 are linearly stable. Moreover, we will show that
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L (ε) has only a one-dimensional kernel spanned by sinx. This is also important in
the nonlinear stability proof of [25]. We prove above properties of L (ε) in several
steps. It suffices to prove N (ε) > N (0) on (sinz)⊥.

Lemma 4.5. For any periodic function ψ (x) ∈ L2
per, we have P−

ε (v2ψ)(x,v) =
εP−

1 (v2ψ)(x,v/ε).

Proof. Denote D̃ε = v1∂x−εv2B0∂v1 +εv1B0∂v2 without the “hats”. Because Dε =
1
〈v〉 D̃ε , we have kerDε = ker D̃ε . Furthermore, P−

ε can also be defined as the
projection operator from L2

µ0 to ker D̃ε . For any h(x,v) ∈ ker D̃1, we define hε =
h(x,v/ε). Then

D̃εhε = (v1∂x− εv2B0∂v1 + εv1B0∂v2)hε

= ε (v1∂xh− v2B0∂v1h+ v1B0∂v2h)
(

x,
v
ε

)

= εD̃1h
(

x,
v
ε

)
= 0

so hε ∈ ker D̃ε and each function in ker D̃ε can be obtained in this way. By defini-
tion, for any L2

µ0−function h ∈ ker D̃1,

0 =
∫ (

v2ψ−P−
1 (v2ψ)

)
h(x,v)dxdv

=
1
ε3

∫ (
v2ψ− εP−

1 (v2ψ)
(

x,
v
ε

))
h
(

x,
v
ε

)
dxdv

by the change of variable v → v
ε . So

(
v2ψ−P−

1 (v2ψ)
(
x, v1

ε
)
,hε

)
= 0 which

implies that P−
ε (v2ψ)(x,v) = εP−

1 (v2ψ)
(
x, v

ε
)
, since hε can be an arbitrary

L2
µ0−function in ker D̃ε . ¤

Classification of Particles. In the following discussion we consider a general
purely magnetic equilibrium (E0 = 0) with a P−periodic magnetic potential ψ0,
not depending on the above special form. We can adjust the starting point so that
ψ0 (0) = ψ0 (P) = minψ0, ψ0

(P
2

)
= maxψ0, and ψ0 is monotone in each half

interval
[
0, P

2

]
and

[P
2 ,P

]
. The potential ψ0 has a single minimum per period P.

Now we investigate the electron trajectories in the magnetic field B0 = ∂xψ0.
The ODE for any particle is

(4.6) Ẋ = V̂1, V̇1 =−V̂2∂xψ0(X), V̇2 = V̂1∂xψ0(X).

The two invariants of (4.6) are the energy e = 〈v〉 and momentum p = v2−ψ0 (x).
We classify the motion of the particles according to their energy and momentum
(e, p). We write

dt =
〈v〉
v1

dx =± e dx√
e2−1− (p+ψ0(x))2

.
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Note that e = 〈v〉, p = v2−ψ0(x) is equivalent to

v1 =±
√

e2−1− (p+ψ0(x))2, v2 = p+ψ0(x).

(A1) (free particle) If e2 > 1 + max
(

p+ψ0
)2, the particle travels around the

whole circle [0,P] with the period

Tf (e, p) =
∫ P

0

edx√
e2−1− (p+ψ0 (x))2

.

(A2) (trapped particle of type I) If p ≥ −minψ0 or p ≤ −maxψ0, and e2 <

1+max
(

p+ψ0
)2, then [p+ψ0]2 has a single maximum at P/2 and the particle is

trapped in the interval
(
aI,bI

)
with the half-period

T I
t (e, p) =

∫ bI

aI

edx√
e2−1− (p+ψ0 (x))2

,

where
(
aI,bI

)
is the interval such that e2− 1− (

p+ψ0 (x)
)2 ≥ 0. On the other

hand, if −maxψ0 < p < −minψ0, the function
(

p+ψ0 (x)
)2 has two maxima

M1 ≤M2 per period, which occur at x = 0,P/2.
(A3) (trapped particle of type II) If −maxψ0 < p < −minψ0 and 1 + M1 <

e2 < 1+M2, the particle is trapped in
(
aII ,bII

)
with half-period

T II
t (e, p) =

∫ bII

aII

edx√
e2−1− (p+ψ0 (x))2

where
(
aII,bII

)
is the interval such that e2−1− (

p+ψ0 (x)
)2 ≥ 0.

(A4) (trapped particle of type III) If−maxψ0 < p <−minψ0 and e2 < 1+M1,
the particle is trapped in one of the two intervals

(
aIII

1 ,bIII
1

)
or

(
aIII

2 ,bIII
2

)
where

0 < aIII
1 < bIII

1 < P
2 is such that e2−1−(

p+ψ0 (x)
)2 = 0 and aIII

2 = P−aIII
1 ,bIII

2 =
P−bIII

1 . Its half-period is

T III
t (e, p) =

∫ bIII
1

aIII
1

edx√
e2−1− (p+ψ0 (x))2

.

(A5) (critical particle) If e2 = 1 + max
(

p+ψ0
)2, the particle motion is not

periodic. It takes infinite time for the particle to approach the maximum point of(
p+ψ0

)2. The same situation occurs if the particle approaches the local maximum
e2 = 1+M1.

The following lemma gives an explicit formula for P− (v̂2ψ) .
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Lemma 4.6. For any ψ (x) ∈ L2
per, define the function hψ (e, p) in the following

way:

hψ (e, p) =

∫ P
0

(p+ψ0(x))ψ(x)dx√
e2−1−(p+ψ0(x))2

Tf (e, p)

for (e, p) corresponding to a free particle, and

hψ (e, p) =

∫ b
a

(p+ψ0(x))ψ(x)dx√
e2−1−(p+ψ0(x))2

Tt (e, p)

for (e, p) corresponding to a trapped particle where (a,b) is the trapped interval
of the particle. Then we have P− (v̂2ψ) = hψ(〈v〉,v2−ψ0(x)) in L2

|µe|.

Proof. By definition, D(P− (v̂2ψ)) = 0 so P− (v̂2ψ) is constant on each particle
trajectory. For any compactly supported (in v) function ξ ∈ kerD, we have (with
ε = 1)

0 =
∫∫∫ (

v̂2ψ−P−
1 (v̂2ψ)

)
ξ (x,v)dxdv

=
∫∫∫

I(e,p)

(
p+ψ0 (x)

e
ψ−P−

1 (v̂2ψ)
)

ξ
e√

e2−1− (p+ψ0 (x))2
dxded p

where we changed variables (x,v) → (x,e, p) and used I (e, p) to denote the x-
interval with fixed (e, p). We decompose the (e, p) region into five parts A1, · · · ,A5

corresponding to the different type of particles defined above. We can ignore A5

in the integral since it has zero measure. For (e, p) ∈ A1 ∪A2 ∪A3, I (e, p) is a
single interval while I (e, p) =

(
aIII

1 ,bIII
1

) ∪(
aIII

2 ,bIII
2

)
for (e, p) ∈ A4. Since ξ and
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P−
1 (v̂2ψ) are independent of x on each component of I (e, p), we have

0 =
∫∫

A1

∫ P

0

(
p+ψ0 (x)

e
ψ−P−

1 (v̂2ψ)
)

ξ
e√

e2−1− (p+ψ0 (x))2
dxded p

+
∫∫

A2

∫ bI

aI
· · ·dxded p+

∫∫

A3

∫ bII

aII
· · ·dxded p+

∫∫

A4

2

∑
i=1

∫ bIII
i

aIII
i

· · ·dxded p

=
∫∫

A1

ξ




∫ P

0

(
p+ψ0 (x)

)
ψ (x)dx√

e2−1− (p+ψ0 (x))2
−P−

1 (v̂2ψ)Tf (e, p)


ded p

+
∫∫

A2

ξ




∫ bI

aI

(p+ψ0 (x))ψ (x)dx√
e2−1− (p+ψ0 (x))2

−P−
1 (v̂2ψ)T I

t (e, p)


ded p

+
∫∫

A3

ξ




∫ bII

aII

(p+ψ0 (x))ψ (x)dx√
e2−1− (p+ψ0 (x))2

−P−
1 (v̂2ψ)T II

t (e, p)


ded p

+
∫∫

A4
∑

i=1,2
ξ
∣∣∣
(aIII

i ,bIII
i )

∫ bIII
i

aIII
i




(
p+ψ0 (x)

)
ψ (x)dx√

e2−1− (p+ψ0 (x))2
−P−

1 (v̂2ψ)T III
t (e, p)


ded p.

Since ξ is arbitrary, each integrand must vanish. Thus P− (v̂2ψ) = hψ (x,v) as
claimed. ¤

Using this lemma, we readily see by integration that P− (
v̂2∂xψ0

)
= 0. The

following lemma shows that the converse is also true.

Lemma 4.7. For any ψ ∈C1
per, P− (v̂2ψ) = 0 if and only if ψ = c∂xψ0.

Proof. Let P−(v̂2ψ) = 0. First we choose p > −minψ0 and e slightly larger

than minx

√
1+(p+ψ0 (x))2 ≡m =

√
1+(p+ψ0 (0))2. Looking at the graph of(

p+ψ0
)2, we see that the trapped particles are of type I and the trapped interval

is a small interval (−ε (e) ,ε (e)) in the circle. As e↘m, the period T I
t (e, p) tends

to a finite number because ε(e) = O(
√

e−m). Thus

m2−1
m

ψ(0)←
∫ ε(e)

−ε(e)

(
p+ψ0 (x)

)
ψ (x)dx√

e2−1− (p+ψ0 (x))2

/
T I

t (e, p)= hψ(e, p)=P−(v̂2ψ)= 0

so that we must have ψ (0) = ψ (P) = 0.

Secondly we choose p <−maxψ0 and e slightly larger than min
√

1+(p+ψ0 (x))2 =√
1+

(
p+ψ0

(P
2

))2. The trapped interval is a small interval centered at P
2 . For the
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same reason as above, we have ψ
(P

2

)
= 0. Thus ψ vanishes wherever ∂xψ0 does

(at 0, P
2 and P).

Thirdly we choose −maxψ0 < p < −minψ0. Denote by xp
1 ,xp

2 the two roots
of p + ψ0 (x) = 0, where 0 < xp

1 < P
2 and xp

2 = P− xp
1 . Then the minimum of√

1+(p+ψ0 (x))2 is obtained at both xp
1 and xp

2 . We take e to be slightly larger

than
√

1+
(

p+ψ0
(
xp

1

))2. The trapped particles are of type III. The two trapped
intervals Ii = (xp

i − ε(e),xp
i + ε(e)) (i = 1,2) are symmetric to each other with

respect to x = P
2 . We have ε(e) → 0 and T III

t (e, p) tends to a finite number as

e↘
√

1+
(

p+ψ0
(
xp

1

))2 ≡ `. From 0 = P−(v̂2ψ) = hψ(e, p), we obtain

0 =
∫

Ii

(
p+ψ0 (x)

)
ψ (x)dx√

e2−1− (p+ψ0 (x))2

=
∫

Ii

∂x

(√
e2−1− (p+ψ0 (x))2

)
ψ (x)
∂xψ0 dx

=−
∫

Ii

√
e2−1− (p+ψ0 (x))2∂x

(
ψ (x)
∂xψ0

)
dx.

Dividing by ε(e)2 and taking the limit as e ↘ `, we obtain ∂x

(
ψ(x)
∂xψ0

)
= 0 at the

point xp
i , where ψ(x)

∂xψ0 is a well-defined function by the observation above. By chang-

ing p, the point xp
i can be any point in (0,P). It follows that ∂x

(
ψ(x)
∂xψ0

)
vanishes

everywhere and thus ψ = c∂xψ0 for some constant c. ¤

Now we can construct some stable equilibria.
Example. We take a purely magnetic equilibrium with µ = µ−= µ+ =Cσ(〈v〉)(

1+ p2
)

and ψ0
ε (x) = ε cosx. We take σ > 0, σ ′ < 0 on a finite interval [0,a) while σ ≡ 0

on [a,∞). For ε > 0 small, we will show that the operator L (ε) is nonnegative and
kerL (ε) is spanned by the single function sinx. Thus this equilibrium is spectrally
stable.

In order to prove this, we will show that N (ε) is strictly increasing. For any
differentiable ψ ∈ L2

per, define g(ε) = (N (ε)ψ,ψ). By Lemma 4.5 and the invari-
ance of µe and of 〈v〉 under the flow,

g(ε) = 2
∫∫∫

−µ−e (〈v〉,v2− ε cosx) [P−
ε (v̂2ψ)]2dxdv

= 2C
∫∫∫

−σe(〈v〉)
(

1+(v2− ε cosx)2
) 1
〈v〉2 ε2[P−

1 (v2ψ)]2
(

x,
v
ε

)
dxdv

=−2C
∫∫∫

ε6σe(〈εv〉) 1
〈εv〉2

(
1
ε2 +(v2− cosx)2

)
[P−

1 (v2ψ)]2 (x,v)dxdv
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by changing scale in v. Denoting H (e) =−σ ′ (e)/e2, we have

g′ (ε) = 2C
∫∫∫

ε3

(
4H (〈εv〉)+H ′ (〈εv〉) ε |v|2

〈εv〉

)
[P−

1 (v2ψ)]2dxdv

+2C
∫∫∫

ε5

(
6H (〈εv〉)+H ′ (〈εv〉) ε |v|2

〈εv〉

)
(v2− cosx)2 [P−

1 (v2ψ)]2dxdv.

Since σ has compact support, if ε > 0 is small enough, we have

4H (〈εv〉)+H ′ (〈εv〉) ε |v|2
〈εv〉 = 4H(1)+O(ε) > 3H (1) =−3σ ′(1) > 0.

By Lemma 4.7, if ψ is not a multiple of sinx, then P−
1 (v2ψ) 6= 0 and thus g′ (ε) >

0 for small ε . This implies that g(ε)> g(0)= (N (0)ψ,ψ). Therefore (L (ε)ψ,ψ)>
(L (0)ψ,ψ) for ψ 6= csinx. Recalling that sinx ∈ kerL (ε) and L (0) ≥ 0, we
conclude that L (ε)≥ 0 and that kerL (ε) is spanned by sinx for small ε . ¤

Remark. Combining this example with Theorem 4.4, we have constructed a
periodic purely magnetic equilibrium that is stable under perturbations of minimal
period and unstable under perturbations of double the period. It is worthwhile to
make a comparison with the homogeneous case. By Theorem 4.1, for any ho-
mogeneous equilibrium, the perturbations of longer wave lengths are always more
dangerous for stability. This example indicates that the same phenomenon is valid
for an inhomogeneous equilibrium. We believe in general that perturbations of
longer wave length are more likely to induce instability.

Remark. If 4|σ ′| > σ ′′ as e → ∞, for example if σ(e) = (1 + e)−2, then
g′(ε) ≥ 0, hence (L (ε)ψ,ψ) ≥ 0 for small ε . This follows immediately with-
out using Lemmas 15 or 16. In some cases we can simply choose σ so that
4H(0)+H ′2/〈s〉2 ≥ 0.

Appendix

In this appendix, we construct some equilibria of the type studied in this paper.
For the 1 1

2 D case, we prove that there exist infinitely many periodic equilibria.
Then for the 3D case, we prove that for properly chosen external potentials, there
exist equilibria representing a compactly confined plasma.

Existence of periodic equilibria in 11
2 dimensions

We consider a plasma with two species. The equilibrium is

f 0,± = µ±(e±, p±) = µ±(〈v〉±φ 0(x),v2±ψ0(x)).

For simplicity, we choose µ+ = µ− = µ . Given µ , the equilibrium potentials(
φ 0,ψ0

)
should satisfy the ODE system

(4.1)
{

∂ 2
x φ =−ρ =−∫

(µ(〈v〉+φ ,v2 +ψ)−µ(〈v〉−φ ,v2−ψ))dv,
∂ 2

x ψ =− j2 =−∫
v̂2 (µ(〈v〉+φ ,v2 +ψ)−µ(〈v〉−φ ,v2−ψ))dv.
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We claim that for many choices of µ there exist many periodic solutions of this
system. In order to show this, we first write the system in Hamiltonian form. Let
∂x be written as a dot and let

q1 = ψ, q2 = φ , r1 =−ψ̇, r2 = φ̇ , q = (q1,q2), r = (r1,r2).

Let

V (q) =
∫ q2

0

∫
(µ(〈v〉+λ ,v2 +q1)−µ(〈v〉−λ ,v2−q1))dvdλ(4.2)

+
∫ q1

0

∫
v̂2 (µ(〈v〉,v2−λ )−µ(〈v〉,v2 +λ ))dvdλ

Note that ∂V
∂q2

= ρ and

∂V
∂q1

=
∫ q2

0

∫
(µp(〈v〉+λ ,v2 +q1)+ µp(〈v〉−λ ,v2−q1))dvdλ

+
∫

v̂2 (µ(〈v〉,v2−q1)−µ(〈v〉,v2 +q1))dv

=
∫ q2

0

∫ {
∂

∂v2
− v̂2

∂
∂λ

}
{µ(〈v〉+λ ,v2 +q1)}dvdλ

+
∫ q2

0

∫ {
∂

∂v2
+ v̂2

∂
∂λ

}
{µ(〈v〉−λ ,v2−q1)}dvdλ

+
∫

v̂2 (µ(〈v〉,v2−q1)−µ(〈v〉,v2 +q1))dv

=−
∫

v̂2 (µ(〈v〉+φ ,v2 +ψ)−µ(〈v〉−φ ,v2−ψ))dv =− j2.

Let S be the diagonal matrix with entries (−1,1) and let

H(q,r) =−1
2

r2
1 +

1
2

r2
2 +V (q1,q2) = (Sr) · r +V (q).

Then our system takes the Hamiltonian form

q̇ = Sr =
∂H
∂ r

, −ṙ = V ′(q) =
∂H
∂q

.

We shall apply a theorem of Hofer and Toland [18].

Theorem 4.8. Let V be a C3 function : R2 → R. Let C be the closure of a compo-
nent of {q ∈ R2 | V (q) > 0}. Assume that
(i) C is compact and convex;
(ii) V ′(q) 6= 0 for q ∈ ∂C ;
(iii) if q ∈ ∂C and (SV ′(q),V ′(q)) = 0, then (V ′′(q)SV ′(q),SV ′(q)) < 0.
Then there exists a periodic orbit {(q(t),r(t)) | t ∈ R} with some positive minimal
period T with q even and r odd and with the properties

(4.3) r(0) = r(T/2) = 0, q(0) ∈ ∂C , q(T/2) ∈ ∂C , q((0,T/2))⊂ int(C ).
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Moreover, q(t) is monotone in [0,T/2] in the sense that q(t2)− q(t1) is in the
positive cone C+

S = {q | q1 > 0,(Sq,q) < 0} for T/2 > t2 > t1 > 0.

Corollary. If V is a C3 function which has a maximum point qo where its
Hessian V ′′ < 0, then there exist a family of periodic solutions in a neighborhood
of qo.

Proof. We have V ′(qo) = 0, V ′′(qo) < 0. Then of course all the level sets near qo

are convex and bounded. On the level sets near qo, we have V ′ 6= 0 and V ′′ < 0.
Therefore all the hypotheses of the theorem are satisfied. ¤

In order to explicitly exhibit some choices of µ that satisfy these conditions, we
choose qo to be the origin. Then obviously the first derivatives of V are zero at qo.
First we choose µ(e, p) to be a positive even function of p such that pµp(e, p) > 0
for p 6= 0 and µe < 0. This is easily arranged, for instance, if µ(e, p) = α(e)β (p)
for appropriate α and β . Now

∂ 2V
∂q1∂q2

=
∂ρ
∂q1

=
∫

(µp(〈v〉+q2,v2 +q1)+ µp(〈v〉−q2,v2−q1))dv

vanishes at the origin q = 0. Furthermore, both

∂ 2V
∂q2

2
=

∫
(µe(〈v〉+q2,v2 +q1)+ µe(〈v〉−q2,v2−q1))dv

and
∂ 2V
∂q2

1
=−

∫
v̂2 (µp(〈v〉+q2,v2 +q1)+ µp(〈v〉−q2,v2−q1))dv

are negative at the origin. Thus the corollary is applicable. This construction pro-
vides only a purely magnetic equilibrium since (0,ψ) is an invariant plane for the
ODE system (4.1), by the evenness of µ in p.

To get a truly electromagnetic equilibrium with E0 6= 0, we modify the above
even example to break the evenness in p. If we add a small odd part to the even
example above, then V still has a strict maximum nearby and so the corollary is
still applicable. In this case, (0,ψ) is no longer an invariant plane for (4.1) and
we get equilibrium with E0 6= 0. Thus we can construct infinitely many periodic
electromagnetic equilibria

(
ψ0,φ 0

)
. Moreover, by Theorem 4.8, we easily derive

the following properties of the equilibrium. First, ψ0,φ 0 are even functions in
[0,T ]. Second, ψ0 is increasing in

[
0, T

2

]
and decreasing in

[T
2 ,T

]
.

Remark. By a similar process, solitary wave and kink type solutions can also
be constructed for (4.1) by using the corresponding theorems in [18] for homoclinic
and heteroclinic orbits. These types of solutions are also constructed in [8] by using
more complicated dynamical system arguments. However, a periodic equilibrium
was not constructed in [8].
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Existence of 3D confined symmetric equilibria
To accomplish this, we need an external field. Indeed, for the three-dimensional

problem there can be no equilibria of finite energy in the absence of an external
field. In fact, it is proven in [16] that every finite-energy solution of RVM without
an external field in 3D must satisfy the estimate

(4.4)
∫ ∞

0

∫

|x|≤R

{
1
2
|E|2 +

1
2
|B|2 +

∫

R3
〈v〉 f dv

}
dxdt < ∞

or all R < ∞. It is clear that this could not be satisfied by an equilibrium. The esti-
mate (4.4) is also true for a multi-species plasma without an external field. Thus, to
get any 3D plasma equilibrium, it is necessary to add an external electromagnetic
field. For the case of MHD, the necessity of external fields for the existence of
equilibria in the whole space is well known in the physics literature (see [6]).

Now we construct one type of confined plasma with support in a torus. Our
method of proof is a modification of the standard sub-sup argument, as in [1] and
[26], but there are some major differences. In [1] and [10] steady states are con-
structed in a bounded domain away from the z−axis with the perfectly conducting
boundary condition. Here we consider the confinement problem in free space with
external fields, a more practical problem in physics ([3]). One difficulty in our
proof is that the operator −∂zz − ∂rr − 1

r ∂r + 1
r2 that appears in the steady state

equation appears to be singular at z−axis. That is why the existence results of [1]
and [10] could only be proved under the restriction that the domain is away from
z−axis. However, observation (3.4) allows this restriction to be removed so that
equilibria with continuous fields in the whole domain including the z−axis can be
constructed.

We consider an equilibrium
(

f 0,φ 0,A0
θ
)

of the form f 0 = F (e)G(pθ ), where

e =
√

1+ |v|2−φ 0 (r,z)−φ ext (r,z) , pθ = r
(
vθ −A0

θ (r,z)
)

and
(
φ 0,A0

θ
)

satisfies the elliptic system

(4.5)
{

∂zzφ 0 +∂rrφ 0 + 1
r ∂rφ 0 = ρ =

∫
F (e)G(pθ )dv,

∂zzA0
θ +∂rrA0

θ + 1
r ∂rA0

θ − 1
r2 A0

θ = jθ =
∫

v̂θ F (e)G(pθ )dv.

Denoting U = φ 0 (r,z)+φ ext (r,z) , (4.5) becomes
(4.6)



∆U = n1 (r,z)+ρ
(
U,A0

θ
)

= n1 (r,z)+
∫

F
(√

1+ |v|2−U
)

G
(
r
(
vθ −A0

θ
))

dv

∆magA0
θ = ∆A0

θ − 1
r2 A0

θ = jθ
(
U,A0

θ
)

=
∫

v̂θ F
(√

1+ |v|2−U
)

G
(
r
(
vθ −A0

θ
))

dv

where n1 (r,z) = ∆φ ext (r,z).
We impose the following assumptions:

i) F,G ∈C1(R), F ≥ 0, G≥ 0, G has bounded C1 norm.
ii) F (e)e

√
e2−1, |F ′ (e)|e

√
e2−1≤ m(e) for some m ∈ L1 ((1,∞)).
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iii) F (s) = 0 if s > e0 for some e0 < 1.
iv) G(s) = 0 if |s|< δ0 for some δ0 > 0.
v) n1 ∈C1

c
(
R3

)
and n1 ≤ 0 is compactly supported.

It is trivial to construct functions F and G satisfying above assumptions.

Theorem 4.9. Under Assumptions i)-v), there exists an equilibrium with
(
φ 0,A0

θ
)∈

C2
(
R3

)
such that the equilibrium density ρ0 and the current j0

θ are supported in a
torus; specifically, they are supported in a region {(r,z) | 0 < C1 ≤ r ≤C2, |z| ≤C3}.

Proof. We recall from (3.4) that for a function f (r,z) ∈ H2† we have

(4.7) (−∆)mag f :=
(
−∂zz−∂rr− 1

r
∂r +

1
r2

)
f = e−iθ (−∆)

(
eiθ f

)
.

This shows how the singular term 1/r2 is artificially introduced by the coordi-
nate change. On any cylindrically symmetric, bounded domain Ω, we can define
(−∆Ω)−1

mag: L2
S (Ω)→ H2† (Ω) by

(−∆Ω)−1
mag = e−iθ (−∆Ω)−1

(
eiθ

)

where (−∆Ω)−1 is defined by the Dirichlet boundary condition. It is obvious that
(−∆Ω)−1

mag is a compact operator. Moreover, we still have the maximum princi-
ple for (−∆Ω)mag. So we can modify the theorem of McKenna-Walter (see also
Theorem 4.1 in [1]) to directly solve our system (4.6) in a bounded domain by the
sub-sup method. There is very little change in the standard proof so we skip the
details. We use the sub-sup method to solve problem (4.6) in BR = {x| |x| ≤ R},
with the boundary condition U = A0

θ = 0 on ∂BR.
By a straightforward calculation (see [1]), Assumption ii) implies that | jθ | ≤

ρ ≤C′ for some constant C′. Define AR
2 = (−∆BR)

−1
mag (C′) ,AR

1 = (−∆BR)
−1
mag (−C′),

UR
2 = (−∆BR)

−1 (−n1) and UR
1 = (−∆BR)

−1 (−n1−C′). Then for all β ∈ [
UR

1 ,UR
2
]

and α ∈ [
AR

1 ,AR
2
]

we have −∆UR
2 =−n1 (r,z)≥−n1 (r,z)−ρ (β ,α) and −∆UR

1 =
−n1−C′ ≤ −n1 (r,z)−ρ (β ,α) . We also have (−∆)mag AR

2 = C′ ≥ jθ (β ,α) and
(−∆)mag AR

1 = −C′ ≤ jθ (β ,α). So
(
UR

1 ,AR
1
)

and
(
UR

2 ,AR
2
)

are sub and sup so-
lutions to (4.6) on BR. By the modified form of the McKenna-Walter Theorem
mentioned above, there exists a C2+δ solution

(
UR,AR

θ
)

of (4.6) on BR vanishing
on ∂BR and satisfying UR

1 ≤UR ≤UR
2 and AR

1 ≤ AR
θ ≤ AR

2 for some 0 < δ < 1. We
denote ρR = ρ

(
UR,AR

θ
)

and jR
θ = jθ

(
UR,AR

θ
)
.

If we also denote U∞
2 =−∫ n1(y)

|x−y|dy, then of course UR
2 ↗U∞

2 as R→ ∞. Since
U∞

2 (x)→ 0 as |x| → ∞, there exists R0 > 0 such that 1−U∞
2 (x)≥ e0 for |x| ≥ R0.

So if R≥ R0, we have√
1+ |v|2−UR (x)≥

√
1+ |v|2−UR

2 (x)≥
√

1+ |v|2−U∞
2 (x)≥ e0

for |x| ≥ R0. By Assumption iii) it follows that ρR and jR
θ have their supports in the

ball BR0 for any R≥ R0.
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Furthermore by Assumptions i) and ii), ρR and jR
θ are bounded in C1(R3)

uniformly as R → ∞. Thus there exist cylindrically symmetric ρ∞ and j∞
θ in

Cδ (
R3

)
with supports in BR0 such that

(
ρR, jR

θ
)→ (

ρ∞, j∞
θ
)

in C2
(
R3

)
as R→ ∞.

Hence there also exists a pair
(
U∞,A∞

θ
)∈C2 (BR0) such that

(
UR,AR

θ
)→ (

U∞,A∞
θ
)

in Cδ (BR0) as R → ∞. Thus
(
U∞,A∞

θ
)

clearly solves (4.6) in BR0 with ρ∞ =
ρ

(
U∞,A∞

θ
)

and j∞
θ = jθ

(
U∞,A∞

θ
)
. We extend

(
U∞,A∞

θ
)

outside the fixed ball BR0

by setting U∞ (x) = U∞
2 (x) and A∞

θ = 0. It satisfies (4.6) in (BR0)
c. Then

(
U∞,A∞

θ
)

solves (4.6) in the whole space R3.
That supp(ρ∞)⊂ {(r,z) | r ≤C2, z≤C3} is implied by the compact support of

ρ∞. To show that supp(ρ∞) ⊂ {(r,z) | r ≥C1}, we use Assumption iv). For very
small r, in order for G

(
r
(
vθ −A∞

θ
))

to be non-zero, we must take |vθ | to be very

big, by Assumption iv). Thus if r is small enough, we have
√

1+ |v|2−U∞ > e0

which implies that ρ∞ = 0. So supp(ρ∞) ⊂ {(r,z) | r ≥C1} for some C1 > 0. Let
ρ0 = ρ∞ and j0

θ = j∞
θ . ¤
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