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Abstract

We prove the nonlinear stability or instability of certain periodic equilibria of the
1 1

2 D relativistic Vlasov-Maxwell system. In particular, for a purely magnetic
equilibrium with vanishing electric field, we prove its nonlinear stability under
a sharp criterion by extending the usual Casimir-energy method in several new
ways. For a general electromagnetic equilibrium we prove that nonlinear insta-
bility follows from linear instability. The nonlinear instability is macroscopic,
involving only the L1-norms of the electromagnetic fields.

c© 2000 Wiley Periodicals, Inc.

1 Introduction

In this paper, we prove the true nonlinear stability or instability of certain equi-
libria of the 1 1

2 D relativistic Vlasov-Maxwell (RVM) system. We use the same
notation as in [15]. The 1 1

2 D RVM system of two species of particles without
external fields is

(1.1a) ∂t f±+ v̂1∂x f±± (E1 + v̂2B)∂v1 f±± (E2− v̂1B)∂v2 f± = 0

(1.1b) ∂tE1 =− j1, ∂tE2 +∂xB =− j2

(1.1c) ∂tB =−∂xE2, ∂xE1 = ρ

with

ρ =
∫

( f +− f−)dv, ji =
∫

v̂i( f +− f−)dv (i = 1,2) .

We refer to [15] for further discussion of this model. Consider a P−periodic equi-
librium of the form

(1.2) f 0,± = µ±(e±, p±) = µ±(〈v〉±φ 0(x),v2±ψ0(x))≥ 0

with
E0

1 =−∂xφ 0, E0
2 = 0, B0 = ∂xψ0,

Communications on Pure and Applied Mathematics, Vol. 000, 0001–0045 (2000)
c© 2000 Wiley Periodicals, Inc.



2 Z. LIN AND W. STRAUSS

where
(
φ 0,ψ0

)
satisfy the ODE system

(1.3)

∂ 2
x φ 0 =−ρ0 =−

∫
( f 0,+− f 0,−)dv, ∂ 2

x ψ0 =− j0
2 =−

∫
v̂2( f 0,+− f 0,−)dv.

In the appendix of [15], we showed that there exist infinitely many periodic electro-
magnetic equilibria of this form. Under the assumption µ±e < 0, we found in [15] a
nearly sharp linear stability criterion for periodic equilibria of the form (1.2). Var-
ious linearly stable and unstable examples were explicitly constructed using this
criterion. The main purpose of the present paper is to prove that these linear sta-
bility or instability criteria are indeed also true on the nonlinear dynamical level at
least in some cases.

First we show that the existence of a growing mode implies nonlinear instabil-
ity, in the precise sense of the following theorem.

Theorem 1.1. (Instability) Let ( f 0,± = µ±(e±, p±),E0,B0) be a periodic equilib-
rium of the form (1.2) for system (1.1c) with

µ± = O(〈v〉−η), η > 3, |µ±e |+ |µ±p |= O(µ±), sup
x

∫
〈v〉2(|µ±e |+ |µ±p |)dv < ∞.

If there exists a growing mode, then there exist positive constants ε0,C1 and a
family of W 1,1 solutions

[
f̄ δ ,±, Ēδ , B̄δ ]

of (1.1c) with period P in x, defined for δ
sufficiently small, with f̄ δ ,± (t) non-negative, such that∥∥∥ f̄ δ ,± (0)− f 0

∥∥∥
W 1,1

+
∥∥∥Ēδ (0)−E0

∥∥∥
W 1,1

+
∥∥∥B̄δ (0)−B0

∥∥∥
W 1,1

≤ δ ,

and
sup

0≤t≤C1|lnδ |

∥∥∥Ēδ
1 (t)−E0

1

∥∥∥
L1

+
∥∥∥Ēδ

2 (t)
∥∥∥

L1
+

∥∥∥B̄δ (t)−B0
∥∥∥

L1
≥ ε0.

We emphasize that the conclusion of nonlinear instability proven in Theorem
1.1 is in the macroscopic sense: the fields themselves deviate at some time from the
equilibrium fields. This is physically natural since it excludes the spurious instabil-
ity due to microscopic oscillations of the distribution function f . In [9] nonlinear
instability was proven for homogeneous equilibria in a norm that included the L1

deviation of the distribution function f . So our result is an improvement of [9] in
two ways: the instability is proven more generally for any inhomogeneous equilib-
rium, and it is proven in a stronger, more physical sense.

Secondly, we prove nonlinear stability, for certain purely magnetic equilibria
of the type

f 0,± = µ±(e, p±) = µ±(〈v〉,v2±ψ0(x)), B0 = ∂xψ0, E0 = 0.

Such equilibria exist ([15]) if we assume that µ+(e, p) = µ−(e,−p) and ψ0 satis-
fies the ODE

(1.4) ∂ 2
x ψ0 = 2

∫
v̂2µ−(〈v〉,v2−ψ0(x))dv.
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Let Tψ0 be the minimal period of the periodic solution ψ0 to (1.4). By adjusting its
starting point, we can always arrange that the solution satisfies

ψ0(0) = ψ0(Tψ0) = min
0≤x≤Tψ0

ψ0(x), ψ0(1
2 Tψ0) = max

0≤x≤Tψ0
ψ0(x),

ψ0 (x) = ψ0 (
Tψ0 − x

)
, ∀x ∈ [

0,Tψ0

]
,

and ψ0 (x) is strictly increasing in the interval
[
0, 1

2 Tψ0

]
. Assume µ±e < 0. More-

over, we consider general perturbations of period Tψ0 . As noted in [15], the equi-
librium is more likely to be unstable under perturbations that have periods that are
multiples of Tψ0 . Given such an equilibrium, we proved in [15] the sharp linear
stability criterion for perturbations of period Tψ0 , namely, that the operator

(1.5) L 0h =−∂ 2
x h−2

∫
v̂2µ−p dv h−2

∫
v̂2 µ−e P−[v̂2h]dv

(which has discrete spectrum) should be nonnegative, where P− is defined as
the projection operator from L2

|µ−e | to kerD− with D− = v̂1∂x− v̂2B0∂v1 + v̂1B0∂v2

and L2
|µ−e | denotes the |µ−e |-weighted L2

x,v space. Using this stability criterion, we

constructed an inhomogeneous equilibrium in [15] that is linearly stable. We em-
phasize that the nonlocal stabilizing term involving P− is indispensable to a full
stability analysis, even for a homogeneous equilibrium.

In the present paper we show that L 0 ≥ 0 also implies nonlinear stability, at
least in certain cases. We restrict our attention to purely magnetic equilibria of the
special type

(1.6) f 0,±(x,v) = µ±(e, p±) = e−〈v〉γ
(
v2±ψ0 (x)

)
, B0 = ∂xψ0 (x) , E0 = 0

where γ ∈C3 is even. Our reason for this specialization is mainly for simplicity. For
such equilibria many calculations can be made explicit without being excessively
technical. We do expect that our ideas should carry over to prove the nonlinear
stability of more general purely magnetic equilibria.

Theorem 1.2. (Stability) Consider a purely magnetic equilibrium of the form (1.6).
Let η = logγ and assume η ′,η ′′,η ′′′ are bounded. If L 0 ≥ 0 and kerL 0 is one-
dimensional, then the equilibrium is nonlinearly stable in the following sense.
Given ε > 0, there exists δ > 0 with the following property. Let initial data
which launches a global solution be given with x-period P = Tψ0 , which satisfies∫ P

0 B(0)dx = 0 and ∂xE1(0) = ρ(0), and for which

d
(

f± (0)−µ±,ψ (0)−ψ0,E
)

< δ ,

where the distance functional d
(

f±−µ±,ψ−ψ0,E
)

is defined by (2.7) below.
Then the solution of (1.1c) satisfies

inf
θ

d
(
Tθ f± (t)−µ±, Tθ ψ (t)−ψ0, Tθ E

)
< ε
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at all later times 0 < t < ∞, where Tθ denotes the translation in x by θ . In particu-
lar, it satisfies

(1.7) sup
0<t<∞

inf
θ

{∥∥∥Tθ f
±
(t)−µ±

∥∥∥
L1

+
∥∥Tθ B(t)−B0∥∥

L2 +‖Tθ E‖L2

}
< ε .

Sufficient conditions for initial conditions to launch a solution of (1.1c) are
f (0) ∈ BV ; 〈v〉3+α f (0) ∈ L∞; E(0),B(0) ∈W 1,∞ (see Theorem 4 of [8]).

We remark that Theorem 1.2 and its proof go over almost verbatim to the 1 1
2 D

RVM system on the whole line rather than on the circle. For purely magnetic
solitary wave and kink-type solutions on the whole line, we can obtain the sharp
nonlinear stability criterion as above; that is, L 0 ≥ 0 and kerL 0 = {ψ0x} imply
nonlinear stability with L 0 defined by (1.5) on the whole line.

In [6], Guo proved the nonlinear stability of purely magnetic equilibria of the
same form (1.6) in the periodic and the whole line cases. The nonlinear stability
criterion proven in [6] was that the operator

(1.8) L =−∂ 2
x −2

∫
v̂2µ−p dv

should be nonnegative and kerL should be one-dimensional. For a kink-type equi-
librium, one has L ≥ 0 and the nonlinear stability can be proven. However, for
periodic and solitary wave type equilibria, since Lψ0

x = 0 and ψ0
x has a zero, the

operator L must have a negative eigenvalue by Sturm-Liouville theory. So the sta-
bility criterion L ≥ 0 could never be satisfied for periodic or solitary wave type
equilibria. Thus in [6] the periodic waves were only proven to be conditionally
stable under perturbations for which the magnetic field B is an even function and L
is a nonnegative operator. For the same reason, the nonlinear stability of homoge-
neous equilibria claimed in [9] is also conditional, with the evenness of B implicitly
assumed for the perturbations. On the other hand, in [15], the homogeneous equi-
libria studied in [9] are proven to be linearly stable without any restriction on the
parity of the perturbations and we construct stable inhomogeneous examples. The
proofs crucially require the additional stabilizing term −2

∫
v̂2 µ−e P−[v̂2h]dv in

L 0. By Theorem 1.2, these linearly stable equilibria are also nonlinearly stable.
Now we describe the main ideas in the proof of Theorems 1.1 and 1.2.

To prove nonlinear instability for Vlasov systems, one has to overcome several
particular difficulties. The first difficulty is that the nonlinear term in the Vlasov
equation (1.1a) contains ∂v f . To overcome this difficulty of a “loss of derivative”,
Guo and Strauss introduced a bootstrap technique in a series of papers starting with
[7]. This allowed them to get a growth estimate of ∂v f from the growth of f itself,
within a time period [0,Tδ ] during which the perturbation is exponentially growing
while the amplitude is kept smaller than δ . They close the estimate by showing that
the nonlinear term is indeed of higher order in [0,Tδ ], which implies the nonlinear
instability.
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A less obvious difficulty is related to the positive Liapunov exponent (growth
rate) µ of the particle trajectory in steady fields. It turns out that when µ is less
than the growth rate λ of the full linearized RVM system, the growing mode is
not differentiable, and more seriously the bootstrap estimate of ∂v f cannot be ob-
tained in this case. For the weakly inhomogeneous ([7]) and homogeneous ([9])
cases, one has the “good” case since λ > µ . However for general inhomogeneous
equilibria, the “bad case” when λ < µ has to be dealt with. In the proof of nonlin-
ear instability of the 1D Vlasov-Poisson system, Z. Lin ([12]) introduced two new
ideas to surmount these difficulties. One was to estimate the electric field E only,
thus utilizing the regularizing effect of going from f to E by the Poisson equation
in order to balance the derivative ∂v in the nonlinear term of the Vlasov equation.
This overcomes the “loss of derivative”.

The other new idea in [12] was to replace the classical Liapunov exponent µ by
an averaging Liapunov exponent µav. This comes from a rather delicate analysis
of the geometric properties of the particle trajectory. Coupled with the easier boot-
strap estimates involving no derivative of f , these new ideas led to the nonlinear
instability result ([12]) in the electric field.

In this paper, we generalize these ideas to the relativistic Vlasov-Maxwell sys-
tem to prove Theorem 1.1. However, there are still some important differences
from all the earlier papers. First, unlike the Vlasov-Poisson case one does not gain
any obvious regularity by passing from the particle density f to the field E,B since
the Maxwell system is hyperbolic. To overcome this difficulty, we use the operator
splitting ideas introduced in [4] (for 3D) and [5] (for 1 1

2 D). This allows us to gain
some regularity when the particle speed is finite, in which case the characteristics
of Vlasov and Maxwell equations are strictly separated. To deal with particles of
arbitrarily high speed, we estimate the coefficients coming from the operator split-
ting by a power of 〈v〉. This allows us to obtain some regularity of E and B by using
a 〈v〉k-weighted norm for f . It turns out that this regularity is enough to overcome
the “loss of derivative” by using a duality argument. Secondly, we also need to in-
troduce the averaging Liapunov exponent and prove that it vanishes. The proof is
more involved than in the Vlasov-Poisson case since the particle trajectory in elec-
tromagnetic fields is much more complicated than in electrostatic fields. Here the
result in [13] for ideal plane flows is important. The main line of proof of Theorem
1.1 follows that of [12] but is technically much more involved. The estimate of the
linearized semigroup and the bootstrap estimates are really different from and more
difficult than the Vlasov-Poisson case. Several techniques regarding homogenous
equilibria ([9]) are also very useful in our study of inhomogeneous equilibria.

In order to prove the nonlinear stability result of Theorem 1.2, we also intro-
duce several new ideas. First, let us make some general comments about the usual
nonlinear stability proofs. The usual way of proving nonlinear stability is the so-
called energy-Casimir method. This idea was first introduced by Newcomb (see the
appendix of [2]) and used by Gardner [3] for Vlasov plasmas and then by Arnold
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[1] for ideal plane flows. This method has been used extensively since then in the
analysis of nonlinear stability in fluid and plasmas (e.g. [10]). The idea is very
simple: one constructs an energy-Casimir functional that is an invariant of the non-
linear system under consideration. Its first variation vanishes at the equilibrium.
Performing a Taylor expansion of the functional around the equilibrium, one then
tries to prove that the second-order term is a positive quadratic form which is to be
used as the nonlinear stability norm.

To close the argument, one has to show that the remainder term in the Taylor
expansion is of higher order (smaller) in the stability norm. In Vlasov models
one of the remainder terms is f 3 whose L2 norm is difficult to be bounded by a
power of the stability norm. In the earlier papers using energy-Casimir methods
([1], [10]), the nonlinear term is estimated by a convexity argument and the higher-
order estimate is avoided. However, the stability condition obtained in this simple
way is far from being sharp and is not even applicable to many situations like our
current case.

To get a sharper stability criterion, one has to use the full power of the positive
quadratic term and to carefully estimate the higher order term. In [6] for 1 1

2 D
RVM, a delicate argument was developed to get the higher order estimate and the
sufficient stability criterion L > 0 (with L defined in (1.8)) was derived. But, as
mentioned before, for the periodic and solitary wave cases, the operator L always
has a negative eigenvalue and thus general nonlinear stability cannot be proven by
this stability criterion. To get the sharp nonlinear stability criterion in Theorem 1.2,
one has to extend the energy-Casimir method in several important ways.

To understand these ideas better, we switch for a moment to the simpler case
of ideal plane flows. In [16], Wolansky and Ghil extended the energy-Casimir
method for ideal plane flows in several directions. They used any finite number of
Casimir functionals as constraints, thus constructing an augmented energy-Casimir
functional with Lagrange multipliers. Doing a Taylor expansion of this augmented
functional, they obtained a sharper estimate for the quadratic term. The way they
handled the nonlinear term is also interesting. By a duality argument using a Le-
gendre transformation, they essentially transformed the nonlinear term for the vor-
ticity to the one for the stream function. This new nonlinear term was easily shown
to be of higher order. Combining these ideas, they were able to obtain a non-
linear stability criterion which is nonlocal since a finite-dimensional projection is
involved. In [11], by using all the Casimir functionals as constraints, a sharper and
more explicit criterion was obtained. However, as pointed out in [11], there is a
strict gap between the nonlinear stability criterion thereby obtained and the appar-
ently sharp spectral stability criterion. This gap occurs because the particle with
fixed energy in the steady flow is usually trapped on two or more disjoint closed
curves. To get a sharp nonlinear stability criterion, or to pass from linear stability
to nonlinear stability, one has to close this gap.



NONLINEAR STABILITY AND INSTABILITY OF RVM 7

We now return to 1 1
2 D RVM. The proof of Theorem 1.2 is accomplished in

several steps and several new ideas and techniques are introduced. First, we de-
duce a nonlinear stability criterion by Taylor-expanding the usual energy-Casimir
functional (2.1) using all the Casimir functionals as constraints. More precisely,
by observing that all of the functionals Ig ( f±,v2±ψ) =

∫
g( f±,v2±ψ)dvdx

are invariant, the conditions Ig ( f±,v2±ψ) = Ig
(
µ±,v2±ψ0

)
impose additional

constraints on the perturbations. In a similar fashion to the ideal plane flow case
in [11], we only need to incorporate finitely many Casimir constraints. However,
unlike the case of ideal plane flows in [16], we are not able to construct a similar
augmented functional to utilize these constraints in the plasma case. This difficulty
occurs in part because f and ψ are functions living in different spaces. More signif-
icantly, in the plasma case f cannot be represented by ψ via a local relationship. In
the present paper, in order to use the Casimir constraints, we instead employ a new
technique originally developed for ideal plane flows in [14]. In [11] and [14] the
idea is to directly minimize the difference of the energy-Casimir functional under
the Casimir constraints. The constraints are incorporated by using the correspond-
ing finite-dimensional projection for the vorticity ω . The nonlinear term in ω is
transformed to a new one in the stream function ϕ by the Legendre transformation
as in [16]. The key observation is that the constraints on ω in the projection form
are nicely suited to the Legendre transformation and provide a nonlinear nonlocal
term in ϕ involving the projection. Performing a Taylor expansion of this nonlinear
nonlocal term in ϕ , we get the desired nonlinear stability criterion.

Carrying out this approach in the RVM case is far from straightforward. One
key point in our proof is to introduce the |µe|-weighted L2 space L2

|µe| which con-
tains both f and ψ and to perform the projection in this space. The Legendre-type
transformation from f to ψ is also quite delicate and the spectral stability proof
from [15] provides useful insights. We are able to get a nonlocal nonlinear term
involving ψ only. Performing a Taylor expansion of this new nonlinear term of ψ ,
we obtain the nonlinear stability criterion that the operator

(1.9) L̃ =−∂ 2
x h−2

∫
v̂2µ−p dvh−2

∫
v̂2 µ−e P̃−[v̂2h]dv

is nonnegative with kerL̃ =span{∂xψ0}, where P̃− is the projection operator of
L2

µ− onto the subspace

(1.10) W− =
{

ζ ∈ L2
µ− | ζ = g

(〈v〉 ,v2−ψ0) for some measurable function g
}

.

However, W− is strictly smaller than kerD−, where D− is the Vlasov generator,
so that P− > P̃−. Therefore L 0> L̃ . So as in the case of ideal plane flows
there is a gap between the sharp linear stability criterion L 0≥0 and the nonlinear
stability criterion L̃ ≥ 0. The reason for this gap is similar: the phase space for the
particle motion for given particle invariants e, p in a steady field has disconnected
components. To close the gap between L 0 and L̃ and to get the sharp criterion for
nonlinear stability, we investigate the detailed structure of particle trajectories. The
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key observation is that the disjoint components of the trapped intervals are sym-
metric in the purely magnetic case. Using this observation and the explicit forms of
L 0 and L̃ , we are able to show that L 0≥0 implies L̃ ≥0. This finally provides
the sharp nonlinear stability result of Theorem 1.2. Using this sharp criterion, we
can prove nonlinear stability under general perturbations for the stable examples
constructed in [15].

This paper is organized as follows. In Section 2, we prove Theorem 1.2 on
nonlinear stability. In Section 3, we prove Theorem 1.1 in several steps. First
we discuss the averaging Liapunov exponent, then the representation of the fields,
then the semigroup estimates, then the bootstrap estimate and finally the nonlinear
stability.

2 Sharp nonlinear stability in the purely magnetic case

2.1 The invariant functional and duality lemma
We prove Theorem 1.2 in this section. Denote H ( f ) = f ln f − f and η (p) =

lnγ (p). Since
∫ P

0 B(t) is invariant, B(t) = ∂xψ (t)+ k for a periodic ψ (t) and a
constant k independent of t. To prove nonlinear stability, we only need to control
the periodic part ∂xψ (t). For simplicity, as in the previous papers [9] and [6], we
only consider perturbations with k =

∫ P
0 B(0) = 0. This allows us to write B(t) =

∂xψ (t), where ψ (t) is the periodic magnetic potential. We define the standard
energy-Casimir functional as in [6],

(2.1) I
(

f±,ψ,E
)

=

∫ P

0

∫

R2
∑
±

H
(

f±
)
+(〈v〉−η (v2±ψ)) f±dvdx+

∫ P

0

(
1
2

ψ2
x +

1
2
|E|2

)
dx.

To prove nonlinear stability, we expand the functional (2.1) around the equilib-
rium. Denote

Q
(

f±,v2±ψ
)

= H
(

f±
)−η (v2±ψ) f±,

so that ∂1Q
(
µ±,v2±ψ0

)
=−〈v〉. So from

0 =
∫

∂v2Q
(
µ±,v2±ψ0)dv =

∫ (−〈v〉∂v2 µ±−η ′
(
v2±ψ0)µ±

)
dv

we have ∫
η ′

(
v2±ψ0)µ±dv =−

∫
〈v〉∂v2 µ±dv =

∫
v̂2µ±dv

and thus

(2.2) −ψ0
xx =

∫
v̂2

(
µ+−µ+)

dv =
∫ (

η ′
(
v2 +ψ0)µ+−η ′

(
v2−ψ0)µ−

)
dv.
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Hence

I
(

f±,ψ,E
)− I

(
µ±,ψ0,0

)
=

∫∫
∑
±

[H
(

f±
)−H

(
µ±

)
] dvdx

(2.3)

+
∫∫

∑
±

{〈v〉( f±−µ±
)−η (v2±ψ) f±+η(v2±ψ0)µ±

}
dvdx

+
∫ {

1
2

(
ψ−ψ0)2

x +
(
ψ−ψ0)

x ψ0x +
1
2
|E|2

}
dx

=
∫∫

∑
±

{
H

(
f±

)−H
(
µ±

)
+ 〈v〉( f±−µ±

)−η (v2±ψ) f±
}

dvdx

+
∫∫

∑
±

{
η

(
v2±ψ0)µ±+

(
η
′
(v2 +ψ0)µ+−η ′

(
v2−ψ0)µ−

)(
ψ−ψ0)}dvdx

+
∫ {

1
2

(
ψ−ψ0)2

x +
1
2
|E|2

}
dx

= I1 + I2 + I3,

where in the second equality above we have integrated by parts and used (2.2) and
with

I1 =
∫ P

0

∫

R2

(
∑
±

H
(

f±
)−H

(
µ±

)−H ′ (µ±
)(

f±−µ±
)−h

(
f±−µ±

)
)

dvdx

where h = η (v2±ψ)−η
(
v2±ψ0

)
,

I2 =−
∫ P

0

∫

R2

(
∑
±

(
h∓η ′

(
v2±ψ0)(

ψ−ψ0))µ±
)

dvdx,

I3 = +
∫ (

1
2

(
ψ−ψ0)2

x +
1
2
|E|2

)
dx.

Now we use the integral identity (which follows from the special form of µ)

∫
µ±η ′′

(
v2±ψ0)dv =

∫
−∂v2

(
µ±

)
η ′

(
v2±ψ0)dv

=
∫ (

−µ±
(
η ′

(
v2±ψ0))2

+ v̂2µ±η ′
(
v2±ψ0))dv

=
∫ (

−µ±
(
η ′

(
v2±ψ0))2

+ v̂2µ±p
)

dv.
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Thus the term I2 is estimated below by

I2 =−
∫ P

0

∫

R2
∑
±

(
1
2

η ′′
(
v2±ψ0)(

ψ−ψ0)2±η ′′′ (v2± ψ̄)
(
ψ−ψ0)3

)
µ±dxdv

(2.4)

≥
∫ P

0

∫

R2
∑
±
−1

2
µ±η ′′

(
v2±ψ0)(

ψ−ψ0)2
dxdv−C1

∥∥ψ−ψ0∥∥3
H1

=
∫ P

0

∫

R2
∑
±

(
1
2

µ±
(
η ′

(
v2±ψ0))2− 1

2
v̂2µ±p

)(
ψ−ψ0)2

dvdx−C1
∥∥ψ−ψ0∥∥3

H1

where C1 = |η ′′′|L∞
∫

∑± |µ±|dxdv and ψ̄ is between ψ0 and ψ . In order to es-
timate I1, we need the following simple duality formula based on the Legendre
transform.

Lemma 2.1. For given numbers f0 > 0,c and d, denote gc,d ( f ) = H ( f + f0 +d)−
H ( f0)−H ′ ( f0)( f +d)− c f . Then

Gc,d (h) = min
f >−( f0+d)

gc,d ( f )−h f

= f0

(
1+h+ c− eh+c

)
+(h+ c)d = (h+ c)d +O(h+ c)2.

Proof. The minimizer fh satisfies

0 = g′c,d ( f )−h = ln( f + f0 +d)− ln f0−h− c = 0,

so
fh = f0

(
eh+c−1

)
−d.

Thus
Gc,d (h) = gc,d ( fh)−h fh = f0

(
1+h+ c− eh+c

)
+(h+ c)d.

¤

As a simple illustration of estimating I1 by the duality argument, we use Lemma
2.1 by setting c = d = 0, f0 = µ±, f = f±−µ± and h = h±

(
ψ,ψ0

)
= η (v2±ψ)−

η
(
v2±ψ0

)
. Then we have by Lemma 2.1,

I1 =
∫ P

0

∫

R2
∑
±

(g0,0( f±)−h)( f±−µ±)dvdx

≥
∫ P

0

∫

R2
∑
±

µ±
(

1+h±
(
ψ,ψ0)− eh±(ψ,ψ0)

)
dvdx(2.5)

≥−
∫ P

0

∫

R2
∑
±

1
2

µ±
(
η ′

(
v2±ψ0))2

((
ψ−ψ0)2

)
dvdx

−C1eC′‖ψ−ψ0‖H1
∥∥ψ−ψ0∥∥3

H1
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since h±
(
ψ,ψ0

) ≤ |η ′|L∞

∣∣ψ−ψ0
∣∣ ≤ C′

∥∥ψ−ψ0
∥∥

H1 . Combining this with the
estimate (2.4) of I2, we get a cancelation that leads to

I
(

f±,ψ,E
)− I

(
µ±,ψ0,0

)≥ 1
2
‖E‖2

2 +
(
L(ψ−ψ0) ,ψ−ψ0)

−C1eC′‖ψ−ψ0‖H1
∥∥ψ−ψ0∥∥3

H1 .

By the standard argument, this essentially proves nonlinear stability under the
stronger assumption that the operator L defined by (1.8) is positive, which recovers
the result of Guo [6].

However, the proof of the nonlinear stability criterion asserted in Theorem 1.2
is sharper and its proof is considerably more involved. We divide it into several
steps. Our main task is to use the constrained energy-Casimir method to show that
L̃ ≥ 0 (defined by (1.9)) implies nonlinear stability in the sense of Theorem 1.2.
Assuming that, we will finish the proof of Theorem 1.2 by showing that L̃ ≥ 0 is
equivalent to the sharp condition L 0 ≥ 0.

2.2 Two projections
We begin with a discussion of the operator L̃ defined by (1.9). Since we do

not know beforehand that the space W− (defined by (1.10)) is closed in L2
|µ−e |, we

shall define an operator P̃− : L2
|µ−e | → L2

|µ−e | explicitly and later show that it is the

projection onto W−. For h = h(x,v1,v2) ∈ L2
|µ−e |, we denote

h̃± (e, p,x) = h
(

x, ±
√

e2−1− (p+ψ0 (x))2, p+ψ0 (x)
)

.

We classify the particles into five types according to their (e, p) values as in [15]
and we refer to [15] for their definitions and the notation. The classification de-
pends on which of five sets A1∪·· ·∪A5 the point (e, p) belongs to. We can neglect
the set A5, which has measure zero. We define

P̃−h =
1

4T (e, p) ∑
i=1,2

∑
±

∫ bi

ai

h̃± (e, p,x)edx√
e2−1− (p+ψ0 (x))2

at points (x,v) with (e, p) =
(〈v〉 ,v2−ψ0 (x)

) ∈ A4 corresponding to trapped par-
ticles of type III, where

[
aIII

1 ,bIII
1

]
and

[
aIII

2 ,bIII
2

]
are trapped intervals and

T III (e, p) =
∫ bIII

i

aIII
i

edx√
e2−1− (p+ψ0 (x))2

is the half period. At all other points (e, p) ∈ A1∪A2∪A3, we define

P̃−h =
1

2T (e, p)∑±
∫ b

a

h̃± (e, p,x)edx√
e2−1− (p+ψ0 (x))2
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where [a,b] is the interval of the particle motion and

T (e, p) =
∫ b

a

edx√
e2−1− (p+ψ0 (x))2

is the time for a particle to get through its interval. By definition, P̃− takes an
arbitrary function into a function of e, p alone. We now show that P̃−, as just
defined, is the projection onto W−.

Lemma 2.2. (i) P̃− :L2
|µ−e | → L2

|µ−e | is the orthogonal projection onto W−.

(ii) If ψ (x) ∈ L2
P is odd, then P̃− (v̂2ψ) = 0. If ψ is even, then P̃− (v̂2ψ) =

P− (v̂2ψ) is even.

Proof. (i) We have

‖h‖2
L2

|µ−e |
=

∫ ∣∣µ−e
∣∣h2dxdv

=
∫ ∫

A1∪A2∪A3

∣∣µ−e
∣∣∑
±

∫ b

a

h̃± (e, p,x)2 edx√
e2−1− (p+ψ0 (x))2

ded p

+
∫ ∫

A4

∣∣µ−e
∣∣∑
±

∑
i=1,2

∫ bi

ai

h̃± (e, p,x)2 edx√
e2−1− (p+ψ0 (x))2

ded p

by the change of variables (x,v1,v2)→ (x,e, p). Since by definition P̃−h depends
only on (e, p), it is constant on the x-intervals for each (e, p), so that

∥∥P̃−h
∥∥2

L2

|µ−e |
=

∫∫∫ ∣∣µ−e
∣∣(P̃−h

)2 dxdv

= 2
∫∫

A1∪A2∪A3

∣∣µ−e
∣∣(P̃−h

)2 T (e, p)ded p+4
∫∫

A4

∣∣µ−e
∣∣(P̃−h

)2 T III (e, p)ded p.

By Cauchy-Schwarz, for (e, p) ∈ A1∪A2∪A3,

(
P̃−h

)2 2T (e, p)

≤ 1
2T (e, p) ∑

±




∫ b

a

h̃± (e, p,x)2 edx√
e2−1− (p+ψ0 (x))2







∫ b

a

edx√
e2−1− (p+ψ0 (x))2




1
2

=
1
2 ∑
±

∫ b

a

h̃± (e, p,x)2 edx√
e2−1− (p+ψ0 (x))2

≤ ∑
±

∫ b

a

h̃± (e, p,x)2 edx√
e2−1− (p+ψ0 (x))2

.
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Similarly for (e, p) ∈ A4,

4
(
P̃−h

)2 T III (e, p)≤ 1
4


∑

±
∑

i=1,2




∫ bIII
i

aIII
i

h̃± (e, p,x)2 edx√
e2−1− (p+ψ0 (x))2




1
2



2

≤∑
±

∑
i=1,2

∫ bIII
i

aIII
i

h̃± (e, p,x)2 edx√
e2−1− (p+ψ0 (x))2

.

So, summing over the four regions, we have
∥∥P̃−h

∥∥
L2

|µ−e |
≤ ‖h‖L2

|µ−e |
or

∥∥P̃−∥∥≤

1. That range
(
P̃−)

= W− is obvious since P̃− maps a function depending only
on e, p to the same kind of function. The equality (P̃−)2 = P̃− = (P̃−)∗ follows
directly from the definition.

(ii) By the definition of P̃−, we have

P̃− (v̂2ψ) =
1

2T (e, p) ∑
i=1,2

∫ bIII
i

aIII
i

(
p+ψ0 (x)

)
ψ (x)dx√

e2−1− (p+ψ0 (x))2

for (x,v) corresponding to type III trapped particles, and

P̃− (v̂2ψ) =
1

T (e, p)

∫ b

a

(
p+ψ0 (x)

)
ψ (x)dx√

e2−1− (p+ψ0 (x))2

at all other points. So (ii) follows easily from this formula for P̃− (v̂2ψ) and
the formula for P− (v̂2ψ) in [15], by the exact cancellation due to the symmetry
properties of the particle motion intervals. ¤

By the same process as above, we define P̃+ to be the projection operator

of L2
|µ+

e | to its subspace W+ =
{

ζ ∈ L2
|µ+

e | | ζ = g
(〈v〉 ,v2 +ψ0

)}
. Let R be the

operator defined by R f (x,v) = f (x,−v). Note that RL2
µ− = L2

µ+ and RW− = W+.
Thus RP− = P+R.

The following lemma implies that the weaker stability criterion L̃ ≥ 0 is equiv-
alent to the sharp condition L 0 ≥ 0. This is a crucial step in the proof of the sharp
nonlinear stability criterion.

Lemma 2.3. L 0 ≥ 0 with kerL 0 = span{ψ0x} if and only if L̃ ≥ 0 with kerL̃ =
span{ψ0x}.

Proof. Since L̃ and L map odd (even) functions to odd (even) functions, we
can consider the operators L̃ and L defined on even and odd function spaces
separately. By Lemma 2.2, L = L̃ on the space of even functions. Since ψ0x
is odd, by assumption L̃ = L >0 on the even space. On the odd space, L̃ =L
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(defined by (1.8)) which is nonnegative by assumption and has its kernel spanned
by ψ0x on the odd space. Combining these two, we conclude the proof. ¤

2.3 Reduction to finitely many constraints
By Lemma 2.2 it suffices to prove nonlinear stability under the assumption that

L̃ ≥ 0 and kerL̃ = span{ψ0x}. To accomplish this, the main idea is to use all
the constraints from the invariance of g( f±,v2±ψ) to obtain a sharper estimate of
I ( f±,ψ,E)− I

(
µ±,ψ0,0

)
. First we indicate that in some sense we merely need to

use finitely many constraints. Indeed, for any ζ = g
(〈v〉 ,v2−ψ0

)
= g(e, p)∈W−,

we denote e′ = e−η (p) where η = logγ . Then ζ = g(e′+η (p) , p) = g̃(e′, p).

So we also have W− =
{

ζ ∈ L2
|µ−e || ζ = g̃(e′, p)

}
, and

‖ζ‖2
L2

|µ−e |
=

∫ ∣∣µ−e
∣∣ζ 2dxdv =

∫ ∫ ∣∣µ−e
∣∣g2 (

e′, p
)

T̃
(
e′, p

)
de′d p,

where T̃ (e′, p) = T (e′+η (p) , p) and

T (e, p) =
∫ b

a

edx√
e2−1− (p+ψ0 (x))2

is the time for a particle to get through its periodic interval [a,b]. Hence the space(
W−,‖.‖L2

|µ−e |

)
is the same as the |µ−e | T̃ weighted L2

e′,p space. Therefore we can

find a complete orthogonal basis {ζ1,ζ2, · · · ,ζn, · · ·} for

(
W−,‖.‖L2

|µ−e |

)
in the

form of products

ζi = αi
(
e′

)
βi (p) = αi

(〈v〉−η
(
v2−ψ0(x)

))
βi

(
v2−ψ0(x)

)

with αi,βi in C2
0 (R). Denote W−

m = span{ζ1,ζ2, · · · ,ζm} and P̃−
m the corre-

sponding projection operator from L2
|µ−e | to W−

m . Similarly, for any m, denote W+
m

= span
{

ζ +
1 ,ζ +

2 , · · · ,ζ +
m

}⊂ L2
|µ+

e | with

ζ +
i = αi

(〈v〉−η
(
v2 +ψ0))βi

(
v2 +ψ0)

and P̃+
m the corresponding projection operator from L2

|µ+
e | to W+

m . Define

(2.6) L̃mh =−∂ 2
x h−∑

±

∫
v̂2µ±p dvh−∑

±

∫
v̂2 µ±e P̃±

m [v̂2h]dv.

Lemma 2.4. Assume L̃ ≥ 0 and kerL̃ =
{

ψ0
x
}

. For sufficiently large m, the
operator L̃m defined by (2.6) satisfies L̃m ≥ 0 and kerL̃m =

{
ψ0

x
}

.
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Proof. Since v̂2ψ0
x = D− (v1), we have v̂2ψ0

x ∈ (W−
m )⊥ and P̃−

m [v̂2ψ0
x ] = 0. Sim-

ilarly, P̃+
m [v̂2ψ0x] = 0. So L̃m (ψ0x) = Lψ0x = 0. It is obvious that P̃±

m → P̃±

strongly in L2
|µ−e |, so

∥∥L̃mh− L̃ h
∥∥

2 ≤∑
±

(∫ ∣∣∣∣
∫

v̂2 µ±e
(
P̃±

m [v̂2h]−P̃±[v̂2h]
)

dv
∣∣∣∣
2

dx

) 1
2

≤C∑
±

(∫ ∫ ∣∣µ±e
∣∣ ∣∣P̃±

m [v̂2h]−P̃±[v̂2h]
∣∣2 dvdx

) 1
2

→ 0

as m → ∞. Thus L̃m → L̃ strongly in L2
per, as m → ∞. We are assuming L̃ > 0

on
{

ψ0
x
}⊥ and we know its spectrum is discrete.

Suppose that L̃m 6> 0 on
{

ψ0
x
}⊥ for some large m. Then there exists a sequence

{λn} and {φn} ⊂
{

ψ0
x
}⊥ with λn < 0, ‖φn‖2 = 1 and L̃nφn = λnφn. Since the

operators Lm +∂ 2
x are uniformly bounded in L2

per, standard elliptic estimates imply
that ‖φn‖H2

per
≤C for some constant independent of n. So there exists λ0 ≤ 0 and

φ0 ∈H2
per such that λn → λ0 and φn → φ0 strongly in L2

per. So L̃nφn → L̃ φ0 weakly
and thus L̃ φ0 = λ0φ0, a contradiction. Thus Lm > 0 on {ψ0x}⊥. ¤

2.4 Distance functionals
By assumption, L 0 ≥ 0 and kerL 0 = span

{
ψ0

x
}

. So from Lemmas 2.3 and

2.4, there exists a m−dimensional subspace W−
m (W−

m ) in L2
|µ−e |

(
L2
|µ+

e |
)

with pro-

jection P̃−
m

(
P̃+

m
)

as defined above such that L̃m ≥ 0 and kerL̃m =
{

ψ0
x
}

. To
quantify the nonlinear stability, we introduce the following distance functional

(2.7) d
(

f±−µ±,ψ−ψ0,E
)

=
∥∥ψ−ψ0∥∥2

H1 +‖E‖2
2 +∑

±
d±1

(
f±,µ±

)

where

d±H = d±1
(

f±,µ±
)

=
∫ P

0

∫

R2

(
H

(
f±

)−H
(
µ±

)−H ′ (µ±
)(

f±−µ±
))

dvdx.

We note that by Taylor’s formula

d±1
(

f±,µ±
)

=
∫ 1

0

∫ P

0

∫

R2
(1− r)

1
f±,r

(
f±−µ±

)2 dvdxdr ≥ 0
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where f±,r = r f±+(1− r)µ±. So by the Cauchy-Schwarz inequality

∥∥ f±−µ±
∥∥

1 = 2
∫ 1

0

∫ P

0

∫

R2
(1− r)

∣∣ f±−µ±
∣∣dvdxdr

(2.8)

≤
∫ 1

0
2(1− r)

(∫ P

0

∫

R2

1
f±,r

(
f±−µ±

)2 dvdx
) 1

2
(∫ P

0

∫

R2
f±,rdvdx

) 1
2

dr

≤C
(∥∥ f± (0)

∥∥
1 ,

∥∥µ±
∥∥)

d±1
(

f±,µ±
) 1

2 .

2.5 Projection based on the constraints
Recall that W−

m = span{ζ1,ζ2, · · · ,ζm}with ζi = αi
(〈v〉−η

(
v2−ψ0

))
βi

(
v2−ψ0

)
for some functions αi,βi ∈ C2

0 (R). Define

Ai ( f ) =
∫ f

0
αi (− lns)ds, Qi ( f ,v2−ψ) = Ai ( f )βi (v2−ψ) .

Note that ∂1Qi(µ−,v2−ψ0) = αi(− ln µ−)βi(v2−ψ0) = ζi. We define the m in-
variant functionals

Ji
(

f−,ψ
)

=
∫ P

0

∫

R2
Qi

(
f−,v2−ψ

)
dvdx.

In the following we investigate what estimates on perturbations
(

f−−µ−,ψ−ψ0
)

can be derived from these additional invariants.
We perform a Taylor expansion of

Ji
(

f−,ψ
)− Ji

(
µ−,ψ0)

=
∫ P

0

∫

R2

(
∂1Qi

(
µ−,v2−ψ0)(

f−−µ−
)−∂2Qi

(
µ−,v2−ψ0)(

ψ−ψ0))dvdx

+
∫ 1

0
(1− r)

∫ P

0

∫

R2
∂11Qi

(
f−,r,v2−ψr)(

f−−µ−
)2 dvdxdr

−
∫ 1

0
(1− r)

∫ P

0

∫

R2
∂12Qi

(
f−,r,v2−ψr)(

f−−µ−
)(

ψ−ψ0)dvdxdr

+
∫ 1

0
(1− r)

∫ P

0

∫

R2
∂22Qi

(
f−,r,v2−ψr)(

ψ−ψ0)2
dvdxdr

= K1
i + · · ·K4

i ,

where for brevity we denote f−,r = r f− + (1− r)µ− and ψr = rψ + (1− r)ψ0.
Since ∂1Qi

(
µ−,v2−ψ0

)
= ζi and

∫
∂2Qi

(
µ−,v2−ψ0)dv =

∫
∂v2Qi

(
µ−,v2−ψ0)dv−

∫
∂v2 µ−∂1Qi

(
µ−,v2−ψ0)dv

=−
∫

∂v2 µ−ζidv,
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the first term is

K1
i =

∫ P

0

∫

R2

[(
f−−µ−

)
+∂v2 µ−

(
ψ−ψ0)]ζidvdx.

The second term can be estimated as
∣∣K2

i

∣∣ =
∣∣∣∣
∫ 1

0
(1− r)

∫ P

0

∫

R2
α ′

i
(− ln f−,r) 1

f−,r

(
f−−µ−

)2 dvdxdr
∣∣∣∣

≤ ∣∣α ′
i

∣∣
∞

∫ 1

0
(1− r)

∫ P

0

∫

R2

1
f−,r

(
f−−µ−

)2 dvdxdr =
∣∣α ′

i

∣∣
∞ d−1

(
f−,µ−

)
.

For the third term we have
∣∣K3

i

∣∣≤ |αi|∞
∣∣β ′i

∣∣
∞

∣∣ψ−ψ0∣∣
∞

∥∥ f±−µ±
∥∥

1

≤C
(∥∥ f± (0)

∥∥
1 ,

∥∥µ±
∥∥)∥∥ψ−ψ0∥∥

H1 d−1
(

f−,µ−
) 1

2

by (2.8). For the last term, noticing that |Ai ( f )| ≤ |αi|∞ f , we have

∣∣K4
i

∣∣≤ |αi|∞
∣∣β ′′∣∣∞

∣∣ψ−ψ0∣∣2
∞

∫ 1

0

∥∥ f−,r
∥∥

1 dr

≤C
(∥∥ f± (0)

∥∥
1 ,

∥∥µ±
∥∥)∥∥ψ−ψ0∥∥2

H1

for some constant C. Now we use the estimate
∣∣Ji

(
f− (0) ,ψ

)− Ji
(
µ− (0) ,ψ0)∣∣≤C

(∥∥ f± (0)
∥∥

1 ,
∥∥µ±

∥∥)(
d (0)

1
2 +d (0)

)
,

which follows from
∣∣K1

i

∣∣(0)≤C
(∥∥ f− (0)−µ−

∥∥
1 +

∥∥ψ−ψ0∥∥
∞

)≤Cd (0)
1
2

by (2.8) and the existing estimates on terms K2
i (0) ,K3

i (0) ,K4
i (0). By the invari-

ance of the functional Ji ( f− (t) ,ψ(t)), the above calculations imply that at every
time we have∣∣∣∣

∫ P

0

∫

R2
ζi

((
f− (t)−µ−

)
+∂v2 µ−

(
ψ (t)−ψ0))dvdx

∣∣∣∣(2.9)

≤ ∣∣Ji
(

f− (0) ,ψ
)− Ji

(
µ− (0) ,ψ0)∣∣+C

(∥∥ f± (0)
∥∥

1 ,
∥∥µ±

∥∥)
d (t)

≤C
(∥∥ f± (0)

∥∥
1 ,

∥∥µ±
∥∥)(

d (0)
1
2 +d (0)+d (t)

)
,

where d(t) is the distance functional d (t) = d
(

f± (t)−µ± (t) ,ψ (t)−ψ0,E (t)
)
.

To simplify the notation we denote

f̃− (t) =
(

f− (t)−µ−
)
+∂v2 µ−

(
ψ (t)−ψ0) , ψ̃ (t) = ψ (t)−ψ0.

Define f̃−m (t) = ∑m
i=1 |µ−e | pi (t) ζi with pi (t) =

∫ P
0

∫
R2 ζi f̃− (t)dvdx. Then estimate

(2.9) can be written as

|pi|(t)≤C
(

d (0)
1
2 +d (0)+d (t)

)
.
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Now by definition, P̃−
m (v̂2ψ̃)(t)= ∑m

i=1 qi (t)ζi where qi (t)=
∫ P

0
∫
R2 |µ−e |ζiv̂2ψ̃ (t)dvdx.

So

|qi|(t)≤C |ψ̃|∞ (t)≤C‖ψ̃‖H1 (t)≤Cd (t)
1
2 .

We write
∫ P

0

∫

R2
P̃−

m (v̂2ψ̃) f̃−dxdv = b1 +b2,

where

b1 =
∫ P

0

∫

R2
P̃−

m (v̂2ψ̃) f̃−m dxdv,

b2 =
∫ P

0

∫

R2
P̃−

m (v̂2ψ̃)
(

f̃−− f̃−m
)

dxdv.

Since {ζ1,ζ2, · · · ,ζm} is an orthonormal basis in L2
|µ−e |, we have

|b1 (t)|=
∣∣∣∣∣
∫ P

0

∫

R2

∣∣µ−e
∣∣
(

m

∑
i=1

qiζi

)(
m

∑
i=1

piζi

)
dxdv

∣∣∣∣∣

=

∣∣∣∣∣
m

∑
i=1

piqi

∣∣∣∣∣ ≤C
(

d (0)
1
2 +d (0)+d (t)

)
d (t)

1
2

and

b2 (t) =
m

∑
i=1

qi (t)
∫ P

0

∫

R2
ζi

(
f̃− (t)−

m

∑
j=1

pi (t)
∣∣µ−e

∣∣ζ j

)
dvdx

=
m

∑
i=1

qi

(∫ P

0

∫

R2
ζi f̃−dvdx− pi

)
= 0.

So

(2.10)
∣∣∣∣
∫ P

0

∫

R2
P̃−

m (v̂2ψ̃) f̃−dxdv
∣∣∣∣≤C

(
d (0)

1
2 +d (0)+d (t)

)
d (t)

1
2 .

2.6 Duality transformation of nonlinear terms
Now we estimate I ( f−,ψ,E)− I

(
µ−,ψ0,0

)
. We split it in the same way as

before: I = I1 + I2 + I3. But then we further split I1 in a rather delicate way. The
estimate for the term I2 is the same as before. We write I1 = I−1 + I+

1 and rewrite
the term I−1 as follows, using the notation ψ̃ = ψ−ψ0. A free parameter τ will be
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chosen later.

I−1 = d−1
(

f−,µ−
)−

∫ P

0

∫

R2

(
η (v2−ψ)−η

(
v2−ψ0))(

f−−µ−
)

dxdv

= τd−1
(

f−,µ−
)
+ τ

∫ P

0

∫

R2
η ′

(
v2−ψ0)(ψ̃)

(
f−−µ−

)
dvdx

+(1− τ)
(

d−1
(

f−,µ−
)
+

∫ P

0

∫

R2
η ′

(
v2−ψ0) ψ̃

(
f̃−−∂v2 µ−ψ̃

)
dvdx

)

−
∫ P

0

∫

R2

(
η (v2−ψ)−η

(
v2−ψ0)+η ′

(
v2−ψ0) ψ̃

)(
f−−µ−

)
dxdv.

We substitute η ′ = v̂2 +∂v2 µ−/µ− to get

I−1 = τd−1
(

f−,µ−
)
+ τ

∫ P

0

∫

R2
η ′

(
v2−ψ0)(

ψ−ψ0)(
f−−µ−

)
dvdx

+(1− τ)
(

d−1
(

f−,µ−
)
+

∫ P

0

∫

R2

((
1−P̃−

m
)
[v̂2ψ̃] f̃−+

∂v2 µ−

µ−
ψ̃ f̃−

)
dvdx

)

+(1− τ)
∫ P

0

∫

R2
P̃−

m [v̂2ψ̃] f̃−dvdx− (1− τ)
∫ P

0

∫

R2
η ′

(
v2−ψ0)∂v2 µ−ψ̃2dvdx

−
∫ P

0

∫

R2

(
η (v2−ψ)−η

(
v2−ψ0)+η ′

(
v2−ψ0) ψ̃

)(
f−−µ−

)
dxdv

≡
5

∑
i=1

I−1,i

where 0 < τ < 1 is free to be determined. In these calculations we wrote

η ′
(
v2−ψ0) ψ̃ =

(
1−P̃−

m
)
[v̂2ψ̃]+P̃−

m [v̂2ψ̃] +
∂v2 µ−

µ−
ψ̃ .

Now we estimate each of these terms separately. By (2.8), we have

I−1,1 ≥ τd−1
(

f−,µ−
)−Cτ‖η ′‖L∞

∥∥ψ−ψ0∥∥
L∞ d−1

(
f−,µ−

) 1
2

≥ 1
2

τd−1
(

f−,µ−
)−C′τ

∥∥ψ−ψ0∥∥2
H1 .

By (2.10), ∣∣∣I−1,3

∣∣∣≤C
(

d (0)
1
2 +d (0)+d (t)

)
d (t)

1
2 .

By the mean value theorem and using (2.8) again, we have
∣∣∣I−1,5

∣∣∣≤C
∣∣η ′′∣∣∞

∥∥ψ−ψ0∥∥2
H1 d−1

(
f−,µ−

) 1
2 ≥C′

3
2 .

To estimate the second term, we use Lemma 2.1 by setting

f0 = µ−, f = f̃−,h =−(
1−P̃−

m
)
(v̂2ψ̃) ,c =−∂v2 µ−

µ−
ψ̃,d =−∂v2 µ−ψ̃,
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so that

I−1,2 = (1− τ)
∫∫

{H
(

f̃−+ µ−−∂v2 µ−ψ̃
)−H

(
µ−

)−H ′ (µ−
)(

f̃−−∂v2 µ−ψ̃
)

+
(
1−P̃−

m
)
(v̂2ψ̃) f̃−+

∂v2 µ−

µ−
ψ̃ f̃−}dvdx.

By Lemma 2.1,

I−1,2 ≥ (1− τ)
∫∫

µ−
{

1−(
1−P̃−

m
)
(v̂2ψ̃)− ∂v2 µ−

µ−
ψ̃

}

−µ− exp
[
−(

1−P̃−
m

)
(v̂2ψ̃)− ∂v2 µ−

µ−
ψ̃

]

+
[(

1−P̃−
m

)
(v̂2ψ̃)+

∂v2 µ−

µ−
ψ̃

]
∂v2 µ−ψ̃

Now we do the Taylor expansion of 1+ξ − eξ for

c+h = ξ =−(
1−P̃−

m
)
(v̂2ψ̃)− ∂v2 µ−

µ−
ψ̃

and use the estimate

|ξ |=
∣∣∣∣
(
1−P̃−

m
)
(v̂2ψ̃)+

∂v2 µ−

µ−
ψ̃

∣∣∣∣≤C |ψ̃|∞ ≤C′
∥∥ψ−ψ0∥∥

H1 .

Therefore

I−1,2 ≥ (1− τ)
∫∫

{−1
2

µ−
[(

1−P̃−
m

)
(v̂2ψ̃)+

∂v2 µ−

µ−
ψ̃

]2

+
[(

1−P̃−
m

)
(v̂2ψ̃)+

∂v2 µ−

µ−
ψ̃

]
∂v2 µ−ψ̃}dvdx−CeC′‖ψ̃‖H1 ‖ψ̃‖3

H1 .

Now we use ∂v2 µ−/µ− =−v̂2 +η ′ and

(
1−P̃−

m
)
(v̂2ψ̃)+

∂v2 µ−

µ−
ψ̃ =−P̃−

m (v̂2ψ̃)+η ′ψ̃

to get

I−1,2 ≥ (1− τ)
∫∫

{
(

1
2

µ−[η ′(v2−ψ0)]2−µ−v̂2η ′
(
v2−ψ0)

)
ψ̃2

+
1
2

µ−
(
P̃−

m [v̂2ψ̃]
)2}dvdx −CeC′‖ψ̃‖H1 ‖ψ̃‖3

H1 .

Also

I1,4 = (1− τ)
∫∫ [

η ′v̂2µψ̃2−µ(η ′2ψ̃2]dvdx.
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Combining all these estimates, we get

I−1 (t)≥ 1
2

τd−1
(

f−,µ−
)

+(1− τ)
∫∫ (

−1
2

µ−η ′
(
v2−ψ0)2 ψ̃2 +

1
2

µ−
(
P̃−

m [v̂2ψ̃]
)2

)
dvdx

−CeC′d(t)
1
2 d (t)

3
2 −C′τ ‖ψ̃‖2

H1 −Cd (t)
3
2 −C

(
d (0)

1
2 +d (0)

)
d (t)

1
2 ,

recalling that d(t)≥ ‖ψ̃(t)‖2
H1 . Similarly, we have

I+
1 (t)≥ 1

2
τd+

1

(
f +,µ+)

+(1− τ)
∫ P

0

∫

R2

{
−1

2
µ+[η ′

(
v2 +ψ0)]2ψ̃2 +

1
2

µ+ (
P̃+

m [v̂2ψ̃]
)2

}
dvdx

−CeC′d(t)
1
2 d (t)

3
2 −C′τ ‖ψ̃‖2

H1 −Cd (t)
3
2 −C

(
d (0)

1
2 +d (0)

)
d (t)

1
2 .

We remark that in contrast to the straightforward estimate (2.5), the constrained
energy-Casimir method gives us the additional stabilizing term

∫∫
µ±P̃±

m [v̂2ψ̃]2 dvdx,
which is crucial for the sharp nonlinear stability criterion.

2.7 Proof of orbital stability
Combining the preceding estimates with that of I2 (see (2.4)) and the definition

of I3, we have

I
(

f±,ψ,E
)− I

(
µ±,ψ0,0

)

≥ 1
2

τd±1
(

f±,µ±
)
+

(
L̃m

(
ψ−ψ0) ,

(
ψ−ψ0))+

1
2
‖E‖2

2−C′τ
∥∥ψ−ψ0∥∥2

H1

−CeC′d(t)
1
2 d (t)

3
2 −Cd (t)

3
2 −C

(
d (0)

1
2 +d (0)

)
d (t)

1
2 ,

recalling the definition of L̃m by (2.6) and throwing away the extra term

τ
2

∫∫
∑
±

µ(η ′)2ψ̃2dvdx≥ 0.

Now we use translation to get rid of kerL̃m =
{

ψ0
x
}

. We choose θ (t) so that
∥∥ψ (t)−Tθ(t)ψ0∥∥

2 = min
θ

∥∥ψ (t)−Tθ ψ0∥∥
2 ,

which implies that
(
ψ (t)−Tθ(t)ψ0, Tθ(t)ψ0

x
)

=
(
T−θ(t)ψ (t)−ψ0, ψ0

x
)

= 0.

Next we replace ( f±,ψ,E)(t) by T−θ(t) (( f±,ψ,E)(t)). Since all the functionals
I ( f±,ψ,E) and Ji ( f−,ψ) are invariant under the translation, we can apply all the
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estimates to the translated functions to get

I
(
T−θ(t) f±,T−θ(t)ψ,T−θ(t)E

)− I
(
µ±,ψ0,0

)

≥ 1
2

τd±1
(
T−θ(t) f±,µ±

)
+

1
2

(
L̃m

(
T−θ(t)ψ−ψ0) ,

(
T−θ(t)ψ−ψ0))

+
1
2
‖E‖2

2−C′τ
∥∥T−θ(t)ψ−ψ0∥∥2

H1 −CeC′d(t)1/2
d (t)

3
2

−Cd (t)
3
2 −C

(
d (0)

1
2 +d (0)

)
d (t)

1
2

with

d (t) =
∥∥T−θ(t)ψ−ψ0∥∥2

H1 +
∥∥T−θ(t)E

∥∥2
2 +∑

±
d±1

(
T−θ(t) f±,µ±

)
.

From L̃m > 0 on
{

ψ0
x
}⊥, it follows that there exists c0 > 0 such that

(
L̃mφ ,φ

)≥
c0 ‖φ‖2

H1 for any φ ∈ H1 and
(
φ ,ψ0

x
)

= 0. Choosing τ so that C′τ ≤ 1
2 c0, we have

I
(

f± (0) ,ψ (0) ,E (0)
)− I

(
µ±,ψ0,0

)
(2.11)

= I
(
T−θ(t) f±,T−θ(t)ψ,T−θ(t)E

)− I
(
µ±,ψ0,0

)

≥ c1d (t)−CeC′d(t)1/2
d (t)

3
2 −Cd (t)

3
2 −C

(
d (0)

1
2 +d (0)

)
d (t)

1
2

for some c1 > 0. It is easy to see that

I
(

f± (0) ,ψ (0) ,E (0)
)− I

(
µ±,ψ0,0

)≤C′′d (0)

for some C′′ > 0.
Writing x = d(t)1/2, we define the functions y1 = c1x2 −CeC′xx3 −Cx3 and

y2 = C
(

d (0)1/2 +d (0)
)

x + C′′d (0). Then (2.11) implies that y1

(
d (t)1/2

)
≤

y2

(
d (t)1/2

)
. Now y1 (x) has a single positive maximum y(x0), is increasing in

(0,x0), is decreasing in (x0,∞) and tends to −∞. So it is obvious that if d (0) is
sufficiently small, the line y = y2 (x) intersects the curve y = y1 (x) at exactly two
points x1 (d (0)) < x0 < x2 (d (0)). There are two disjoint intervals [0,x1 (d (0))]
and [x2 (d (0)) , ∞) such that y1 (x) ≤ y2 (x). Since d (t) is continuous, we de-
duce d (t)1/2 < x1 (d (0)) for all t < ∞, provided we choose d (0)1/2 < x0. Since
x1 (d (0))→ 0 as d (0)→ 0, we deduce the nonlinear stability in terms of the dis-
tance functional d (t)1/2. By (2.8) this implies the stability in the sense of (1.7) and
completes the proof of Theorem 1.2. ¤

3 Nonlinear instability of one and one half RVM

For simplicity, we consider a periodic equilibrium with a fixed ion background.
The proof can easily be carried over to the two-species case. The nonlinear 11

2
RVM in the one-species case is (with f = f−)

(3.1a) ∂t f + v̂1∂x f − (E1 + v̂2B)∂v1 f − (E2− v̂1B)∂v2 f = 0
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(3.1b) ∂tE1 =− j1 =
∫

v̂1 f dv, ∂tB =−∂xE2

(3.1c) ∂tE2 +∂xB =− j2 =
∫

v̂2 f dv

with the constraint

(3.1d) ∂xE1 = n0−
∫

f dv.

We consider an equilibrium of the form
(

f 0 = µ (e, p) ,E0
1 ,B0

)
where e =

√
1+ v2

1 + v2
2−

φ 0 (x), p = v2−ψ0 (x), E0
1 =−φ 0′ (x) , B0 (x) = ψ0′ (x) with ψ0 and φ 0 satisfying

the pair of equations

−φ 0′′ = n0−
∫

µ (e, p)dv

ψ0′′ =
∫

v̂2µ (e, p)dv.

In this section we assume there exists a growing mode solution eλ t ( fg,Eg1,Eg2,Bg)
of the linearized system
(3.2)
∂t f + v̂1∂x f − (

E0
1 + v̂2B0)∂v1 f + v̂1B0∂v2 f = (E1 + v̂2B)∂v1 f 0 +(E2− v̂1B)∂v2 f 0

∂tE1 =
∫

v̂1 f dv, ∂tB =−∂xE2

∂tE2 +∂xB =
∫

v̂2 f dv

with the constraint
∂xE1 =−

∫
f dv.

The main result of this section is the following theorem, which is essentially
the same as Theorem 1.

Theorem 3.1. Let ( f 0, E0
1 , B0) a periodic equilibrium solution of (3.1d) of the

form given above with E0
2 = 0 such that

µ = O(〈v〉−η), η > 3, |µe|+ |µp|= O(µ), sup
x

∫
〈v〉2(|µe|+ |µp|)dv < ∞.

If there exists a growing mode with fg ∈ L1 and E,B ∈W 1,1, then fg ∈W 1,1 and
there exist positive constants ε0,C1 and a family of W 1,1 solutions

[
f̄ δ , Ēδ

1 , Ēδ
2 , B̄δ ]

of (3.1d) of period P in x, defined for δ sufficiently small, with f̄ δ (t) non-negative,
such that∥∥∥ f̄ δ (0)− f 0

∥∥∥
W 1,1([0,P]×R)

+
∥∥∥Ēδ (0)−E0

∥∥∥
W 1,1(0,P)

+
∥∥∥B̄δ (0)−B0

∥∥∥
W 1,1(0,P)

≤ δ ,

and

(3.3) sup
0≤t≤C1|lnδ |

∥∥∥Ēδ (t)−E0
∥∥∥

L1(0,P)
+

∥∥∥B̄δ (t)−B0
∥∥∥

L1(0,P)
≥ ε0.
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The pointwise decay hypothesis on µ is made only to assure well-posedness.
The hypothesis |µe|+ |µp|= O(µ) is used only to assure that the unstable solution
has non-negative density. We divide the proof of the theorem into several steps.

3.1 Averaging Liapunov exponent and properties of growing modes
The particle trajectory equation is

(3.4)





Ẋ= V̂ 1
V̇1 =−(

E0
1 (X)+V̂2B0 (X)

)
V̇2 = V̂1B0 (X) .

We want to understand the properties of the Jacobian matrix J (t) = ∂ (X ,V 1,V2)
∂ (x,v1,v2)

(t).
We have

Lemma 3.2. (i) For any α > 0, there exist constants Mα ,Cα such that if |v1|+
|v2|> Mα then |J (t)|∞ ≤C1

αeαt .
(ii) For any positive constants M and α , there exists a constant C2

α such that
∫ ∫

|v1|+|v2|≤M
|J (t)|2 dvdx≤C2

αeαt .

Here we use the usual matrix norms for an n×n matrix A, namely, that |A|∞ denotes
the maximum of the entries and |A|2 denotes the `2-norm of the entries.

Proof. The proof of (i) is easy. We have

∂J
∂ t

=




0 V 2
2 +1
〈V 〉3 −V1V2

〈V 〉3

−∂xE0
1 (X)−V̂2∂xB0 (X) V1V2

〈V 〉3 B0 (X) −V 2
1 +1
〈V 〉3 B0 (X)

V̂1∂xB0 (X) V 2
1 +1
〈V 〉3 B0 (X) −V1V2

〈V 〉3 B0 (X)


J

= H (X ,V )J.

When |v1|+ |v2|= M is large, the matrix H (t) is very close to

Hθ =




0 0 0
−∂xE0

1 (X)− cosθ∂xB0 (X) 0 0
sinθ∂xB0 (X) 0 0




for some θ , uniformly in M. Since Hθ only has eigenvalues 0, when M is large all
the eigenvalues of H have very small real part. Thus the conclusion of (i) follows
by standard ODE theory.

The proof of (ii) is similar to the proof of the corresponding result in the 2D
Euler case ([13]), so we only sketch it. Since V2 (t) + ψ0 (X) = v2 + ψ0 (x) , we
have
∂V2

∂x
= ∂xψ0 (x)−∂xψ0 (X)

∂X
∂x

,
∂V2

∂v1
=−∂xψ0 (X)

∂X
∂v1

,
∂V2

∂v2
= 1−∂xψ0 (X)

∂X
∂v2

.
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So we only need to estimate the L1−norm of the derivative of X and V1. We use
the new variable p = v2 + ψ0 (x) instead of v2; note that this does not change the
conclusion. For each fixed p , the particle motion is described by the reduced sys-
tem

(3.5)
{

X = ∂ v1Hp
V1 =−∂xHp

where Hp (x,v1) =
√

1+ v2
1 +(p−ψ0 (x))2−φ 0 (x) = e is the energy. The critical

point of (3.5) is (x,v1) = (x0 (p) ,0) where x0 (p) solves the equation

E0
1 (x0)+

p−ψ0 (x0)√
1+(p−ψ0 (x0))

2
B0 (x0) = 0.

The critical energy level is ec (p) =
√

1+(p−ψ0 (x0 (p)))2−φ 0 (x0 (p)) . If e 6=
ec (p), then the particle executes periodic motion with period T (e, p). If e = ec (p),
then the particle is either in equilibrium or travels along a trajectory connecting
saddle points. Let

AM =
{
(x,v1, p) ∈ [0,P]× [−M,M]× [−M +minψ0,M +maxψ0]

}
.

The “dangerous set” Acr ⊂ AM is the collection of nondegenerate saddle points of
Hp and the trajectories connecting them, for all p ∈ [−M +minψ0,M +maxψ0].

Let Aε be the ε−neighborhood of Acr in AM . On AM\Aε , the Liapunov exponent
of (3.4) is zero, so for any α > 0 there exists C′a such that |J (t)|2 ≤C′αeαt thus

(3.6)
∫

AM\Aε
|J (t)|2 dvdx≤ |AM\Aε |C′αeαt .

Now we estimate the integral in the set Aε . For fixed x,v1, denote Ix,v1
p = {p|(x,v1, p) ∈ Aε}

and similarly denote Ix,p
v1 and Ip,v1

x . Then

(3.7)
∫ ∫ ∫

Aε

√∣∣∣∣
∂X
∂x

∣∣∣∣
2

+
∣∣∣∣
∂V1

∂x

∣∣∣∣dxdv =
∫

d p
∫

dv1

∫

Ip,v1
x

√∣∣∣∣
∂X
∂x

∣∣∣∣
2

+
∣∣∣∣
∂V1

∂x

∣∣∣∣dx

(3.8)
∫ ∫ ∫

Aε

√∣∣∣∣
∂X
∂v1

∣∣∣∣
2

+
∣∣∣∣
∂V1

∂v1

∣∣∣∣dxdv =
∫

d p
∫

dx
∫

Ix,p
v1

√∣∣∣∣
∂X
∂v1

∣∣∣∣
2

+
∣∣∣∣
∂V1

∂v1

∣∣∣∣dv1

(3.9)
∫ ∫ ∫

Aε

√∣∣∣∣
∂X
∂ p

∣∣∣∣
2

+
∣∣∣∣
∂V1

∂ p

∣∣∣∣dxdv =
∫

dv1

∫
dx

∫

Ix,v1
p

√∣∣∣∣
∂X
∂ p

∣∣∣∣
2

+
∣∣∣∣
∂V1

∂ p

∣∣∣∣d p.

In these three expressions the three innermost integrals on the right sides are the
lengths of the planar curves

lx (t) : x ∈ Ip,v1
x → (X (t,x) ,V (t,x)) for fixed p,v1;

lv1 (t) : v1 ∈ Ix,p
v1
→ (X (t,v1) ,V (t,v1)) for fixed p,x;
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lp (t) : p ∈ Ix,v1
p → (X (t, p) ,V (t, p)) for fixed x,v1.

Here we only analyze the length of lp (t) since the other two are similar. We split
the interval Ix,v1

p into certain subintervals Ix,v1, j
p = [p1, p2] such that exactly one end-

point (say p1) is on Acr. The curve lp (t) is split into a collection of curves lp, j (t) in
the same way. Particle 1 starting at (x,v1, p1) approaches a saddle point in infinite
time, while particle 2 starting at the other end (x,v1, p2) has a finite period T (p2).
If we choose ε small enough, the period function T (p) is monotone on [p1, p2]. At
a very large time t, particle 1 approaches the saddle point very closely and particle
2 completes at most [t/T (p2)]+1 periods. Thus the stretched curve lp, j (t) consists
of at most [t/T (p2)]+ 1 “circuits”. If ε is very small, each circuit is expected to
wind tightly around the trajectory of particle 2 and thus have a comparable length
L. So intuitively the length of lp, j (t) is controlled by ([t/T (p2)]+1)L and thus
it grows only linearly in time. This implies that the integral (3.9) also grows only
linearly. The rough argument just given can be made rigorous using the same pro-
cedure as in [13]. So we do not repeat it here. By the same analysis, the integrals
(3.7) and (3.8) also have only linear growth. So finally we deduce

∫

Aε
|J (t)|2 dvdx≤C1t +C2

for some constants C1,C2. Combined with (3.6), this implies the conclusion of
(ii). ¤

Lemma 3.3. The growing mode satisfies fg ∈W 1,1 and | fg| ≤Cµ .

Proof. The proof that fg ∈W 1,1 is essentially the same as in the Vlasov-Poisson
case (see [12]); so we merely sketch it here. Differentiating the trajectory integral
formula for fg as in [15], we represent ∂ fg in terms of the derivative of the fields
(Eg,Bg) in the almost everywhere sense. Thus to estimate ‖∂ fg‖1, the key point is
to show that the function

q(x,v) = (|µe|+ |µp|)
∫ 0

−∞
eλ s |J (s)|(|∂xE|+ |∂xB|)(X(s))ds

is integrable. To prove this, we split the (x,v) space into two parts according to
Lemma 3.2 and use the estimates of Lemma 3.2 to show that q(x,v) is integrable.
It follows that fg ∈W 1,1.

The proof that fg is pointwise bounded by a multiple of µ is similar to Lemma 7
in [9]. We present the argument here. Let S = fg/µ . Dividing the Vlasov equation
satisfied by fg by µ , we obtain λS + v̂1∂xS +m = 0, where

m = v̂1
∂xµ
µ2 fg− (Eg1 + v̂2Bg)

∂v1 µ
µ

− (Eg2− v̂1Bg)
∂v2 µ

µ
.

Thus

S =−
∫ ∞

0
e−sv̂1∂x e−sλ m ds.
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Now µ = µ(〈v〉− φ 0(x),v2−ψ0(x)), from which it follows that m ∈ L∞. Hence
S ∈ L∞ and the proof is complete. ¤

The hypothesis that |µe|+ |µp| = O(µ) can be generalized as in Lemma 8 of
[9].

3.2 Representation of the field
We write the perturbed quantities as the sum of “linear” terms and “nonlinear”

terms as follows:

f̄ = f + f 0 = fl + fn + f 0, Ē1 = E1 +E0
1 = E1,l +E1,n +E0

1 ,

Ē2 = E2 = E2,l +E2,n, B̄ = B+B0 = Bl +Bn +B0,

where 


fl
E1,l
E2,l
Bl


(t) = etL




fl
E1,l
E2,l
Bl


(0)




fn
E1,n
E2,n
Bn


(t) =

∫ t

0
e(t−s)L




−5v ·((E1 + v̂2B) f ,(E1− v̂1B) f )(s)
0
0
0


ds.

Here the linearized operator L is as defined by

L




f
E1
E2
B


 =




−D f + v̂1µeE1 + v̂2µeE2− v̂1µpB∫
v̂1 f dv∫

v̂2 f dv−∂xB
−∂xE2


 = (A+K)




f
E1
E2
B




where

A =




−D 0 0 0
I1 0 0 0
I2 0 0 −∂x
0 0 −∂x 0




K =




0 v̂1µe v̂2µe −v̂1µp
0 0 0 0
0 0 0 0
0 0 0 0




with

D = v̂1∂x−
(
E0

1 + v̂2B0)∂v1 + v̂1B0∂v2 , Ii (g) =
∫

v̂igdv.
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As in [9], when E2 (0) = B(0) = 0,

E2 =
∫ t

0
[ j2 (τ ,x− t + τ)+ j2 (τ ,x+ t− τ)]dτ,

B =
∫ t

0
[ j2 (τ ,x− t + τ)− j2 (τ ,x+ t− τ)]dτ.

For the derivatives of E2 and B, we use the operator splitting idea, as follows. A
typical term is

I (t,x) =
∫ t

0
∂x

∫
v̂2 f (τ,x− t + τ)dvdτ

=
∫ t

0

∫ v̂2

1− v̂1

(
T +−S

)
f (τ ,x− t + τ)dvdτ

=
∫ v̂2

1− v̂1
( f (t,x,v)− f (0,x− τ,v))dv−

∫ t

0

∫ v̂2

1− v̂1
S f (τ,x− t + τ)dvdτ

where T + = ∂t +∂x and S = ∂t + v̂1∂x. Upon using the above formulae for E2,n and
Bn, a typical term becomes

In (t,x) =
∫ v̂2

1− v̂1
( fn (t,x,v)− fn (0,x− τ ,v))dv−

∫ t

0

∫ v̂2

1− v̂1
S fn (τ,x− t + τ)dvdτ

(3.10)

=
∫ v̂2

1− v̂1
fn (t,x,v)dv

+
∫ t

0

∫
5v

(
v̂2

1− v̂1

)
· ((E0

1 + v̂2B0) fn,−v̂1B0 fn
)
(τ,x− t + τ)dvdτ

+
∫ t

0

∫
5v

(
v̂2

1− v̂1

)
· ((E1,n + v̂2Bn) f 0,(E2,n− v̂1Bn) f 0)(τ ,x− t + τ)dvdτ

+
∫ t

0

∫
5v

(
v̂2

1− v̂1

)
· ((E1 + v̂2B) f ,(E2− v̂1B) f )(τ,x− t + τ)dvdτ

= In
0 + In

1 + In
2 + In

3

since

S fn = S f −S fl

=
(
E0

1 + v̂2B0)∂v1 fn− v̂1B0∂v2 fn

+(E1,n + v̂2Bn)∂v1 f 0 +(E2,n− v̂1Bn)∂v2 f 0

+(E1 + v̂2B)∂v1 f +(E2− v̂1B)∂v2 f .

We shall estimate |E1|1 , |E2|1 , |B|1 using the field representation formulae given
above for derivatives and the following duality lemma that was proved in [12].
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Lemma 3.4. (i) If g(x) ∈ L1
per (0,P),

∫ P
0 g(x)dx = 0 and gx ∈ L1 (0,P), then

(3.11) ‖g‖1 ≤ 2 sup
a∈W 1,∞

per (0,P)
‖ax‖∞≤1

∫ P

0
gxa dx.

(ii) If g(x) ∈ L∞
per (0,P),

∫ P
0 g(x)dx = 0 and gx ∈ L∞ (0,P), then

(3.12) ‖g‖∞ ≤ 2 sup
a∈W 1,1

per (0,P)
‖ax‖1≤1

∫ P

0
gxa dx.

Denoting by L ∗ the adjoint operator of L , we have

L ∗




f
E1
E2
B


 =




D f + v̂1E1 + v̂2E2∫
v̂1µe f dv∫

v̂2µe f dv+∂xB
−∫

v̂1µp f dv+∂xE2


 .

3.3 Semigroup estimate
By RP we mean the circle parameterized by 0 ≤ x < P. By L1 we mean L1 =

L1
(
RP×R2

)×
(

L1 (RP)3
)

and by L∞ we mean L∞ = L∞ (
RP×R2

)×(L∞ (RP))3.
As in [9] we have the following lemma due to the separation of the Vlasov and
Maxwell characteristics.

Lemma 3.5. If supx
∫
R2 〈v〉(|µe|+ |µp|)dv < ∞, then Ke−tAK is a compact opera-

tor on L1 for all t > 0.

Proof. The proof is a slight modification of that in [9]. Denote w(t) = e−tAKw#

where w# =
[

f #,E#
1 ,E#

2 ,B#
]

and w(t) = [δ f (t) ,δE1 (t) ,δE2 (t) ,δB(t)]. Then
w(t) solves

(3.13)
(
∂t + v̂1∂x−

(
E0

1 + v̂2B0)∂v1 + v̂1B0∂v2

)
δ f = 0,

∂tδE1 =
∫

v̂1δ f dv, ∂tδB =−∂xδE2,

∂tδE2 =−∂xδB+
∫

v̂2δ f dv

with initial conditions

δ f (0) = v̂1µeδE1 + v̂2µeδE2− v̂1µpδB,

δE1 (0) = δE2 (0) = δB(0) = 0.
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As usual, we have

δE2 =
∫ t

0
[ j2 (τ,x− t + τ)+ j2 (τ,x+ t− τ)]dτ,

δB =
∫ t

0
[ j2 (τ,x− t + τ)− j2 (τ,x+ t− τ)]dτ .

By (3.13) we write

(3.14) δ f (t) = δ f (0,X (0; t,x,v) ,V (0; t,x,v))

so that

j2 (t,x) =
∫

v̂2δ f (t)dv =
∫

v̂2δ f (0,X (0; t,x,v) ,V (0; t,x,v))dv.

We also use the operator splitting idea to handle ∂xE2 and ∂xB. A typical term
is

Il (t,x) =
∫ t

0
∂x

∫
v̂2δ f (τ ,x− t + τ)dvdτ

=
∫ t

0

∫ v̂2

1− v̂1

(
T +−S

)
δ f (τ,x− t + τ)dvdτ

=
∫ v̂2

1− v̂1
(δ f (t,x,v)−δ f (0,x− τ ,v))dv−

∫ t

0

∫ v̂2

1− v̂1
Sδ f (τ,x− t + τ)dvdτ

= Il
1 + Il

2.

Since
∣∣∣ v̂2

1−v̂1

∣∣∣≤ 〈v〉 and there exist c0,c1 > 0 such that for all t ∈ R

(3.15) c0 〈V (t)〉 ≤ 〈v〉 ≤ c1 〈V (t)〉 ,

as is easy to see, we have
∫ ∣∣Il

1 (t,x)
∣∣dx≤C

∫ ∫
〈v〉 |δ f |(0)dxdv

≤C
(∥∥E#∥∥

1 +
∥∥B#∥∥

1

)
.

Since

Sδ f =
((

E0
1 + v̂2B0)∂v1 − v̂1B0∂v2

)
δ f =5v ·

((
E0

1 + v̂2B0)δ f ,−v̂1B0δ f
)
,

we have

Il
2 =

∫ t

0

∫
5v

(
v̂2

1− v̂1

)
· ((E0

1 + v̂2B0)δ f ,−v̂1B0δ f
)
(τ,x− t + τ)dvdτ.
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Using the inequality
∣∣∣∇v

(
v̂2

1−v̂1

)∣∣∣≤C 〈v〉 as well as (3.14), (3.15), we have
∫ ∣∣Il

2 (t,x)
∣∣dx

≤C
∫ t

0

∫

RP×R2
〈V (t− s; t,x,v)〉 |δ f |(0,X (t− s; t,x,v)V (t− s; t,x,v))dxdvds

= Ct
∫

RP×R2
〈v〉 |δ f |(0)dxdv≤Ct

(∥∥E#∥∥
1 +

∥∥B#∥∥
1 .

)

Here we used C to denote a general constant and we used the fact that the Jacobian
of the mapping x,v→ (X (t− s; t,x,v)V (t− s; t,x,v)) is 1. Since

∂xδE1 (t)+
∫

δ f (t)dv = ∂xδE1 (0)+
∫

δ f (0)dv = 0,

we have

‖∂xδE1 (t)‖1 ≤ ‖δ f (t)‖1 = ‖δ f (0)‖1 ≤C
(∥∥E#∥∥

1 +
∥∥B#∥∥

1

)
.

Combining the preceding estimates, we have

‖∂xδE‖1 +‖∂xδB‖1 ≤ (C1t +C2)
(∥∥E#∥∥

1 +
∥∥B#∥∥

1

)
.

Now

∂xKw(t) =




v̂1µeδE1 (t)+ v̂2µeδE2 (t)− v̂1µpδB(t)
0
0
0




so that

‖∂xKw(t)‖1 ≤C (‖∂xδE (t)‖1 +‖∂xδB(t)‖1)≤C (C1t +C2)
(∥∥E#∥∥

1 +
∥∥B#∥∥

1

)
.

Therefore w# → Ke−tAKw# is a compact linear operator. ¤

The preceding lemma implies that K is A−smoothing. Combining this fact with
the following functional analysis lemma used in [9], we have control of the growth
of the linear semigroup.

Lemma 3.6. For all δ > 0, the spectrum of L in {Reλ > δ} consists of a finite
number of eigenvalues of finite multiplicity. If λ1 denotes the eigenvalue of L with
maximal real part, and Λ > max{0,Reλ1} , then there exists CΛ > 0 such that∥∥∥etL

∥∥∥
L1→L1

≤CΛeΛt .

We now define the two spaces

L1,k =
{

f (x,v)
∣∣∣ ‖ f‖=

∫

RP×R2
〈v〉k | f |dxdv < ∞

}

and

L∞,k =

{
f (x,v)

∣∣∣ ‖ f‖= sup
| f |
〈v〉k

< ∞

}
.
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Using the notation of the previous lemma, we have

Lemma 3.7. Assume supx
∫
R2 〈v〉k (|µe|+ |µp|)dv < ∞. Let f0 ∈ L1,k

(
RP×R2

)

and let ( f (t) ,E1 (t) ,E2 (t) ,B(t)) = e
tL

( f0,0,0,0). If λ1 denotes the eigenvalue
with maximal real part and Λ > max{0,Reλ1} , then there exists CΛ > 0 such that

‖ f (t)‖L1,k ≤CΛeΛt ‖ f0‖L1,k .

Proof. We prove it by deduction. The case k = 0 follows from Lemma 3.6. More-
over, there exists C′Λ > 0 such that

(‖E1‖1 +‖E2‖1 +‖B‖1)(t)≤C′ΛeΛt ‖ f0‖L1

Suppose the conclusion is true for k− 1; that is, there exists C′′Λ > 0 such that
‖ f (t)‖L1,k−1 ≤C′′ΛeΛt ‖ f0‖L1,k−1 . We multiply (3.2) by 〈v〉k and rewrite it as

∂t

(
〈v〉k f

)
+ v̂1∂x

(
〈v〉k f

)
− (

E0
1 + v̂2B0)∂v1

(
〈v〉k f

)
+ v̂1B0∂v2 〈v〉k f

= (E1 + v̂2B)〈v〉k f ∂v1 f 0 +(E2− v̂1B)〈v〉k f ∂v2 f

− (
E0

1 + v̂2B0)k 〈v〉k−1 v̂1 f + v̂1B0k 〈v〉k−1 v̂2 f .

Integrating it along a trajectory, we have

〈v〉k f (t) = 〈V (0; t,x,v)〉k f0 (X (0; t,x,v) ,V (0; t,x,v))

+
∫ t

0
{(E1 + v̂2B)〈v〉k ∂v1 f0 +(E2− v̂1B)〈v〉k ∂v2 f0

− (
E0

1 + v̂2B0)k 〈v〉k−1 v̂1 f + v̂1B0k 〈v〉k−1 v̂2 f

(t− s,X (t− s; t,x,v) ,V (t− s; t,x,v))}ds

Taking absolute values and integrating, we have

‖ f (t)‖L1,k ≤ ‖ f0‖L1,k +C
∫ t

0
(‖E1‖1 +‖E2‖1 +‖B‖1 +‖ f‖L1,k−1)(t− s)ds

≤ ‖ f0‖L1,k +C
∫ t

0

(
C′Λ +C′′Λ

)
eΛ(t−s)ds

≤CΛeΛt

for some CΛ > 0, where we have again used the fact that the Jacobian of the map-
ping (x,v)→ (X (s; t,x,v) ,V (s; t,x,v)) is unity. ¤

The following estimate of the dual semigroup will be used later.

Lemma 3.8. Assume supx
∫
R2 〈v〉(|µe|+ |µp|)dv < ∞. If λ1 denotes an eigenvalue

of L with maximal real part, and Λ > max{0,Reλ1} , then there exists CΛ > 0
such that
(I) ∥∥∥etL ∗

∥∥∥
L∞→L∞

≤CΛeΛt
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(II) Assume supx
∫
R2 〈v〉k (|µe|+ |µp|)dv < ∞. If f0 ∈ L∞,k

(
RP×R2

)
and

( f (t) ,E1 (t) ,E2 (t) ,B(t)) = exp(tL ∗)( f0,0,0,0) ,

then
‖ f (t)‖L∞,k ≤CΛeΛt ‖ f0‖L∞,k .

(III) There exists C1,C2 > 0 such that if

w(0) = ( f (0) ,E1 (0) ,E2 (0) ,B(0)) ∈W 1,∞ (
RP×R2)×(

W 1,∞ (RP)
)3

and

( f (t) ,E1 (t) ,E2 (t) ,B(t)) = exp(tL ∗)( f (0) ,E1 (0) ,E2 (0) ,B(0)) ,

then

(3.16) |∂v f (t)| ≤C
(
|J (t)|2 +CΛ

∫ t

0
eΛ(t−s) |J (s)|2 ds

)
‖w(0)‖W 1,∞

(IV) Assume supx
∫
R2 〈v〉k+1 (|µe|+ |µp|)dv < ∞. Let f0 ∈ L∞,k

(
RP×R2

)
,∂v f0 ∈

L∞,k′ (RP×R2
)

and

( f (t) ,E1 (t) ,E2 (t) ,B(t)) = exp(tL ∗)( f0,0,0,0) ,

then

|∂v f (t)| ≤C‖∂v f0‖L∞,k′ 〈v〉k′ J (t)+CΛ ‖ f0‖L∞,k

∫ t

0
eΛ(t−s) |J (s)|2 ds.

Proof. Conclusions (I) and (II) are immediate since they are the dual versions of
Lemmas 3.6 and 3.7 respectively, noting that

‖ f‖L∞,k = sup
‖g‖L1,k≤1

∫
f g dxdv.

We will now prove (III). By definition, ( f (t) ,E1 (t) ,E2 (t) ,B(t)) is the solution of
the system

(3.17) ∂t f =
(
v̂1∂x−

(
E0

1 + v̂2B0)∂v1 + v̂1B0∂v2

)
f + v̂1E1 + v̂2E2

(3.18) ∂tE1 =
∫

v̂1µe f dv

(3.19) ∂tE2 =
∫

v̂2µe f dv+∂xB

(3.20) ∂tB =−
∫

v̂1µp f dv+∂xE2.
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By (3.19) and (3.20) we have the formulae

E2 (t,x) =
1
2

[E2 (0,x− t)+E2 (0,x+ t)+B(0,x− t)+B(0,x+ t)](3.21)

+
1
2

∫ t

0

∫
(v̂2µe− v̂1µp) f dv(τ,x+ t− τ)dτ

+
1
2

∫ t

0

∫
(v̂2µe + v̂1µp) f dv(τ,x− t + τ)dτ

and

B(t,x) =
1
2

[E2 (0,x− t)−E2 (0,x+ t)+B(0,x− t)+B(0,x+ t)](3.22)

+
1
2

∫ t

0

∫
(v̂2µe− v̂1µp) f dv(τ,x+ t− τ)dτ

− 1
2

∫ t

0

∫
(v̂2µe + v̂1µp) f dv(τ,x− t + τ)dτ.

We use the operator splitting idea as before to deal with ∂xE2 and ∂xB. A typical
term is

Id (t,x) =
∫ t

0

∫
(v̂2∂x (µe f )− v̂1∂x ((µp f )))(τ,x− t + τ)dvdτ

(3.23)

=
∫ t

0

∫ (
v̂2

1− v̂1

(
T +−S−

)
µe f − v̂1

1− v̂1

(
T +−S−

)
µp f

)
(τ,x− t + τ)dvdτ

where T + = ∂t +∂x and S− = ∂t − v̂1∂x. We estimate each term above as follows.
∣∣Id

1 (t,x)
∣∣ =

∣∣∣∣
∫ t

0

∫ v̂2

1− v̂1
T + (µe f )(τ,x− t + τ)dvdτ

∣∣∣∣

=
∣∣∣∣
∫ v̂2

1− v̂1
(µe f (t,x,v)−µe f (0,x− t,v))dv

∣∣∣∣

≤C sup
x

∫
〈v〉 |µe|dv(‖ f (t)‖∞ +‖ f0‖∞)

≤C′ΛeΛt ‖w(0)‖∞

by (I). We have

Id
2 (t,x)

=
∫ t

0

∫ v̂2

1− v̂1
S− (µe f )(τ ,x− t + τ)dvdτ

=
∫ t

0

∫ v̂2

1− v̂1

((−(
E0

1 + v̂2B0)∂v1 + v̂1B0∂v2

)
µe f + v̂1µeE1 + v̂2µeE2

)
dv(τ ,x− t + τ)dτ

=
∫ t

0

∫ (
5v

(
v̂2

1− v̂1

)
· (E0

1 + v̂2B0, v̂1B0)µe f +
v̂2

1− v̂1
(v̂1µeE1 + v̂2µeE2)

)
dv(τ,x− t + τ)dτ
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since by (3.17)

(3.24) ∂t (µe f ) =
(
v̂1∂x−

(
E0

1 + v̂2B0)∂v1 + v̂1B0∂v2

)
(µe f )+ v̂1µeE1 + v̂2µeE2.

Thus
∣∣Id

2 (t,x)
∣∣≤C sup

x

∫
〈v〉 |µe|dv

∫ t

0
(‖ f‖∞ +‖E1‖∞ +‖E2‖∞)(τ)dτ

≤C′′ΛeΛt ‖w(0)‖∞ .

The other two terms in (3.23) can be estimated in the same way and we finally get∣∣Id (t,x)
∣∣≤CΛeΛt ‖w(0)‖∞. Thus

(3.25) (|∂xE2|+ |∂xB|)(t)≤CΛeΛt ‖w(0)‖W 1,∞ .

Integrating (3.24) with respect to v, we have

∂t∂xE1 = ∂x

∫
v̂1µe f dv = ∂t

∫
µe f dv−

∫
v̂2µedvE2.

So
(3.26)

∂xE1 (t,x) = ∂xE1 (0)+
∫

µe f (t)dv−
∫

µe f (0)dv−
∫

v̂2µedv
∫ t

0
E2 (s)ds,

which combined with (I) implies that

(3.27) |∂xE1|(t)≤CΛeΛt ‖w(0)‖W 1,∞ .

Now integrating (3.17) along a trajectory, we have

f (t,x,v) = f (0,X (t;x,v) ,V (t;x,v))(3.28)

+
∫ t

0

(
V̂1 (s)E1 (t− s,X (s))+V̂2 (s)E2 (t− s,X (s))

)
ds(3.29)

so

|∂v f (t)| ≤ |∂v f (0)|∞ |J (t)|2
+C

∫ t

0
(|E1|∞ + |E2|∞ + |∂xE1|∞ + |∂xE2|∞)(t− s) |J (s)|2 ds,

which implies (3.16) by (I), (3.25) and (3.27).

Now we prove (IV). We use CΛ to denote some general constant only depending
on Λ. By (II), (3.15) and (3.18),

|E1 (t,x)| ≤
∫ t

0

∫
|v̂1µe f (s)dv|ds≤C sup

x

∫

R2
〈v〉k |µe|dv

∫ t

0
‖ f (s)‖L∞,k ds

(3.30)

≤CΛ ‖ f0‖L∞,k eΛt .

Similarly by (3.21), (3.22) and (3.26),

(3.31) |E2 (t,x)|+ |B(t,x)|+ |∂xE1 (t,x)| ≤CΛ ‖ f0‖L∞,k eΛt .
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For ∂xE2 and ∂xB, we use the same operator splitting procedure as in the proof of
(III). It is easy to see that

∣∣Id
1 (t,x)

∣∣≤C sup
x

∫
〈v〉k+1 |µe|dv(‖ f (t)‖L∞,k +‖ f0‖L∞,k)

≤CΛ ‖ f0‖L∞,k eΛt

and
∣∣Id

2 (t,x)
∣∣≤C sup

x

∫
〈v〉k+1 |µe|dv

∫ t

0
(‖ f (τ)‖L∞,k +‖E1‖∞ +‖E2‖∞)(τ)dτ

≤CΛ ‖ f0‖L∞,k eΛt

by (II), (3.30) and (3.31). Thus

(3.32) (|∂xE2|+ |∂xB|)(t)≤CΛeΛt ‖ f0‖L∞,k .

So from (3.29) we have

|∂v f (t)| ≤ 〈V (t)〉k′ |∂v f0|L∞,k′ |J (t)|2
+C

∫ t

0
(|E1|∞ + |E2|∞ + |∂xE1|∞ + |∂xE2|∞)(t− s) |J (s)|2 ds

≤C 〈v〉k′ |∂v f0|L∞,k′ |J (t)|2 +CΛ ‖ f0‖L∞,k

∫ t

0
eΛ(t−s) |J (s)|2 ds

by (3.15), (3.30), (3.31) and (3.32). ¤

3.4 Bootstrap estimate
Lemma 3.9. Let w0 =

[
f 0 = µ (e, p) ,E0

1 (x) ,0,B0 (x)
]

be a steady state such that
supx

∫
R2 〈v〉2 (|µe|+ |µp|)dv < ∞. Let wδ =

[
f̄ δ , Ēδ

1 , Ēδ
2 , B̄δ ]

be a W 1,∞ solution
with 〈v〉2 f̄ δ ∈ L1 to the (1 1

2 ) RVM system (3.1d) of period P, which satisfies the
conditions∥∥∥〈v〉2

(
f̄ δ (0)− f 0

)∥∥∥
1
+

∥∥∥Ēδ
1 (0)−E0

1

∥∥∥
1
+

∥∥∥Ēδ
2 (0)

∥∥∥
1
+

∥∥∥B̄δ (0)−B0
∥∥∥

1
≤ δ

and ∥∥∥Ēδ
1 (t)−E0

1

∥∥∥
1
+

∥∥∥Ēδ
2 (t)

∥∥∥
1
+

∥∥∥B̄δ (t)−B0
∥∥∥

1
≤C0δeωt

with ω > 0 and t ≤ T . Then there exist D > 0 and θ > 0, depending on C0 and ω ,
such that ∥∥∥〈v〉2

(
f̄ δ (t)− f 0

)∥∥∥
1
+

∥∥∥wδ (t)−w0
∥∥∥

∞
≤ Dδeωt ,

for t in the interval
[
0,min

(
T, 1

ω ln θ
δ
)]

.
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Proof. Denote w(t) = wδ (t)−w0 = [ f (t) ,E1 (t) ,E2 (t) ,B(t)].
Step 1: Estimate of ‖E1 (t)‖∞ +‖E2 (t)‖∞ +‖B(t)‖∞ .

The proof is almost the same as in [9]. We note that (3.1a) can be rewritten as
(

∂t + v̂1∂x−
(

Ēδ
1 + v̂2B̄δ

)
∂v1 −

(
Ēδ

2 − v̂1B̄δ
)

∂v2

)
f(3.33)

= (E1 + v̂2B)∂v1 f 0 +(E2− v̂1B)∂v2 f 0

and thus (
∂t + v̂1∂x−

(
Ēδ

1 + v̂2B̄δ
)

∂v1 −
(

Ēδ
2 − v̂1B̄δ

)
∂v2

)
(〈v〉 | f |)(3.34)

=
(
(E1 + v̂2B)〈v〉∂v1 f 0 +(E2− v̂1B)〈v〉∂v2 f 0)sgn f

−
(

Ēδ
1 + v̂2B̄δ

)
v̂1 | f |−

(
Ēδ

2 − v̂1B̄δ
)

v̂2 | f | .
Using the above equation and following the proof in [9], we get the desired boot-
strap estimate: there exist D1 > 0 and θ > 0, such that

‖E1 (t)‖∞ +‖E2 (t)‖∞ +‖B(t)‖∞ ≤ D1δeωt ,

for t in the interval
[
0,min

(
T, 1

ω ln θ
δ
)]

.

Step 2: Estimate of ‖ f (t)‖∞ .
Denote by (X∗ (s; t,x,v) ,V ∗ (s; t,x,v)) the perturbed trajectory satisfying





Ẋ∗= V̂ ∗
1

V̇ ∗
1 =−(

Ēδ
1 (t,X∗)+V̂ ∗

2 B̄δ (t,X∗)
)

V̇ ∗
2 =−(

Ēδ
2 (t,X∗)−V̂ ∗

1 B̄δ (t,X∗)
)
.

with (X∗ (t) ,V ∗ (t)) = (x,v). Then

f̄ δ (t,x,v) = f̄ δ (0,X∗ (0) ,X∗ (0))

= µ (ẽ(0) , p̃(0))+ f (0,X∗ (0) ,V ∗ (0)) ,

where

ẽ(s) =
√

1+V ∗
1 (s)2 +V ∗

2 (s)2−φ 0 (X∗ (s)) , p̃(s) = V ∗
2 (s)+ψ0 (X∗ (s)) .

We have

|ẽ(0)− e|=
∣∣∣∣
∫ t

0

d
ds

ẽ(s)ds
∣∣∣∣ =

∣∣∣∣
∫ t

0

(−E2 (s,X∗ (s))V̂ ∗
2 (s)+E1 (s,X∗)V̂ ∗

1 (s)
)∣∣∣∣ds

≤
∫ t

0
(|E1 (s)|∞ + |E2 (s)|∞)ds≤ D

ω
δeωt

and similarly |p̃(0)− e| ≤ D
ω δeωt . Thus

| f (t)|∞ ≤ |µ (ẽ(0) , p̃(0))−µ (e, p)|+ | f (0)|∞ ≤ D2δeωt

for some D2 depending on D,µ and ω .
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Step 3: Estimate of
∥∥∥〈v〉2 f (t)

∥∥∥
1
.

Integrating (3.33) along a perturbed trajectory, we have

f (t,x,v) = f (0,X∗ (0) ,X∗ (0))

+
∫ t

0

(
(E1 + v̂2B)∂v1 f 0 +(E2− v̂1B)∂v2 f 0)(t− s,X∗ (t− s) ,V ∗ (t− s))ds

so that

‖ f (t)‖1 ≤ ‖ f (0)‖1 +C
∫ t

0
(‖E1‖1 +‖E2‖1 +‖B‖1)(s)ds≤ D3δeωt

for some D3 only depending on C0,ω, as t ≤ T . Integrating (3.34) and using the
bound in Step 1 (assuming θ ≤ 1), we have

‖〈v〉 f (t)‖1 ≤ ‖〈v〉 f (0)‖1 +C
∫ t

0
(‖E1‖1 +‖E2‖1 +‖B‖1)(s)ds

+C
∫ t

0

(∥∥w0∥∥
∞ +‖E1‖∞ (s)+‖E2‖∞ (s)+‖B‖∞ (s)

)‖ f‖1 (s)ds

≤ D4δeωt

for some D4 only depending on D3,D1 ,ω . By (3.33), we have
(

∂t + v̂1∂x−
(

Ēδ
1 + v̂2B̄δ

)
∂v1 −

(
Ēδ

2 − v̂1B̄δ
)

∂v2

)(
〈v〉2 | f |

)

=
(
(E1 + v̂2B)〈v〉2 ∂v1 f 0 +(E2− v̂1B)〈v〉2 ∂v2 f 0

)
sgn f

−2
(

Ēδ
1 + v̂2B̄δ

)
v̂1 〈v〉 | f |−2

(
Ēδ

2 − v̂1B̄δ
)

v̂2 〈v〉 | f | .
Integrating the preceding equations and using the estimate on ‖〈v〉 f (t)‖1, we de-
duce ∥∥∥〈v〉2 f (t)

∥∥∥
1
≤ D5δeωt

for some D5 depending on D4,D3,D1 ,ω . This completes the proof of the lemma.
¤

3.5 Proof of nonlinear instability
We consider the perturbed initial data

Ēδ
1 (0) = E0

1 +δEg1, Ēδ
2 (0) = δEg2, B̄δ (0) = B0 +δBg, f̄ δ (0) = f 0 +δ fg ,

where ( fg,Eg1,Eg2,Bg) is the growing mode and δ is a small parameter. (In case
the growing mode is not real, we take the imaginary parts of the growing mode as
in [9].) By Lemma 3.3, f̄ δ (0)≥ 0 for sufficiently small δ . We consider the solution
to the 1 1

2 D RVM system (3.1d) with the initial data given above. Furthermore, as
mentioned above, we have the well-posedness of the system (3.1d), which is more
than sufficient for our purpose of proving nonlinear instability.
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We decompose the perturbation of the field into its linear and nonlinear parts as
in Section 3.2, writing

E1 = E1,l +E1,n, E2 = E2,l +E2,n, B = Bl +Bn.

If we could show that for some θ ,c3 > 0,

(3.36) ‖E1,n (t)‖1 +‖E2,n (t)‖1 +‖Bn (t)‖1 ≤ c3
(
δeωt)2

for t ≤ T ∗ = 1
ω ln θ

δ , then nonlinear instability would follow by a standard argument
as in [9] (see also [12]), in the norm ‖E1 (t)‖1 +‖E2 (t)‖1 +‖B(t)‖1.

In order to prove (3.36), we use the field representation formulae for the deriva-
tives and the Duality Lemma 3.4. First we estimate ‖E1,n‖1 . By Lemma 3.4,

(3.37) ‖E1,n (t)‖1 ≤
∣∣∣∣
∫ P

0
E1,n (t)dx

∣∣∣∣+2 sup
a∈W 1,∞

per (0,P)
‖ax‖∞≤1

∫ P

0
∂xE1,n (t)a(x) dx.

We have

∫ P

0
E1,n (t)dx =

∫ t

0

∫∫

RP×R2
v̂1 fn (s)dvdxds

=
∫ t

0

∫ s

0







v̂1
0
0
0


 ,e(s−u)L




−5v ·((E1 + v̂2B) f ,(E1− v̂1B) f )(u)
0
0
0





du ds

=
∫ t

0

∫ s

0

∫∫

RP×R2
5vg1 (s−u,x,v) · ((E1 + v̂2B) f ,(E1− v̂1B) f )(u)dxdvduds

where g1 (t,x,v) is the first component of etL ∗
[v̂1,0,0,0]. Since |5v (v̂1)|+ |v̂1| ≤

3, Lemma 3.8 (III) for ω < Λ < 2ω implies

|5vg1 (t,x,v)| ≤C
(
|J (t)|2 +CΛ

∫ t

0
eΛ(t−s) |J (s)|2 ds

)
.
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Choosing α < ω , we define D1 = {(x,v) | |v1|+ |v2|> Mα} and D2 = Dc
1 where

Mα is as in Lemma 3.2. We also denote F = |E1|+ |E2|+ |B|. Then
∣∣∣∣
∫ P

0
E1,n (t)dx

∣∣∣∣≤C
∫ t

0

∫ s

0

∫ ∫

RP×R2
{|J (s−u)|2

+CΛ

∫ s−u

0
eΛ(s−u−u1) |J (u1)|2 du1}|F f |(u)dxdvduds

= C
∫ t

0

∫ s

0

∫ ∫

D1

C1
αeα(s−u) |F (u)|∞ | f (u)|dxdvdu ds

+C
∫ t

0

∫ s

0

∫ ∫

D2

|J (s−u)|2 dxdv |F (u)|∞ | f (u)|∞ du ds

+CCΛ

∫ t

0

∫ s

0

∫ s−u

0
eΛ(s−u−u1)

∫ ∫

D1

C1
αeαu1 |F (u)|∞ | f (u)|dxdvdu1du ds

+CCΛ

∫ t

0

∫ s

0

∫ s−u

0
eΛ(s−u−u1)

∫ ∫

D2

|J (u1)|2 dxdvdu1 |F (u)|∞ | f (u)|∞ du ds

= I + II + III + IV,

By Lemma 3.9 and Lemma 3.2,

I ≤C
∫ t

0

∫ s

0
C1

αeα(s−u) (Dδeωu)2 du ds≤C′
(
δeωt)2

II ≤C
∫ t

0

∫ s

0
C2

αeα(s−u) (Dδeωu)2 du ds≤C′′
(
δeωt)2

III ≤CCΛ

∫ t

0

∫ s

0

∫ s−u

0
eΛ(s−u−u1)C1

αeαu1 (Dδeωu)2 du1du ds

≤C′′′
(
δeωt)2

IV ≤CCΛ

∫ t

0

∫ s

0

∫ s−u

0
eΛ(s−u−u1)C2

αeαu1 (Dδeωu)2 du1du ds

≤Civ (
δeωt)2

.

Combining these estimates, we have
∣∣∣∣
∫ P

0
E1,n (t)dx

∣∣∣∣≤C1
(
δeωt)2

for t ≤ T ∗ = 1
ω ln θ

δ , where θ is as in Lemma 3.9.
Now we estimate the second term in (3.37). As above,

∫ P

0
∂xE1,n (t)a(x) dx =

∫∫
fn (t,x,v)a(x)dvdx(3.38)

=
∫ t

0

∫ s

0

∫∫
5vg2 (s−u,x,v) · ((E1 + v̂2B) f ,(E1− v̂1B) f )(u)dvdxduds
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where g1 (t,x,v) is the first component of etL ∗
[a(x),0,0,0]. Since |a|W 1,∞ ≤ 1, by

Lemma 3.8 (III) we still have

|5vg2 (t,x,v)| ≤C
(
|J (t)|2 +CΛ

∫ t

0
eΛ(t−s) |J (s)|2 ds

)

and we can estimate the term in (3.38) in the same way as above. Combining these
estimates, we have ‖E1,n (t)‖1 ≤C2 (δeωt)2 for some C2 > 0 as t ≤ T ∗. By Lemma
3.4, we have

(3.39) |E2,n|1 (t)≤
∣∣∣∣
∫ P

0
E2,n (t)dx

∣∣∣∣+2 sup
a∈W 1,∞

per (0,P)
‖ax‖∞≤1

∫ P

0
∂xE2,n (t)a(x) dx

and

(3.40) |Bn|1 (t)≤
∣∣∣∣
∫ P

0
Bn (t)dx

∣∣∣∣+2 sup
a∈W 1,∞

per (0,P)
‖ax‖∞≤1

∫ P

0
∂xBn (t)a(x) dx.

By the same method,

∣∣∣∣
∫ P

0
E2,n (t)dx

∣∣∣∣ =
∣∣∣∣
∫ t

0

∫ ∫

RP×R2
v̂2 fn (s)dvdxds

∣∣∣∣≤C3
(
δeωt)2

for some C3 > 0 and

∫ P

0
Bn (t)dx =

∫ P

0
Bn (0)dx = 0.

Thus we only need to estimate the second term on the right side of (3.39) and
(3.40).

To accomplish this, we shall use the field representation formulae in Section
3.2. A typical term in the expression of ∂xE2,n and ∂xBn has the form In (t,x) =
In
0 + In

1 + In
2 + In

3 as in (3.10). We estimate each term as follows. First

∣∣∣∣
∫ P

0
In
3 (t,x)a(x)dx

∣∣∣∣

≤C
∫ t

0
|F (τ)|∞ ‖〈v〉 f (τ)‖1 dτ ≤C

∫ t

0
(Dδeωτ)2 dτ ≤C4 (δeωτ)2
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for some C4 > 0, by Lemma 3.9. For In
2 , we have

∫ P

0
In
2 (t,x)a(x)dx

=
∫ t

0







0
h1 (x)
h2 (x)
h3 (x)


a(x+ t− τ) ,




0
E1,n
E2,n
Bn


(τ,x)


dτ

=
∫ t

0







0
h1
h2
h3


a(x+ t− τ) ,

∫ τ

0
e(τ−s)L




−5v ·((E1 + v̂2B) f ,(E1− v̂1B) f )(s)
0
0
0


ds


dτ

=
∫ t

0

∫ τ

0

∫∫
5vgt−τ

3 (τ− s,x,v) · ((E1 + v̂2B) f ,(E1− v̂1B) f )(s)dxdvdsdτ

where

h1 (x) =
∫

∂v1

(
v̂2

1− v̂1

)
f 0dv

h2 (x) =
∫

∂v2

(
v̂2

1− v̂1

)
f 0dv

h3 (x) =
∫ (

∂v1

(
v̂2

1− v̂1

)
v̂2−∂v2

(
v̂2

1− v̂1

)
v̂1

)
f 0dv

and gt−τ
3 (τ− s,x,v) is the first component of

e(τ−s)L ∗




0
h1 (x)a(x+ t− τ)
h2 (x)a(x+ t− τ)
h3 (x)a(x+ t− τ)


 = e(τ−s)L ∗

wt−τ .

Since hi (x) is differentiable and ‖a‖W 1,∞ ≤ P, we have ‖wt−τ‖W 1,∞ ≤ C (with a
constant independent of t,τ). So by Lemma 3.8 (III),

∣∣∂vgt−τ
3 (τ− s,x,v)

∣∣≤C
(
|J (τ− s)|2 +CΛ

∫ τ−s

0
eΛ(τ−s−u) |J (u)|2 du

)
.

Moreover,
∣∣∣∣
∫ P

0
In
2 (t,x)a(x)dx

∣∣∣∣≤C
∫ t

0

∫ τ

0

∫∫

RP×R2

C
(
|J (τ− s)|2 +CΛ

∫ τ−s

0
eΛ(τ−s−u) |J (u)|2 du

)
|F (s)| | f (s)|dxdvdsdτ

≤C5 (δeωτ)2
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for some C5 > 0 as t ≤ T ∗, by using the same calculations as in the estimate of∣∣∣∫ P
0 E1,n (t)dx

∣∣∣ . Now we estimate

∫ P

0
In
1 (t,x)a(x)dx

=
∫ t

0

∫∫
a(x+ t− τ)G(x,v) fn (τ,x,v)dxdvdτ

=
∫ t

0

∫ τ

0

∫∫
5vgt−τ

4 (τ− s,x,v) · ((E1 + v̂2B) f ,(E1− v̂1B) f )(s)dxdvdsdτ,

where

G(x,v) =5v

(
v̂2

1− v̂1

)
· ((E0

1 + v̂2B0) ,−v̂1B0)

and gt−τ
4 (τ− s,x,v) is the first component of

e(τ−s)L ∗




a(x+ t− τ)G(x,v)
0
0
0


 = e(τ−s)L ∗




Gt−τ (x,v)
0
0
0


 .

Since by simple calculations
∣∣∣52

v

(
v̂2

1−v̂1

)
f0

∣∣∣ ≤ C 〈v〉2 and ‖a‖W 1,∞ ≤ P, we have

Gt−τ ∈ L∞,1
(
RP×R2

)
,∂vGt−τ ∈ L∞,2

(
RP×R2

)
and

∥∥Gt−τ∥∥
L∞,1 +

∥∥∂vGt−τ∥∥
L∞,2 ≤C (independent of t,τ).

Thus by Lemma 3.8 (IV) we have

∣∣∂vgt−τ
4 (τ− s,x,v)

∣∣≤C 〈v〉2 |J (τ− s)|2 +CΛ

∫ τ−s

0
eΛ(τ−s−u) |J (u)|2 du

and
∣∣∣∣
∫ P

0
In
1 (t,x)a(x)dx

∣∣∣∣

≤C
∫ t

0

∫ τ

0

∫∫
〈v〉2 |J (τ− s)|2 |F (s)| | f (s)|dxdvdsdτ

+CΛ

∫ t

0

∫ τ

0

∫∫ ∫ τ−s

0
eΛ(τ−s−u) |J (u)|2 du |F (s)| | f (s)|dxdvdsdτ

= I + II.
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The second term is handled in the same way as above to deduce II ≤C5 (δeωτ)2 .
As for the first term, we use Lemmas 3.9 and 3.2 to obtain

I ≤C
∫ t

0

∫ τ

0

∫ ∫

D1

C1
αeα(τ−s) |F (s)|∞ 〈v〉2 | f (s)|dxdvdsdτ

+Cα

∫ t

0

∫ τ

0

∫ ∫

D1

|J (τ− s)|2 |F (s)|∞ | f (s)|∞ dxdvdsdτ

≤Cα

∫ t

0

∫ τ

0
eα(τ−s) (Dδeωs)2 dsdτ ≤C6 (δeωτ)2 .

Combining these estimates, we deduce∣∣∣∣
∫ P

0
In
1 (t,x)a(x)dx

∣∣∣∣≤C7 (δeωτ)2

for t ≤ T ∗. The estimate of the first term In
0 is similar to the estimate for In

1 and we
have ∣∣∣∣

∫ P

0
In
0 (t,x)a(x)dx

∣∣∣∣≤C8 (δeωτ)2

for t ≤ T ∗. Combining all of the preceding estimates, we conclude that

‖E1,n (t)‖1 +‖E2,n (t)‖1 +‖Bn (t)‖1 ≤ c3
(
δeωt)2

for some c3 > 0 as t ≤ T ∗. This completes the nonlinear instability proof. ¤
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