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Abstract. We prove the instability of large classes of steady states of the two-dimensional
Euler equation. For an odd shear flow, beginning with the Rayleigh equation, we define a family of
operators depending on some positive parameter. Then we use infinite determinants to keep track
of the signs of the eigenvalues of these operators. The existence of purely growing modes follows
from a continuation argument. Employing a new analysis of neutral modes together with a rigorous
justification of Tollmien’s classical method, we obtain a sharp condition for linear and hence nonlinear
instability of a general class of bounded shear flows. We obtain similar results for bounded rotating
flows and unbounded shear flows.
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1. Introduction. In this paper, we study the hydrodynamic stability problem
for plane shear flows and rotating flows. The purpose is to get some sufficient con-
ditions for linear instability and hence nonlinear instability. For plane shear flows,
this problem has a long history, going back to scientists such as Rayleigh and Kelvin
in the nineteenth century. The vorticity form of the incompressible two-dimensional
Euler equation in a bounded domain D with smooth boundary ∂D is

∂tω + u · �ω = 0 in Rt ×D

or

∂t∆ψ +
∂ψ

∂y

∂

∂x
∆ψ − ∂ψ

∂x

∂

∂y
∆ψ = 0,(1)

where ψ is the stream function, ω = −∆ψ is the vorticity, and u = (∂ψ∂y ,−∂ψ
∂x ) is the

velocity. We consider the basic steady state flow U0 = U (y) i, a parallel shear flow
in the x-direction, in the flow domain D = {(x, y) | y1 ≤ y ≤ y2} with rigid walls at
y = y1, y2. This means u is tangential, or ψ is constant on each wall. The linearized
equation of (1) around U0 is

∂t∆ψ̃ + U
∂

∂x
∆ψ̃ − U ′′ ∂ψ̃

∂x
= 0,(2)

where ψ̃ is constant on y = yj (j = 1, 2) . Taking ψ̃ = φ (y) eiα(x−ct) with α the wave
number (positive real) in the x-direction and c = cr+ ici the complex wave speed, we
obtain from (2) the Rayleigh equation

(U − c)

(
d2

dy2
− α2

)
φ− U ′′φ = 0(3)
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with φ (y1) = φ (y2) = 0. We will also consider unbounded shear flows where one of
y1, y2 is infinity, with the boundary condition φ (y) → 0 as y → ∞.

So for shear flows, the instability problem is reduced to studying the Rayleigh
equation (3). The flow is linearly unstable if some nontrivial solution to (3) with
ci > 0 exists. A classical result of Lord Rayleigh [16] is the necessary condition for
instability that the basic velocity profile should have an inflection point at some point
y = ys, that is, U ′′ (ys) = 0. This condition was later improved by Fjørtoft [10].
Howard’s semicircle theorem [14] says that any unstable eigenvalue c = cr + ici must
lie in the semicircle(

cr − 1

2
(Umin + Umax)

)2

+ c2i ≤
(
1

2
(Umin − Umax)

)2

.(4)

However, very few sufficient conditions for instability are known. In 1935, Tollmien
[23] obtained an unstable solution to (3) by formally perturbing around a neutral mode
(c real) for symmetric flows in class K+ (defined below). The original presentation was
improved by C. C. Lin [17] and the asymptotic growth rate was found. Even in recent
treatises such as [20], the main instability result mentioned is Tollmien’s. However,
as indicated by Friedlander and Howard [12], in all these references the existence of
an unstable mode had to be assumed in a neighborhood of the neutral mode. The
assumption of analytic dependence between the parameters α and c (complex) also
lacked justification. These assumptions are rigorously justified in this paper. Here we
get a sharp condition for the instability of a class of flows.

Let us describe the setting of the problem. First we define a class of flows having
some inflection point. By an inflection value we mean the value of U at an inflection
point.

Definition 1.1. The flow U (y) is in class K if U is a C2 function on a interval
[y1, y2], and there exists some inflection value Us such that

K (y) := −U ′′ (y) / (U (y)− Us)(5)

is nonnegative and bounded in [y1,y2] . If K is positive on [y1, y2] , we say that U is in
class K+.

A typical example of such a flow is U = cosmy or sinmy. Now we consider any
flow in class K. If (φs, αs) is a solution to the Sturm–Liouville problem

φ
′′
s − α2

sφs +Kφs = 0, φ = 0 at y = y1, y2,(6)

then (φ, α, c) = (φs, αs, Us) is a special solution (a so-called neutral mode) to the
Rayleigh equation (3). Let αmax be the largest wave number so that a neutral mode
exists. That is,

−α2
max = inf

φ∈H1
0(y1,y2)

∫ y2
y1

(
|φ′|2 −K (y) |φ|2

)
dy∫ y2

y1
|φ|2 dy .(7)

Throughout this paper, we assume that the right-hand side of (7) is negative. Oth-
erwise, the shear flow was proved to be linearly stable by Drazin and Howard [8].
It was also proved in [8] that instability is possible only for wave numbers α such
that 0 < α < αmax. Howard [15] estimated the maximal number of possible unstable
modes for a fixed wave number. However, it still was not clear whether there exists
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some unstable mode for each α in that range. Recently, Friedlander and Howard [12]
studied the special flow U(y) = cosmy, using a continued fractions technique and a
numerical method. For this flow they proved that for all 0 < α < αmax, there exists
some growing mode for the Rayleigh equation.

In this paper, we rigorously prove that for any flow of class K+ and for all 0 <
α < αmax, there does indeed exist an unstable solution to the Rayleigh equation (3).
This is our main theorem.

Theorem 1.2. Suppose the steady state is in class K+. Let −α2
max be the lowest

eigenvalue of − d2

dy2 −K (y), which is assumed to be negative. For all α ∈ (0, αmax),

there is an unstable solution (with Im c > 0) to (3).
The unstable interval (0, αmax) is sharp in the sense that there is linear stability

if α ≥ αmax or − d2

dy2 −K (y) is nonnegative. We can also treat plane rotating flows
in an annulus. In this case, the analogue of the Rayleigh equation becomes

(Ω− c)
(
D∗D − n2/r2

)
φ− r−1(rD2Ω+ 3DΩ)φ = 0,(8)

with φ (R1) = φ (R2) = 0, 0 < R1 ≤ r ≤ R2. Here Ω (r) is the angular velocity of
the steady state, D∗ = d

dr +
1
r , D = d

dr , and n is some integer. We have the following
result analogous to Theorem 1.2.

Theorem 1.3. For the rotating case, if

K (r) := − (rD2Ω+ 3DΩ
)
/ (Ω− Ωs)(9)

is positive and Ω (R1) �= Ω(R2), then a necessary and sufficient condition for insta-
bility is that there exists α > 1 such that the equation(

D∗D − α2/r2
)
φ+ r−1K (r)φ = 0(10)

has some nontrivial solution with φ (R1) = φ (R2) = 0. This is equivalent to the
condition

−α2
max := inf

φ∈H1
0(R1,R2)

∫ R2

R1
r
(
d
drφ
)2

dr − ∫ R2

R1
K (r)φ2dr∫ R2

R1

1
rφ

2dr
< −1.(11)

In the case that K (r) is positive and Ω (R1) = Ω (R2) , a sufficient condition for
instability is that

−α2
max := inf

φ∈H1
0(R1,R2)

∫ R2

R1
r
(
d
drφ
)2

dr − ∫ R2

R1
K (r)φ2dr∫ R2

R1

1
rφ

2dr
< −4.(12)

Let us return to shear flows that are not in class K+. If a shear flow is odd but
there is no assumption on the sign of K (y), we can still get a sufficient condition for
instability.

Theorem 1.4. Assume U (y) is odd in [−a, a] and define

K (y) := −U ′′ (y) /U (y) .(13)

If K is bounded and the operator − d2

dy2 − K (y) with zero boundary values at ±a

has a negative eigenvalue, then there is a solution to the Rayleigh equation (3) with
c = iλ0 (here λ0 > 0) for some range of wave numbers. Specifically, if −α2

0 < −α2
1 <

· · · < −α2
k0

< 0 denote all the negative eigenvalues of − d2

dy2 −K (y), then we have a



IDEAL PLANE FLOW INSTABILITY 321

purely growing instability for α belonging to the intervals (α1, α0)∪· · ·∪(α2k−1, α2k−2)
· · · ∪ (αk0 , αk0−1) (if k0 odd ) or to the intervals (α1, α0) ∪ · · · ∪ (α2k−1, α2k−2) · · ·
∪ (αk0−1, αk0−2) (if k0 even) .

We can extend Theorems 1.2 and 1.4 to the case of unbounded shear flows.
Theorem 1.5. (i) (class K+) Assume U (y) is in C2 (−∞,+∞) , U (y) →

U (±∞) as y → ±∞, and U (y) takes the values U (±∞) at only a finite number of
points. We consider the flows such that K (y) defined by (5) is bounded, positive, and

limy→±∞ K (y) = 0. Let −α2
0 be the lowest eigenvalue of − d2

dy2 −K (y) on H2 (R) ,

which is assumed to be negative. Then for each α in (0, α0) , there is instability. This

condition is sharp in the sense that if α ≥ α0 or − d2

dy2 −K (y) is nonnegative, then
there is linear stability. The same result holds for the shear flows defined in the half
line.

(ii) (odd flows) Assume U (y) is in C2 (−∞,+∞), odd, and K (y) defined by (13)
is bounded and limy→±∞ K (y) = 0. If −α2

0 < −α2
1 < · · · < −α2

k < · · · < 0 denote

all the negative eigenvalues of the operator − d2

dy2 −K (y) on H2 (R) , then we have

a purely growing instability for α belonging to the intervals (α1, α0) ∪ (α3, α2) ∪ · · · ∪
(α2k−1, α2k−2) · · · .

Now let us sketch the main ideas of the proofs. For the proof of Theorem 1.4, we
define a family of elliptic operators Aλ depending on the positive parameter λ where
c = iλ. The problem is reduced to finding some λ0 such that Aλ0 has a kernel. The
operator Aλ is nonnegative when λ is large and Aλ has an odd number of eigenvalues
when λ tends to 0. The idea then is to use an infinite determinant to keep track of
the sign of the eigenvalues of Aλ as λ varies from 0 to ∞.

For the proofs of Theorems 1.2 and 1.3, we carefully use the neutral modes. In
the literature, neutral modes have usually been used as the base modes, from which
unstable modes have been obtained by the perturbation argument of Tollmien. The
novelty of this paper is to utilize a different property of neutral modes: the neutral
wave numbers are the possible boundary points of the set of all unstable wave numbers.
Thus if we knew all these possible neutral wave numbers and the instability properties
around them, we could deduce the stability properties at all the wave numbers. Indeed
for our purpose we only need to understand the neutral modes from which the unstable
modes can issue. We call them the neutral limiting modes to distinguish them from
the usual neutral modes, which are just the solutions to the Rayleigh equation with
real c.

Definition 1.6. The triple (cs, αs, φs) with cs real and αs positive is said to be
a neutral limiting mode if it is the limit of the growing solution sequence (ck, αk, φk)
(with Im ck > 0) of the Rayleigh equation (3). The precise notions of convergence of
φk to φs will be made clear in Lemma 3.6. Formally (cs, αs, φs) ought to satisfy the
Rayleigh equation

(U − cs)

(
d2

dy2
− α2

s

)
φs − U ′′φs = 0.(14)

We call cs the neutral limiting phase speed and αs the neutral limiting wave number.
Here in the above definition, the convergence of {ck} is guaranteed by Howard’s

semicircle theorem (4). From (4) we also know that cs must lie in the range of U (y).
The importance of neutral limiting modes lies in the fact that the neutral limiting
wave numbers are the possible boundary points of the set of all unstable wave numbers
(see Theorem 3.9). The knowledge of the instability near every neutral limiting wave
number will allow us to determine the instability in the whole range of wave numbers.
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For that purpose, first we need to know what all the neutral limiting modes are.
In general, it is difficult to get a simple answer. But we have the following simple
characterization in case the flow is in class K.

Theorem 1.7. If the flow is in class K, then for any neutral limiting mode
(cs, αs, φs) with positive αs, the phase speed must be cs = Us and the function φs
must solve

− d2

dy2
φs +

U ′′

U − Us
φs = −α2

sφs(15)

with φs (y1) = φs (y2) = 0.
In the physics literature [17], [6], for a monotone flow it was shown heuristically

by using Reynolds stress that the neutral limiting phase speed must be Us. Using
some lemmas of Sattinger [22], we rigorously prove the same result for large classes
of flows. For flows in class K, we have some uniform a priori bound on the H2 norm
of unstable eigenfunctions. This enables us to deduce the other conclusions in the
theorem.

Furthermore, for a flow in the class K+, we also obtain the instability property
near the neutral wave numbers. This is done by rigorously verifying Tollmien’s ar-
gument. By combining it with the boundary point property of neutral limiting wave
numbers (Theorem 3.9), we obtain an unstable mode for each α in (0, αmax).

To prove Theorem 1.5, we truncate the unbounded flow to get a sequence of
bounded flows. Then by applying Theorems 1.2 and 1.4 to truncated flows, we get
a sequence of approximating unstable solutions. We can show that the sequence
obtained converges to a nontrivial function, which is an unstable solution to the
Rayleigh equation in the unbounded case.

In [1] Bardos, Guo, and Strauss rigorously proved nonlinear instability from the
existence of growing modes under a certain assumption for flows defined on bounded
domains. For rotating flows as in Theorem 1.3, that assumption is satisfied. For
shear flows as in Theorem 1.2, we assume the x-direction is P -periodic, with the wave
number α being multiples of 2π

P . Then the result in [1] can still apply. The nonlinear
instability proved in [1] is in the L2 norm of the vorticity. In [13], Grenier proved
nonlinear instability from the existence of growing modes for very general shear flows.
In particular, nonlinear instability of shear flows in [13] can be proved in unbounded
spaces. Thus the flows in Theorem 1.5 are also nonlinearly unstable. Note that the
nonlinear instability in [13] is in the L∞ and L2 norms of velocity.

We can generalize most of Theorem 1.2 of this paper to general shear flows in the
class F (see Definition 3.1). Thus we can treat any flow with a monotone velocity
profile U (y) or any flow that satisfies a differential equation U ′′ (y) = g (U (y)) k (y)
for some function k (y) > 0. The details will appear in a forthcoming paper. In [19],
we use the method of section 2 to treat linear instability of general ideal plane flows.

The paper is organized as follows. In section 2, we prove Theorem 1.4 for odd
flows. We study the neutral limiting modes in section 3. Section 4 is devoted to the
proof of Theorem 1.2. In section 5, we give the proof of Theorem 1.3 for the rotating
case. We treat unbounded shear flows in section 6.

2. Odd flows. We divide the proof of Theorem 1.4 into several steps. First we
reduce the problem to the eigenvalue problem of an ODE system. Let c = iλ (λ > 0)
and φ = f + ih; then (3) becomes(

− d2

dy2
+ α2

)
(f + ih) +

(
U ′′U

U2 + λ2
+ i

λU ′′

U2 + λ2

)
(f + ih) = 0.
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Comparing the real and imaginary parts of (3) and using the definition of K (y), we
get

− d2

dy2
f + α2f −K (y) f +K (y)

λ2

λ2 + U (y)
2 f +K (y)

λU (y)

λ2 + U (y)
2h = 0,(16a)

− d2

dy2
h+ α2h−K (y)h−K (y)

λU (y)

λ2 + U (y)
2 f +K (y)

λ2

λ2 + U (y)
2h = 0(16b)

with f = h = 0 at y = −a, a. If we denote

A0 =

(
− d2

dy2 + α2 −K (y) 0

0 − d2

dy2 + α2 −K (y)

)

and

Bλ = K (y)

(
λ2

λ2+U(y)2
λU(y)

λ2+U(y)2

− λU(y)

λ2+U(y)2
λ2

λ2+U(y)2

)
,

Aλ = A0 +Bλ. Then (16) becomes

Aλ

(
f
h

)
= 0.

The common domain for the operators Aλ is

H =
{
(f, h) | f, h ∈ (H2 (−a, a) ∩H1

0 (−a, a)
)
and f odd, h even

}
.

Let

X =
{
(f, h) | f, h ∈ L2 (−a, a) with f odd, h even

}
.

Here H, X are complex spaces. Due to the oddness of U (y) , Aλ : H → X . In the
following ‖.‖ denotes the L2 norm. We have the following simple characterization of
Aλ.

Lemma 2.1. Aλ is a densely defined closed operator, and for any ξ in its resolvent
set ρ (Aλ) , (ξ −Aλ)

−1
is a trace class operator. The eigenvalues of Aλ appear in

complex conjugate pairs and are all discrete with finite multiplicity.
Proof. Denote

A =

(
− d2

dy2 0

0 − d2

dy2

)

with D (A) = H. Then clearly (ξ −A)
−1

is a trace class operator for any ξ ∈ ρ (A)
and we have ∥∥∥(A+ k)

−1
∥∥∥ ≤ 1

k

for any k > 0. On the other hand, Aλ − A are uniformly bounded operators, and
suppose ‖Aλ −A‖ ≤ M . We have

Aλ + k = A+ k +Aλ −A =
(
1 + (Aλ −A) (A+ k)

−1
)
(A+ k) .
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If M < k, then −k ∈ ρ (Aλ) and

(Aλ + k)
−1

= (A+ k)
−1
(
1 + (Aλ −A) (A+ k)

−1
)−1

.

This is the multiplication of a bounded operator with a trace class operator, so it is
also in trace class. For any ξ ∈ ρ (Aλ) , from formula

(ξ −Aλ)
−1

= (−k −Aλ)
−1

+ (ξ + k) (ξ −Aλ)
−1

(−k −Aλ)
−1

,

we can see that (ξ −Aλ)
−1

is in trace class.
Now the conclusions about the eigenvalues of Aλ follow from the trace class prop-

erty just proved and the fact that the coefficients of Aλ are real.
Now we study the semigroup generated by −Aλ. Notice that −Aλ is a bounded

perturbation of

A =

(
d2

dy2 0

0 d2

dy2

)
,

which generates the diffusion semigroup. Then by the bounded perturbation theorem
of semigroups, we know that −Aλ generates a strongly continuous semigroup. Denote
Tλ (t) = exp (−tAλ) . Then there exists some C,ω positive (independent of λ) such
that

‖Tλ (t)‖ ≤ Ceωt.

We have the following characterization of Tλ (t) .
Lemma 2.2. For all t > 0, Tλ (t) is in trace class.
Proof. First we claim that AλTλ (t) is a bounded operator. Assuming the claim,

the theorem follows easily since we have for any ξ ∈ ρ (A)

Tλ (t) = (ξ −Aλ)
−1

((ξ −Aλ)Tλ (t)) ,

which is the multiplication of a trace class operator with a bounded operator, so it is
in trace class.

We shall now prove the claim, which is due to the smoothing effect of Tλ (t). We
need to show only that ATλ (t) is bounded. For this purpose we study the evolution
equation associated with Tλ (t).

d

dt
f =

d2

dy2
f − α2f +K (y) f −K (y)

λ2

λ2 + U (y)
2 f −K (y)

λU (y)

λ2 + U (y)
2h,(17a)

d

dt
h =

d2

dy2
h− α2h+K (y)h+K (y)

λU (y)

λ2 + U (y)
2 f −K (y)

λ2

λ2 + U (y)
2h(17b)

with f (0) = f0, h (0) = h0. Now to show the claim, it suffices to prove∥∥∥∥ d2

dy2
f (t)

∥∥∥∥
2

,

∥∥∥∥ d2

dy2
h (t)

∥∥∥∥
2

≤ C (t) (‖f0‖2 + ‖h0‖2) .

We denote (17) by

d

dt
f =

d2

dy2
f +R1 (f, h) ,(18a)

d

dt
h =

d2

dy2
h+R2 (f, h) .(18b)
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Then it is easy to see that

‖R1‖2 , ‖R2‖2 ≤ C0 (‖f (t)‖2 + ‖h (t)‖2)

≤ C0Ceωt (‖f0‖2 + ‖h0‖2) .

So from the regularity theory of the linear parabolic equation, we have∥∥∥∥ d2

dy2
f (t)

∥∥∥∥
2

,

∥∥∥∥ d2

dy2
h (t)

∥∥∥∥
2

≤ C ′ (t) (‖f (t)‖2 + ‖h (t)‖2 + ‖R1‖2 + ‖R2‖2)

≤ C ′′ (t) (‖f0‖2 + ‖h0‖2) .

Thus the claim is proved.
From Lemmas 2.1 and 2.2, we know that the eigenvalues of Aλ and Tλ (t) are

discrete with finite multiplicity and that

σ (Tλ (t)) \ {0} = exp (−tσ (Aλ)) .

Now denote all the distinct eigenvalues of Aλ (arranged with nondecreasing real part)
by µ1 (λ) , µ2 (λ) , . . . , µk (λ) , . . . , with multiplicities n1, n2, . . . , nk, . . . . We define the
infinite determinant of Id− Tλ (1) as

d (λ) =
∞∏
k=1

(1− exp (−µk (λ)))
nk .

Since Tλ (1) is a trace class operator and µk (λ) appears in complex conjugate pairs,
d (λ) is a finite real number. From the definition of d (λ), we know that the sign
of d (λ) is determined only by the number of negative real eigenvalues of Aλ. If this
number is odd, then d (λ) is negative. And d (λ) is positive if the number is even.
Here we always assume Aλ has no kernel, since otherwise we have already obtained a
solution to the Rayleigh equation.

We define three sets

S− = {λ > 0| d (λ) < 0} , S+ = {λ > 0| d (λ) > 0} , S0 = {λ > 0| d (λ) = 0} .
We will show that S−, S+ are nonempty open sets. Then the theorem follows easily,
as we shall now show.

Proof of Theorem 1.4. We claim that S0 is nonempty. Otherwise we would have
(0,+∞) = S− ∪ S+, which is impossible, since S−, S+ are two disjoint open sets.
So there must exist some λ0 > 0 such that d (λ0) = 0. Then there exists k so that
1 − exp (−µk (λ0)) = 0. So µk (λ0) = 0 and Aλ0 has a nontrivial kernel (f, h). This
means that c = iλ0, φ = f + ih is a solution to Rayleigh’s equation (3) .

The next several lemmas prove the properties of S−, S+ that we need.
Lemma 2.3. S+ is nonempty.
Proof. Because for any real vector (f, h) ,

(
(f, h) , Aλ

(
f
h

))
=

((
− d2

dy2
+ α2 −K (y) +K (y)

λ2

λ2 + U (y)
2

)
f, f

)

+

((
− d2

dy2
+ α2 −K (y) +K (y)

λ2

λ2 + U (y)
2

)
h, h

)

> 0
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when λ is large, Aλ is a positive operator. Thus all its real eigenvalues are positive,
so that d (λ) > 0 for λ large.

Lemma 2.4. S− is nonempty.

Proof. From the assumptions of Theorem 1.4 and the definition of operator A0,
we know that d (0) < 0. We will show that for λ small, d (λ) < 0.

First we claim that

(i) for any eigenvalue µ (λ) of Aλ, we have |Imµ (λ)| < ‖K‖∞;

(ii) there exists positive ε1, δ1 such that if 0 ≤ λ < δ1, then for any eigenvalue
µ (λ) of Aλ, we have |Reµ (λ)| > ε1.

Proof of claim (i). Let (f, h) be the eigenfunction with ‖f‖2 + ‖h‖2 = 1. Taking
inner products with the conjugate

(
f̄ , h̄

)
on both sides of

Aλ

(
f
h

)
= µ (λ)

(
f
h

)
(19)

and comparing the imaginary parts, we get

|Imµ (λ)| ≤
∣∣∣∣∣2 ‖K‖∞ Im

∫ a

−a

λU (y)

λ2 + U (y)
2 fh̄dy

∣∣∣∣∣
≤ ‖K‖∞

1

2
(‖f‖2 + ‖h‖2)

2
=

1

2
‖K‖∞ .

Proof of claim (ii). Supposing it is not true, we could find a sequence λn → 0,
µn being an eigenvalue of Aλn

, and Reµn → 0. Let (fn, hn) be the corresponding
eigenfunction and ‖fn‖2 + ‖hn‖2 = 1. By (i), {µn} is a bounded sequence. We can
find a subsequence such that µnk

→ µ0, so that µ0 is purely imaginary. We still
denote the subsequence by {µn} .

From the equation satisfied by the eigenfunction (fn, hn), we get

‖fn‖H2 , ‖gn‖H2 ≤ C (‖f‖2 + ‖h‖2) = C

from elliptic regularity theory by noticing that the coefficients in (19) are uniformly
bounded. Thus there exists a subsequence such that (fnk

, gnk
) → (f0, g0) weakly in

H2 and strongly in H1. Moreover,

∥∥∥∥(A0 − µ0)

(
fnk

hnk

)∥∥∥∥≤‖K‖∞
(∥∥∥∥∥ λ2

nk

λ2
nk

+ U (y)
2

∥∥∥∥∥
2

+

∥∥∥∥∥ λnk
U (y)

λ2
nk

+ U (y)
2

∥∥∥∥∥
2

)

× (‖fnk
‖∞ + ‖hnk

‖∞
)
+ |µnk

− µ0|
(‖fnk

‖2 + ‖hnk
‖2

)
≤C

(∥∥∥∥∥ λ2
nk

λ2
nk

+ U (y)
2

∥∥∥∥∥
2

+

∥∥∥∥∥ λnk
U (y)

λ2
nk

+ U (y)
2

∥∥∥∥∥
2

+ |µnk
− µ0|

)

tends to zero as λnk
→ 0. Thus we have µ0 ∈ σ (A0) , which is a contradiction to the

fact that A0 has no eigenvalue lying on the imaginary axis. So claim (ii) is proved.

Let Λ be the infimum of real part of eigenvalues of Aλ. Λ is finite since Aλ is
uniformly bounded from below. Define

D =
{
(x, y) |Λ− 1 < x < −ε1

2
, − ‖K‖∞ < y < ‖K‖∞

}
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and Γ = ∂D. From claim (ii), if λ < δ1, all eigenvalues of Aλ with negative real part
lie in D. Define the Riesz projection as

Pλ =
1

2πi

∮
Γ

(k −Aλ)
−1

dk(20)

and R (Pλ) its range, where λ ≥ 0 and the Γ-integral is in the counterclockwise sense.
Then by the definition of d (λ)

sign d (λ) = (−1)dimR(Pλ)
.(21)

To prove the lemma, it suffices to show that ‖Pλ − P0‖ → 0 as λ → 0. If so, then
dim (R(Pλ)) = dim (R(P0)) if λ is small enough. By the definition of P0, dim (R(P0))
is the number of negative eigenvalues of A0 on the space H, which is equal to that

of the operator − d2

dy2 + α2 −K (y) on the space H2 (−a, a) ∩H1
0 (−a, a). This is due

to the fact that any eigenfunction of − d2

dy2 + α2 − K (y) is either odd or even when

K (y) is even. With α lying in the intervals of Theorem 1.4, − d2

dy2 + α2 −K (y) has

an odd number of negative eigenvalues, so dim (R(P0)) is odd. Thus when λ is small
enough, dim (R(Pλ)) is odd, which implies that d (λ) is negative by (21) so that S−
is not empty.

To show ‖Pλ − P0‖ → 0, we note that

∥∥∥∥Bλ
(

f
h

)∥∥∥∥ ≤ ‖K‖∞
(∥∥∥∥∥ λ2

λ2 + U (y)
2

∥∥∥∥∥
2

+

∥∥∥∥∥ λU (y)

λ2 + U (y)
2

∥∥∥∥∥
2

)
(‖f‖∞ + ‖h‖∞)

≤ C ‖K‖∞
(∥∥∥∥∥ λ2

λ2 + U (y)
2

∥∥∥∥∥
2

+

∥∥∥∥∥ λU (y)

λ2 + U (y)
2

∥∥∥∥∥
2

)(∥∥∥∥A0

(
f
h

)∥∥∥∥+
∥∥∥∥
(

f
h

)∥∥∥∥
)

= C (λ)

(∥∥∥∥A0

(
f
h

)∥∥∥∥+
∥∥∥∥
(

f
h

)∥∥∥∥
)
,

where

C (λ) = C ‖K‖∞
(∥∥∥∥∥ λ2

λ2 + U (y)
2

∥∥∥∥∥
2

+

∥∥∥∥∥ λU (y)

λ2 + U (y)
2

∥∥∥∥∥
2

)
→ 0

as λ → 0 by dominant convergence. Since Γ ⊂ σ (Aλ) if λ < δ1 and Γ is compact, it

follows that ‖ (ξ −Aλ)
−1 ‖ is uniformly bounded by some constant M independent of

ξ ∈ Γ. Then we have∥∥∥(ξ −Aλ)
−1 − (ξ −A0)

−1
∥∥∥ = ∥∥∥(ξ −Aλ)

−1
Bλ (ξ −A0)

−1
∥∥∥

≤
∥∥∥(ξ −Aλ)

−1
∥∥∥∥∥∥Bλ (ξ −A0)

−1
∥∥∥

≤ MC (λ)
(∥∥∥A0 (ξ −A0)

−1
∥∥∥+ ∥∥∥(ξ −A0)

−1
∥∥∥)

≤ MC (λ)
(
1 +

∥∥∥ξ (ξ −A0)
−1
∥∥∥+ ∥∥∥(ξ −A0)

−1
∥∥∥) .

So as λ → 0, ‖ (ξ −Aλ)
−1−(ξ −A0)

−1 ‖ → 0 uniformly for ξ ∈ Γ. Thus ‖Pλ − P0‖ →
0 if λ → 0.
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Lemma 2.5. S− and S+ are open sets.
Proof. We will show that S− is open. The proof for S+ is the same. Suppose

λ0 ∈ S−. Let b > 0 be such that there is no eigenvalue of Aλ0
with real part b.

Then by the same argument as in the last lemma, there exists ε1, δ1 > 0 such that if
|λ− λ0| < δ1, then for any eigenvalue µ (λ) of Aλ, we have |Reµ (λ)− b| > ε1. Let Λ
be the infimum of real part of eigenvalues of Aλ. Define

D =
{
(x, y) |Λ− 1 < x < −ε1

2
+ b, − ‖K‖∞ < y < ‖K‖∞

}
and Γ = ∂D. Then all eigenvalues of Aλ with real part smaller than b lie in D
and Γ ⊂ σ (Aλ) provided |λ− λ0| < δ1. Define Pλ by (20). Then ‖Pλ − Pλ0‖ → 0 as
|λ− λ0| → 0, since Aλ is analytic for λ > 0. So dim (R (Pλ)) = dim (R(Pλ0

)) if |λ− λ0|
is small enough. Let µ1, µ2, . . . , µN be all the distinct eigenvalues of Aλ0 in D. Let mk

be the multiplicity of µk. Now for each µk, we can take a small ball Bk = B (µk; rk)
such that there are no other eigenvalues of Aλ0

in it besides µk. And by taking rk
small enough we can suppose that Bk does not intersect with the imaginary axis if
Reµk �= 0, and Bk does not intersect with the real axis if Reµk = 0. Also Bk does
not intersect with Γ. They are disjoint with others, and for the conjugate eigenvalue
we take the same radius. Then if |λ− λ0| is small enough, by analytic perturbation
theory, there are exactly mk eigenvalues (counting multiplicity) of Aλ in each Bk.
Since dim (R (Pλ)) = dim (R(Pλ0)), these are all the eigenvalues of Aλ in D. Now
notice that for each Bk and its conjugate one, if we multiply all the eigenvalues of
Aλ in them, the sign is the same as for Aλ0

. So in the definition of d (λ) , the part
corresponding to the multiplication of all eigenvalues of Aλ with real part smaller than
b is of the same sign with the λ0 case. Thus it is negative if |λ− λ0| is small. While
the other part of multiplication is always positive, we proved that d (λ) is negative
when |λ− λ0| is small. This finishes the proof of the lemma.

It is easy to see that we can get the following abstract version by the same proof.
Theorem 2.6. Consider a family of real operators Aλ = −A+Bλ (λ ∈ (0,+∞))

with the same domain H. We assume the following:
(I) Bλ is bounded and norm continuous for positive λ.
(II) A generates a generalized parabolic semigroup; that is, exp (tA) is in trace

class and A exp (tA) is bounded.
(III) When λ is sufficiently large, Aλ has no eigenvalue with negative real part.
(IV) When λ tends to 0, Aλ tend to A0 in the sense that

‖(Aλ −A0)φ‖ ≤ c (λ) (‖A0φ‖+ ‖φ‖) ,
c (λ) → 0 as λ → 0+ for any function φ ∈ H. Then if A0 has an odd number of
negative eigenvalues and no kernel, there must exist some λ0 > 0 such that Aλ0

has
a nontrivial kernel.

We can also treat the periodic and Neumann boundary conditions for the Rayleigh
equation by the same method. The conclusion and the proofs are direct analogues of
Theorem 1.4.

Example 2.7 (doubly symmetric flows). Theorem 1.4 could be used to treat some
nonodd flows.

Suppose that U (y) is even on (0, 2d) with respect to its midpoint d and is odd
on (0, d) with respect to its midpoint d

2 . In that case, we could treat the sinuous
(even mode) and varicose (odd mode) separately by studying the Rayleigh equation
on [0, d], taking the boundary condition at d to be either φ′ (d) = 0 or φ (d) = 0. We
could treat the varicose case by Theorem 1.4.



IDEAL PLANE FLOW INSTABILITY 329

The flow U (y) = cos (my) on [−π, π] was treated in [12]. If m is odd, then U (y)
is in the class we described above. For varicose modes, we can restrict the problem to
[0, π] and furthermore restrict the function space to be the space Pj spanned by sinny
(n = j +mp) . Here j is a fixed integer in [1, [m/2]] . Then the space Pj is invariant
under the operator Aλ corresponding to U (y) = cos (my) . Notice that if

m2 − (m− j)
2
< α2 < m2 − j2,

then − d2

dy2 +α2−m2 has only one negative eigenvalue on Pj . Thus from Theorem 1.4,

we know that there is a purely growing unstable mode. This was proved in [12] by
a continued fractions technique. It was also shown in [12] by numerical computation
that if α is small, there is no purely growing mode.

3. Neutral limiting modes. In this section, we study properties of the possible
neutral limiting modes. For a certain class of flows, we get a simple characterization
of the neutral limiting phase speed cs. For flows of class K, we get a complete char-
acterization as in Theorem 1.7.

Definition 3.1. A velocity profile U (y) is said to be in class F if for each
number c in the range of U but not an inflection value, U ′′ takes the same sign at all
points where U (y) = c.

Some examples in class F are a monotone flow, a symmetric flow with monotone
half part, and a flow satisfying U ′′ (y) = g (U (y)) k (y) for some function g and k (y) >
0. It is readily seen that K ⊂ F .

Remark 3.2. We mention two simple facts we will use later.

(i) For a C2 flow U (y), if c is not an inflection value, then U (y) = c can only
hold at a finite number of points.

(ii) For a C2 flow U (y), if there exists some inflection value Us such that the
function

K (y) := −U ′′ (y) / (U (y)− Us)(22)

is bounded on [y1, y2] , then U (y)−Us = 0 can only hold at a finite number of points.

For the proof of (i), we notice that U ′′ (y0) �= 0 at any point y0 ∈ {U (y) = c},
since c is not an inflection value. So y0 is an isolated point of {U (y) = c}. Therefore
{U (y) = c} is a finite set. For (ii) we observe that φ = U (y) − Us solves a second
order regular ODE

φ′′ +K (y)φ = 0

on [y1, y2] . So the zeros of φ cannot cluster in the interval.

Theorem 3.3. If U (y) is in class F , then the neutral limiting phase speed must
be an inflection value.

Note that in Definition 1.6, αs is positive. If αs = 0, then the neutral limiting
phase speed might not be the inflection value. A counterexample is U (y) = cos (6y) ,
y ∈ (−π, π) . The numerical computation in [12] indicated that when αs = 0, the
neutral limiting phase speed is cs = −1 while the inflection value is 0.

For the proof of this theorem, we need several lemmas from the literature, which
we state without proof. The first one is an important equality which was first used
to prove Rayleigh’s criterion.
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Lemma 3.4. Let φ be a solution of (3) with complex eigenvalue c = cr + ici
(ci �= 0) , and let

Jq (φ) =

∫ y2

y1

(
|φ′|2 + α2 |φ|2 + U ′′ (U − q)

|U − c|2 |φ|2
)
dy.(23)

Then Jq (φ) = 0 for every real number q.
Proof. We multiply the Rayleigh equation(

d2

dy2
− α2

)
φ− U ′′

U − c
φ = 0

by φ∗ (∗ denotes the complex conjugate) and integrate it to get∫ y2

y1

(
|φ′|2 + α2 |φ|2 + U ′′

U − c
|φ|2

)
dy = 0.

Comparing real and imaginary parts, we get∫ y2

y1

(
|φ′|2 + α2 |φ|2 + U ′′ (U − cr)

|U − c|2 |φ|2
)
dy = 0,(24)

∫ y2

y1

U ′′

|U − c|2 |φ|2 dy = 0.(25)

Combining (24) and (25), we get the conclusion.
We also need some results from [22]. In the following we use the notation in [22].

Let c be any real number in the range of U (y) and let z1 < z2 < · · · < zkc be the
zeros of U (y)− c. Here we assume kc is finite. In the following we always consider the
cases in Remark 3.2, so this assumption is valid. We denote by S0 the complement
of the set of points {zi} in the interval [y1, y2] . Let z0 = y1 and zkc+1 = y2. Then we
have the following lemma.

Lemma 3.5. Let φ satisfy (3) with positive α and c as above on S0, where φ is
sectionally continuous on the open intervals (zj , zj+1) , j = 0, 1, . . . , kc. Then φ cannot
vanish at both endpoints of any of the intervals (zj , zj+1) unless it vanishes identically
on that interval.

Proof. This lemma was proved in [22], where it was used for a different purpose,
namely, to show that for a fixed wave number there are only a finite number of unstable
eigenvalues of the Rayleigh equation under some conditions. Here we give the proof
for completeness.

The Rayleigh equation (3) can be rewritten as

((U − c)φ′ − U ′φ)′ = α2 (U − c)φ.(26)

Suppose φ (zi+) = φ (zi+1−) = 0 and study (26) in [zi, zi+1] . From the definition of
zi, U − c has constant sign in (zi, zi+1) .

If zi �= y1 (i �= 0) , then U (zi) − c = 0. Let z̃ ≤ zi+1 be the nearest zero of φ in
(zi, zi+1]. Since (26) is a real equation, we may assume φ is real and nonnegative on
the interval (zi, z̃) and that φ′ (zi) ≥ 0 and φ′ (z̃) ≤ 0. Integrating (26) over (zi, z̃),
we get

(U (z̃)− c)φ′ (z̃) = α2

∫ z̃

zi

φ(U − c)dz′,

since φ vanishes at the endpoints zi, z̃.
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If z̃ = zi+1, then the left-hand side above must be zero. Hence φ is identically
zero on (zi, zi+1) . On the other hand, if z̃ < zi+1, then U (z̃) �= c and

φ′ (z̃) = α2

∫ z̃

zi

(U (z′)− c)

(U (z̃)− c)
φ (z′) dz′,

which could not hold true unless φ ≡ 0 on [zi, z̃] . But the second order ODE (26) is
regular on (zi, zi+1) . Thus z could not be a cluster point of a nontrivial solution φ.
Thus φ must be identically zero on (zi, zi+1) .

If i = 0, then we repeat the same argument with the right endpoint of the interval
(y1, z1) .

Lemma 3.6. Let {(ck, αk, φk) (with Im ck>0)}∞k=1 be the solutions to the Rayleigh
equation (3) and ‖φk‖ = 1, and (ck, αk) converges to (cs, αs) with positive αs. Then
φk converges uniformly to a function φs on any compact subset of S0, φ

′′
s exists on

S0, and φs satisfies (14) .
The case when αk is independent of k was proved in [22], but the proof can be

applied to the current case without much change. The basic idea is that on compact
subsets of S0, the function 1/ (U (y)− ck) is uniformly bounded, so we get a uniform
bound on the derivatives of φk up to second order.

Proof of Theorem 3.3. Let (cs, αs, φs) be a neutral limiting mode and assume
cs is not an inflection value. First we show that the φs obtained by Lemma 3.6 is
not identically zero. Otherwise suppose φs ≡ 0. Let z1, z2, . . . , zm be all the zeros of
U (y) − cs, which by Remark 3.2 is finite. Then by the assumption of the theorem
and the definition of class F , all U ′′ (zi) have the same sign, say positive. Let Eδ =
{y ∈ [y1, y2] | |y − zi| < δ for some i} . Then Ecδ ⊂ S0 and U ′′ (y) > 0 for y ∈ Eδ if δ
small enough. Take q = minU (y)− 1 and assume ‖φk‖2 = 1. Then

Jq (φk) =

∫ y2

y1

(
|φ′
k|2 + α2

k |φk|2 +
U ′′ (U − q)

|U − ck|2
|φk|2

)
dy

≥ α2
k +

∫
Ec

δ

U ′′ (U − q)

|U − ck|2
|φk|2 dy +

∫
Eδ

U ′′ (U − q)

|U − ck|2
|φk|2 dy

≥ α2
k − sup

Ec
δ

|U ′′ (U − q)|
(U − ck)

2

∫
Ec

δ

|φk|2 dy.

Since φk converges to φs ≡ 0 uniformly on Ecδ , we have

lim
k→∞

inf Jq (φk) ≥ α2
s.

So for large k, Jq (φk) �= 0, which is a contradiction to Lemma 3.4.
So by Lemma 3.5, there is some zi such that φs (zi) �= 0. Then∫

Eδ

U ′′ (U − q)

|U − cs|2
|φs|2 dy ≥

∫
|y−zi|<δ

U ′′

|U − cs|2
|φs|2 dy = +∞

since cs is not an inflection value. By Fatou’s lemma,

lim
k→∞

inf

∫
Eδ

U ′′ (U − q)

|U − ck|2
|φk|2 dy = +∞.

So from

Jq (φk) ≥
∫
Eδ

U ′′ (U − q)

|U − ck|2
|φk|2 dy − sup

Ec
δ

U ′′ (U − q)

|U − ck|2
,
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we get limk inf Jq (φk) = +∞, which is a contradiction to the fact that Jq (φk) = 0
(Lemma 3.4). Thus cs must be an inflection value. This ends the proof of Theorem
3.3.

To show Theorem 1.7, we need to get some a priori estimate for the sequence of
unstable solutions {φk} in Definition 1.6. We have the following.

Lemma 3.7. For the flow U (y) in class K, if φ is the solution to (3) with Im c > 0,
then we have ∫ y2

y1

(
|φ′|2 + α2 |φ|2

)
dy <

∫ y2

y1

K (y) |φ|2 dy(27)

and ∫ y2

y1

(
|φ′′|2 + 2α2 |φ′|2 + α4 |φ|2

)
dy < ‖K‖∞

∫ y2

y1

K (y) |φ|2 dy.(28)

Proof. Inequality (27) was obtained in [8], but we prove it here for completeness.
Denote c = cr + ici (ci > 0). By Lemma 3.4, for any real q

∫ y2

y1

(
|φ′|2 + α2 |φ|2 + U ′′ (U − q)

|U − cr|2 + c2i
|φ|2

)
dy = 0.(29)

Let q = Us − 2 (Us − cr) . Then∫ y2

y1

(
|φ′|2 + α2 |φ|2

)
dy =

∫ y2

y1

K (y)
(U − Us) (U − q)

|U − cr|2 + c2i
|φ|2 dy

=

∫ y2

y1

K (y)
(U − Us)

2
+ 2 (U − Us) (Us − cr)

|U − cr|2 + c2i
|φ|2 dy

=

∫ y2

y1

K (y)
(U − cr)

2 − (Us − cr)
2

|U − cr|2 + c2i
|φ|2 dy

<

∫ y2

y1

K (y) |φ|2 dy.

This proves (27) .
In (29), let q = Us, we get by (27)

∫ y2

y1

K (y)
(U − Us)

2

|U − cr|2 + c2i
|φ|2 dy =

∫ y2

y1

(
|φ′|2 + α2 |φ|2

)
dy <

∫ y2

y1

K (y) |φ|2 dy.
(30)

We shall show that∫ y2

y1

(
|φ′′|2 + 2α2 |φ′|2 + α4 |φ|2

)
dy −

∫ y2

y1

(U ′′)2 |φ|2
|U − cr|2 + c2i

dy = 0,(31)

which was first proved in [2]. For completeness we now give the proof of (31). We
multiply the Rayleigh equation(

d2

dy2
− α2

)
φ− U ′′

U − c
φ = 0
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by (φ∗)′′ and integrate it to get∫ y2

y1

(
(φ∗)′′

(
φ′′ − α2φ

))
=

∫ y2

y1

(
(φ∗)′′

U ′′

U − c
φ

)
.(32)

By integration by parts,

LHS of (32) =

∫ y2

y1

(
|φ′′|2 + α2 |φ′|2

)
dy.

Using the Rayleigh equation for φ∗, we have

RHS of (32) =

∫ y2

y1

((
α2φ∗ +

(
U ′′

U − c
φ

)∗)(
U ′′

U − c
φ

))
dy

= α2

∫ y2

y1

U ′′ |φ|2
U − c

dy +

∫ y2

y1

(U ′′)2 |φ|2
|U − cr|2 + c2i

dy.

So∫ y2

y1

(
|φ′′|2 + α2 |φ′|2

)
dy = ReRHS

= α2

∫ y2

y1

U ′′ (U − cr) |φ|2
|U − cr|2 + c2i

dy +

∫ y2

y1

(U ′′)2 |φ|2
|U − cr|2 + c2i

dy

= −α2

(∫ y2

y1

(
|φ′|2 + α2 |φ|2

)
dy

)
+

∫ y2

y1

(U ′′)2 |φ|2
|U − cr|2 + c2i

dy,

by (29) with q = cr. Now (31) follows.
Then inequality (28) follows easily from (5) , (30), and (31) .
Remark 3.8 (stability). The inequality (27) was used in [8] to prove that there

is no unstable solution to (3) when α ≥ αmax. Indeed, from (27) , if there exists some
solution φ with Im c > 0, then

−α2 >

∫ y2
y1

(
|φ′|2 −K (y) |φ|2

)
dy∫ y2

y1
|φ|2 dy

≥ inf
φ∈H1

0(y1,y2)

∫ y2
y1

(
|φ′|2 −K (y) |φ|2

)
dy∫ y2

y1
|φ|2 dy = α2

max.

This proves that the condition in Theorem 1.2 is sharp for instability.
Proof of Theorem 1.7. Given (cs, αs, φs) , let {(ck, αk, φk)} (with Im ck > 0)

be a sequence of solutions to the Rayleigh equation (3), as in Definition 1.6 of the
introduction. Here we take ‖φk‖2 = 1. By Theorem 3.3, ck → Us. From Lemma 3.7,
we get ∫ y2

y1

(
|φ′
k|2 + |φ′′

k |2
)
dy < max

{
‖K‖2

∞ , 1
}
.

So there is a subsequence {φnk
} of {φk} and φ0 ∈ H2 ∩H1

0 (y1, y2) such that

‖φnk
− φ0‖C1 → 0 and ‖φ0‖2 = 1.
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Taking limits in

(
d2

dy2
− α2

nk

)
φnk

− U ′′

U − cnk

φnk
= 0,

we get

− d2

dy2
φ0 +

U ′′

U − Us
φ0 = −α2

sφ0.

From the definition of φs, we have φs = φ0 and thus the conclusion of Theorem 1.7
follows.

Theorem 3.9. Let U (y) be in class K. Then the set Ξ of all unstable wave
numbers is open. Any boundary point α of Ξ must satisfy the condition that −α2 is

a negative eigenvalue of − d2

dy2 −K (y) in H2 ∩H1
0 (y1, y2) .

Proof. If α ∈ Ξ, then there exists c with Im c > 0 such that the Rayleigh equation
(3) has some solution φ. Let

ψ =

(
d2

dy2
− α2

)
φ, Bαψ := Uψ − U ′′

(
d2

dy2
− α2

)−1

ψ.

Then from (3) we have Bαψ = cψ. It is easy to see that σess (Bα) = [Umin, Umax] .
So c is some discrete eigenvalue of Bα. Since Bα is norm continuous in α, for any α′

near α, there is also a complex c′ in the spectrum of Bα′ . So Ξ is open. From the
definition of neutral limiting modes, we know immediately that the boundary points
of Ξ are neutral limiting wave numbers. Then the other conclusion in the theorem
follows from Theorem 1.7.

From Theorem 3.9, we know that in order to determine Ξ, we only need to know
the instability property near any neutral limiting wave number. This is the basis of
our method in the next section for obtaining a sufficient condition for instability.

4. Proof of Theorem 1.2. Let the steady flow U (y) be in the class K+. To
prove Theorem 1.2, we need to study the instability near each neutral limiting wave
number. Tollmien [23] heuristically showed that unstable modes exist near a neutral
mode for a symmetric flow in class K+. This was later reconsidered and the asymp-
totic growth rate was found by C. C. Lin [17]. However, the existence of unstable
modes near a neutral mode had still not been rigorously proved. Another approach
was recently given in [20] for a monotone flow in class K+, where the implicit function
theorem was invoked to get existence. However, because the differentiability condi-
tion was only established on half of a neighborhood, the standard implicit function
theorem does not apply. Moreover, the convergence to the neutral eigenfunction in
their computation was not specified. Thus, as far as we are aware, a complete proof
of Tollmien’s argument does not yet exist.

Therefore in this section, we rigorously prove a perturbation result of Tollmien
type for flows in class K+. The existence of an unstable mode is established when the
wave number is slightly to the left of a neutral wave number.

Theorem 4.1. Suppose U (y) is in class K+ and (φs, αs, Us) with αs > 0 satisfies

− d2

dy2
φs +

U ′′

U − Us
φs = −α2

sφs(33)
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with φs (y1) = φs (y2) = 0. Then there exists ε0 < 0 such that if ε0 < ε < 0, there is
a nontrivial solution φε to the Rayleigh equation

(U − Us − c (ε))

(
d2

dy2
− α (ε)

2

)
φε − U ′′φε = 0

with φε (y1) = φε (y2) = 0. Here α (ε) =
√

ε+ α2
s is the perturbed wave number and

Us + c (ε) is an unstable eigenvalue with Im c (ε) > 0. Moreover, the function c (ε) is
differentiable in (ε0, 0) and

lim
ε→0−

c (ε) = 0,(34)

lim
ε→0−

c′ (ε) =

∫ y2
y1

φ2
s (y) dy

iπ
∑l
k=1

(
|U ′|−1

Kφ2
s

)
|y=ak + P ∫ y2

y1
(K (y)φ2

s (y)) / (U (y)− Us) dy
,

(35)

where a1, . . . , al are the inflection points such that U (ak) = Us, k = 1, . . . , l, and
P ∫ y2

y1
denotes the Cauchy principal part.

Remark 4.2. As mentioned in Remark 3.2, the number of points where U takes
the value Us is finite. In formula (35) , we have

l∑
k=1

(
|U ′|−1

Kφ2
s

)
|y=ak > 0.

This is due to the following two facts:
(a) The function φs must be nonzero at at least one of the points ak. This is a

corollary of Lemma 3.5, where c = Us and zj = aj .
(b) We have U ′ (ak) �= 0 for each k. Otherwise there exists some k such that

U ′ (ak) = 0. Then it is easy to see that K (ak) = ∞, which is contradictory to our
assumption that K is bounded.

Proof of Theorem 4.1. Define φ1 (y; c, ε) and φ2 (y; c, ε) to be the solutions of

− d2

dy2
φ+

U ′′

U − Us − c
φ+

(
α2
s + ε

)
φ = 0,(36)

with φ1 (y1) = 0, φ′
1 (y1) = φ′

s (y1) and φ2 (y1) = − 1
φ′
s(y1)

, φ′
2 (y1) = 0. Here ε < 0 and

Im c > 0. Then φ1, φ2 are analytic in the upper half-plane as a function of c and φ1, φ2

are independent with Wronskian 1. Now define I (c, ε) = φ1 (y2; c, ε). The existence
of a solution to the Rayleigh equation is equivalent to the existence of a root of I
with Im c > 0. It will be proved by a modified Newton method, i.e., by finding a fixed
point of

c → c− I (c, ε)

∂I/∂c |(c,ε)=(0,0)
.

Letting

N (t, y; ε, c) = φ1 (t; ε, c)φ2 (y; ε, c)− φ2 (t; ε, c)φ1 (y; ε, c) ,
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we will show that

∂I

∂ε
=

∫ y2

y1

N (y, y2; ε, c)φ1 (y; c, ε) dy(37)

and

∂I

∂c
=

∫ y2

y1

N (y, y2; ε, c)
U ′′ (y)

(U (y)− Us − c)
2φ1 (y; c, ε) dy.(38)

In order to prove (37) and (38), notice that for (c′, ε′) close to (c, ε) with Im c′ > 0,
the function φ1 (y; c

′, ε′) satisfies

− d2

dy2
φ+

U ′′

U − Us − c
φ +

(
α2
s + ε

)
φ

=

[ −U ′′ (y) (c′ − c)

(U (y)− Us − c) (U (y)− Us − c′)
− (ε′ − ε)

]
φ.

So

φ1 (y; c
′, ε′) = φ1 (y; c, ε)

−
∫ y

y1

N (t, y; ε, c)

[ −U ′′ (t) (c′ − c)

(U (t)− Us − c) (U (t)− Us − c′)
− (ε′ − ε)

]
φ1 (t; c

′, ε′) dt.

Thus, letting y = y2,

I (c′, ε′) = I (c, ε)

+

∫ y2

y1

N (t, y2; ε, c)

[
U ′′ (t) (c′ − c)

(U (t)− Us − c) (U (t)− Us − c′)
+ (ε′ − ε)

]
φ1 (t; c

′, ε′) dt.

Identities (37) and (38) follow from this identity by letting (c′, ε′) tend to (c, ε).
Now define the triangle

∆(R,b) = {cr + ici| |cr| < Rci, 0 < ci < b}

and the Cartesian product

E(R,b1,b2) = ∆(R,b1) × (−b2, 0) ,

where b1, b2 > 0.
We make the following claims:
(a) For fixed R, (c, ε) ∈ E(R,b1,b2), φ1 (y; c, ε) uniformly converges to φs (y) in

C1[y1, y2] as c → 0, ε → 0 − . That is, for any δ > 0, there exists some b0 > 0 such
that

‖φ1 (y; c, ε)− φs (y)‖C1 ≤ δ

for b1, b2 < b0, (c, ε) ∈ E(R,b1,b2).
(b) The same conclusion holds true for φ2 (y; c, ε). We denote φ2 (y; 0, 0) = φz (y) ,

so that φz (y2) = − 1
φ′
s(y2)

. Then φ2 (y; c, ε) uniformly converges to φz (y) in C1[y1, y2]

for (c, ε) ∈ E(R,b1,b2), c → 0, ε → 0− .
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Proof of claim (a). Indeed, if it is not true, then there exists δ0 > 0 and a sequence
{(ck, εk)}∞k=1 , (ck, εk) → (0, 0) , |Re ck| < R Im ck such that

‖φ1 (y; ck, εk)− φs (y)‖C1 ≥ δ0.

Since |Re ck| < R Im ck and Im ck < b0, we have∣∣∣∣ U ′′ (y)
U (y)− Us − ck

∣∣∣∣ ≤ |K (y)|+ |K (y)|
∣∣∣∣ ck
U (y)− Us − ck

∣∣∣∣ ≤ |K (y)|
(
1 +

√
R2 + 1

)
.

Thus ∥∥∥∥ U ′′ (y)
U (y)− Us − ck

∥∥∥∥
∞

≤ ‖K‖∞
(
1 +

√
R2 + 1

)
.(39)

Let φk = φ1 (y; ck, εk); then we have uniform bound for ‖φk‖C2 because φk satisfies
an ODE (36) with uniformly bounded coefficients and the same initial value. So by
the Ascoli–Arzelà lemma, there is a subsequence {φki} and a function φ0 ∈ C1[y1, y2]
such that

‖φki − φ0‖C1 → 0

as ki → ∞. Since φki satisfies Rayleigh’s equation, φ0 satisfies

− d2

dy2
φ0 +

U ′′

U − Us
φ0 = −α2

sφ0,

with φ0 (y1) = 0, φ′
0 (y1) = φ′

s (y1); thus φ0 = φs. So ‖φki − φs‖C1 → 0, which is a
contradiction to our assumption. Claim (b) follows similarly.

In the appendix we prove that

∂I

∂ε
→ − 1

φ′
s (y2)

∫ y2

y1

φ2
s (y) dy(40)

and

∂I

∂c
→ 1

φ′
s (y2)

(
iπ

l∑
k=1

(
|U ′|−1

Kφ2
s

)
|y=ak + P

∫ y2

y1

(
K (y)φ2

s (y)
)
/ (U (y)− Us) dy

)(41)

uniformly in E(R,b1,b2) as c → 0, ε → 0− . Denote these limits by

B = − 1

φ′
s (y2)

∫ y2

y1

φ2
s (y) dy,

C =
1

φ′
s (y2)

P
∫ y2

y1

(
K (y)φ2

s (y)
)
/ (U (y)− Us) dy,

D =
π

φ′
s (y2)

l∑
k=1

(
|U ′|−1

Kφ2
s

)
|y=ak ,

where ak (k = 1, . . . , l) are the inflection points. Denote

f (c, ε) = I (c, ε)−Bε− (C +Di) c
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and

h (c, ε) = − B

C + iD
ε− f (c, ε)

C + iD
.

Then by the uniform convergence of (40) and (41) , for any δ0 > 0, there exists b0 so
that when b1, b2 < b0 wehave∣∣∣∣∂f∂c

∣∣∣∣ ,
∣∣∣∣∂f∂ε

∣∣∣∣ < δ0 ∀ (c, ε) ∈ E(R,b1,b2).(42)

So for any (c, ε) , (c′, ε′) in the convex set E(R,b1,b2),

|f (c, ε)− f (c′, ε′)| ≤ δ0 (|ε− ε′|+ |c− c′|) .(43)

Now in (43) we let (c′, ε′) → (0, 0) and notice that

lim
(c′,ε′)→(0,0)

f (c′, ε′) = lim
(c′,ε′)→(0,0)

I (c′, ε′) = lim
(c′,ε′)→(0,0)

φ1 (y2; c
′, ε′) = φs (y2) = 0,

so we obtain

|f (c, ε)| ≤ δ0 (|ε|+ |c|) ∀ (c, ε) ∈ E(R,b1,b2).(44)

Note that for fixed ε, a zero of I (c, ε) is a fixed point of c → h (c, ε). Let R = 4
∣∣C
D

∣∣
if C �= 0 and R = 1 if C = 0. Notice that by Remark 4.2, BD < 0. Denote

Q =
√

R2 + 1
−2DB

C2 +D2
+ 1.

Let

δ0 =
1

2
min

{ |BC|
Q (C2 +D2)

,
−BD

Q (C2 +D2)
, 1

}√
C2 +D2

if C �= 0 and

δ0 =
1

2
min

{ −BD

Q (C2 +D2)
, 1

}√
C2 +D2

if C = 0. There exists b0 such that if b1, b2 < b0, then (44) and (42) hold. We choose

b2 = min

{
C2 +D2

−2DB
√
R2 + 1

, 1

}
b0, b1 = Qb2.

Fix ε ∈ (−b2, 0) and let

b (ε) =
−2DB

C2 +D2
ε.

We will prove that

h (·, ε) : ∆(R,b(ε)) → ∆(R,b(ε)) is a contraction map,(45)

with contraction ratio no greater than 1
2 for all −b2 < ε < 0.
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Assuming (45), the theorem follows easily. Indeed, for each ε ∈ (−b2, 0) there
exists a unique c (ε) ∈ ∆(R,b(ε)) so that h (c (ε) , ε) = c (ε) . Since for fixed ε, h (c, ε) is
analytic in ∆(R,b1) and uniformly contracting, we know that c (ε) is the unique fixed
point in ∆(R,b1) and is differentiable with respect to ε in the interval (−b2, 0) (see [5,
p. 25]). We now let ε0 = −b2. Since c (ε) ∈ ∆(R,b(ε)), we have

lim
ε→0−

c (ε) = 0.

From I (c (ε) , ε) = 0, we obtain

c′ (ε) = −∂I/∂ε

∂I/∂c
.

So by (40) and (41), we have

lim
ε→0−

c′ (ε) =

∫ y2
y1

φ2
s (y) dy

iπ
∑l
k=1

(
|U ′|−1

Kφ2
s

)
|y=ak + P ∫ y2

y1
(K (y)φ2

s (y)) / (U (y)− Us) dy
.

This proves (35), and the proof of Theorem 4.1 is complete assuming (45).
Now we prove (45) . By our choices of δ0, b0, b1, b2, and (42), we know∣∣∣∣∂h∂c

∣∣∣∣ = 1√
C2 +D2

∣∣∣∣∂f∂c
∣∣∣∣ ≤ 1√

C2 +D2
δ0 ≤ 1

2
∀ (c, ε) ∈ E(R,b1,b2).

Thus h is uniformly contracting with ratio no greater than 1
2 for each fixed ε ∈ (−b2, 0).

We still need to show that h (c, ε) maps ∆(R,b(ε)) to itself. If C �= 0, by (44) and the
definitions of b (ε) , Q, and δ0, we have∣∣∣∣ f (c, ε)C + iD

∣∣∣∣ ≤ δ0
|c|+ |ε|√
C2 +D2

≤ δ0√
C2 +D2

(
1 +

√
R2 + 1

−2DB

C2 +D2

)
|ε| = δ0 |ε|Q√

C2 +D2

≤ 1

2
min

{ |BC|
C2 +D2

,
−BD

C2 +D2

}
|ε| .(46)

Substituting (46) into

Reh =
−BC

C2 +D2
ε− Re

f (c, ε)

C + iD
,

we readily get

1

2

|BC|
C2 +D2

|ε| ≤ |Reh| ≤ 2
|BC|

C2 +D2
|ε| .(47)

In the same way we get

1

2

−BD

C2 +D2
|ε| ≤ Imh ≤ 2

−BD

C2 +D2
|ε| = b (ε) .(48)

Combining (47) and (48), we have

|Reh| ≤ 4

∣∣∣∣CD
∣∣∣∣ Imh = R Imh.
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So h ∈ ∆(R,b(ε)). The proof for the case C = 0 is the same. This proves (45), and thus
the proof of Theorem 4.1 is complete.

Proof of Theorem 1.2. Let −α2
m < −α2

m−1 < · · · < −α2
1 < 0 be all the negative

eigenvalues of − d2

dy2 +K (y) . Here αm = αmax as defined by (7) . Combining Theorems

3.9 and 4.1, we deduce that if α ∈ (0, αm) and α �= αi (i = 1, . . . ,m) , then there exists
an unstable mode.

Now we investigate the possibility of an instability at α = αi (i = 1, . . . ,m) . For
each α ∈ (αi, αi+1), we know that there exists some unstable eigenvalue c (α) =
cr (α) + ici (α) with ci > 0. We claim that

as α → αi+, ci (a) has some lower bound δ > 0.(49)

Assuming (49), we now show the existence of an unstable eigenvalue at αi. We take a
sequence {(ck, αk, φk)}∞k=1 with αk → αi+ and Im ck ≥ δ > 0. The function φk with
‖φk‖2 = 1 satisfies the Rayleigh equation

− d2

dy2
φk +

U ′′

U − ck
φk = −α2

kφk.(50)

By Lemma 3.7, there is an a priori bound for ‖φk‖H2 , so there exists some nonzero
function φ0 ∈ H2 such that φk → φ0 strongly in H1. Note that ck is bounded by (4).
Suppose ck → c0 with Im c0 ≥ δ. Now∥∥∥∥ U ′′

U − ck

∥∥∥∥
∞

≤ ‖U ′′‖∞
δ

,

so we can pass to the limit in (50) to deduce that φ0 is a weak solution to

− d2

dy2
φ0 +

U ′′

U − c0
φ0 = −α2

iφ0.

Since Im c0 > 0, U ′′
U−c0 is a smooth function. So by elliptic regularity theory, φ0 is a

classical solution. Thus at α = αi, we get an unstable eigenvalue c0.
Proof of (49). If it is not true, then there exists a sequence {(ck, αk, φk)}∞k=1

of solutions to Rayleigh’s equation, with αk → αi+ and Re ck → cs, Im ck → 0 + .
By Theorem 1.7, cs must equal Us. From the proof of Theorem 1.7, we know that
φk → φs in C1[y1, y2], where φs is a solution to

− d2

dy2
φs +

U ′′

U − Us
φs = −α2

iφs.(51)

Multiplying (51) by φk and subtracting φs times (50), then integrating from y1 to y2,
we get

(
α2
k − α2

i

) ∫ y2

y1

φsφkdy = − (ck − Us)

∫ y2

y1

U ′′φsφk
(U − ck) (U − Us)

dy.

Let

Ak =

∫ y2

y1

φsφkdy, Bk = −
∫ y2

y1

U ′′φsφk
(U − ck) (U − Us)

dy.
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Then

lim
k→∞

Ak =

∫ y2

y1

|φs|2 dy.(52)

In the appendix we will prove

lim
k→∞

Bk = P
∫ y2

y1

K (y)φ2
s

(U − Us)
dy + iπ

l∑
k=1

(
|U ′|−1

Kφ2
s

)
|y=ak .(53)

Now we have

lim
k→∞

Ak
Bk

=

∫ y2
y1

|φs|2 dy
P ∫ y2

y1

K(y)φ2
s

(U−Us)
dy + iπ

∑l
k=1

(
|U ′|−1

Kφ2
s

)
|y=ak

= a+ ib

with b < 0. Thus if k is large enough,

Im ck =
(
α2
k − α2

i

)
Im

Ak
Bk

< 0,

which is a contradiction. So (49) is proved and the proof of Theorem 1.2 is com-
plete.

We also have the following result about the instability at α = 0.
Lemma 4.3. If U (y1) �= U (y2), then at α = 0 there is also some unstable solution

to the Rayleigh equation.
Proof. Let {(ck, αk, φk)}∞k=1 be a sequence of unstable solutions with αk → 0+.

It suffices to prove that there is some positive lower bound for {Im ck} . Indeed the
existence of an unstable solution at α = 0 would follow by the same argument as in
the proof of Theorem 1.2.

Assume there is no lower bound. Then Im ck → 0, Re ck → c. Then φk converges
to a neutral solution φ0 ∈ H2 ∩H1

0 satisfying equation

(U − c)φ′′
0 − U ′′φ0 = 0(54)

sectionally in each (zi, zi+1) . Here we use the same notation as immediately before
Lemma 3.5. We now show that φ0 cannot vanish at any zero z1, . . . , zkc of U − c.
Indeed, if it is not true, we suppose φ0 (zi) = 0 and consider (54) in (zi, zi+1) . Then

((U − c)φ′
0 − U ′φ0) (y) ≡ ((U − c)φ′

0 − U ′φ0) (zi) = 0

for all y in the interval (zi, zi+1) . So φ0 and U − c are linearly dependent in (zi, zi+1) .
Thus φ0 (zi+1) = 0. Repeating the process, we know that φ0 (zi) = 0 for all i =
1, . . . , kc and there is some constant b such that U (y) − c = bφ0 (y) for all y in
(y1, y2) . This implies that U (y1) = U (y2) = 0, which is a contradiction.

Thus φ0 takes a nonzero value at each zero of U−c and φ0 is the limit of unstable
eigenfunctions. By the proof of Theorem 3.3 we know that c must equal Us. Now
by the argument in the last part of the proof of Theorem 1.2, we know that there
is no perturbation of the neutral mode at α = 0 to its right neighborhood. This
contradiction shows that the Im ck has some positive lower bound. The proof of the
lemma is finished.

Remark 4.4. If U (y1) = U (y2), it is possible that at α = 0 there is no unstable
solution to (3). One such example is U (y) = cos 6y, whose complete spectrum was
found in [12] and for which there is no growing mode at α = 0.
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5. Rotating flows. In this section, we consider the radially symmetric steady
flows in an annulus 0 < R1 ≤ r ≤ R2. Using polar coordinates (r, θ), we rewrite the
vorticity equation (1) as

∂t∆ψ +
1

r

∂ψ

∂θ

∂

∂r
∆ψ − ∂ψ

∂r

1

r

∂

∂θ
∆ψ = 0.

Here ψ is the stream function and

(ur, uθ) =

(
1

r

∂ψ

∂θ
,−∂ψ

∂r

)
, ω = −∆ψ =

1

r

∂

∂r
(ruθ)− 1

r

∂ur
∂θ

are the velocity and vorticity, respectively. And ψ is constant on r = Rj (j = 1, 2).
The steady flow is (ur, uθ) = (0, rΩ), with Ω = Ω (r) the steady angular velocity. The
linearized equation about this steady flow is

∂t∆ψ̃ +Ω
∂

∂θ
∆ψ̃ +

(
∂

∂r
Z

)
1

r

∂ψ̃

∂θ
= 0,(55)

with ψ̃ constant on r = Rj (j = 1, 2) and the steady vorticity Z = 2Ω+ r dΩdr . Taking

ψ̃ (r, θ, t) = φ (r) exp (st+ inθ) and letting D∗ = d
dr + 1

r , D = d
dr (following the

notation in [6]), we rewrite (55) as

(s+ inΩ)
(
D∗D − n2/r2

)
φ− inr−1(rD2Ω+ 3DΩ)φ = 0,(56)

with φ (R1) = φ (R2) = 0 and n a positive integer. Letting c = s
in , we get the rotating

Rayleigh equation (8). Instability would mean that there exists a solution to (8) with
Im c > 0. In this section we study the flows such that the function K (r) defined by
(9) is positive and bounded, which we still denote by class K+.

We are interested only in the case when α is a positive integer of the following
extended Rayleigh equation:

(Ω− c)
(
D∗D − α2/r2

)
φ− r−1(rD2Ω+ 3DΩ)φ = 0,(57)

with φ (R1) = φ (R2) = 0. However, by embedding the original problem into a family
of problems (57) depending on a continuous positive parameter α, we can use the same
idea as in the shear flow case. For that purpose, first we need to prove the rotating
versions of some results used in the shear flow case. We give detailed proofs only when
they are really different. First is the extension of Lemma 3.5 to the rotating case.
Let r1 < r2 < · · · < rkc be the zeros of Ω (y)− c and let S0 be the complement of the
set of points {ri} in the interval [R1, R2] . Here c is any real number in the range of
Ω (y) . Let r0 = R1 and rkc+1 = R2. Note that for the rotating flows in class K+, kc
is finite for any c by the same argument as in Remark 3.2.

Lemma 5.1. Let φ satisfy (57) on S0 with real α > 1 and real c in the range
of Ω. We assume φ is sectionally continuous on the open intervals (rj , rj+1) , j =
0, 1, . . . , kc. Then φ cannot vanish at both endpoints of any of the intervals (rj , rj+1)
unless it vanishes identically in that interval.

Proof. The function φ satisfies

(Ω− c)
(
D∗D − α2/r2

)
φ− r−1(rD2Ω+ 3DΩ)φ = 0,

which is the same as

(Ω− c)D2φ− φD2Ω+ (Ω− c)r−1Dφ− 3r−1φDΩ = (Ω− c)
α2

r2
φ.
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We multiply both sides of the above by r2 to get

(Ω− c)r2D2φ− r2φD2Ω+ (Ω− c)rDφ− 3rφDΩ = (Ω− c)α2φ.(58)

We have

LHS = (Ω− c)
[
D2
(
r2φ
)− 4rDφ− 2φ

]− r2φD2Ω+ (Ω− c) rDφ− 3rφDΩ

= (Ω− c)D2
(
r2φ
)− r2φD2Ω− 3 (D (rφ) (Ω− c) + rφDΩ) + φ(Ω− c)

= D
(
(Ω− c)D

(
r2φ
)− r2φDΩ

)− 3D ((rφ) (Ω− c)) + φ(Ω− c).

So (58) becomes (using ′ to replace D)

(
(Ω− c)

(
r2φ
)′ − r2φΩ′

)′
− 3 ((rφ) (Ω− c))

′
=
(
α2 − 1

)
φ(Ω− c).(59)

Suppose φ vanishes at ri and ri+1. Here we mean φ (ri+) for φ (ri) and φ (ri+1−)
for φ (ri+1) when studying (59) in [ri, ri+1]. From the definition of ri we know that
Ω − c has constant sign in (ri, ri+1). If ri �= R1 (i �= 0), then Ω (ri) − c = 0. Let
r̃ ≤ ri+1 be the nearest zero of φ in (ri, ri+1]. Since (59) is a real equation, we may

assume φ is real and nonnegative on the interval (ri, r̃) and that
(
r2φ
)′
(ri) ≥ 0 and(

r2φ
)′
(r̃) ≤ 0. Integrating (59) over (ri, r̃) , we get

(Ω (r̃)− c)
(
r2φ
)′
(r̃) =

(
α2 − 1

) ∫ r̃

ri

φ(Ω− c)dr′,

since φ vanishes at the endpoints ri, r̃.
If r̃ = ri+1, then the left-hand side above must be zero. Hence φ is identically

zero on (ri, ri+1). On the other hand, if r̃ < ri+1, then Ω (r̃) �= c and

(
r2φ
)′
(r̃) =

(
α2 − 1

) ∫ r̃

ri

(Ω (r′)− c)

(Ω (r̃)− c)
φ (r′) dr′,

which could not hold true unless φ = 0 on [ri, r̃] . But the second order ODE (58) is
regular on (ri, ri+1); thus r̃ could not be a cluster point of nontrivial φ. Thus φ must
be identically zero on (ri, ri+1) .

If i = 0, then we repeat the same argument with the right endpoint of the interval
(R1, r1) .

We need Howard’s semicircle theorem for the rotating case, which seems not to
have been proven in the literature. So we give a proof here.

Lemma 5.2. If α > 1, then for the extended Rayleigh equation (57) to have a
solution, c (with Im c > 0) must lie in the semicircle

(
cr − 1

2
(Ωmin +Ωmax)

)2

+ c2i ≤
(
1

2
(Ωmin − Ωmax)

)2

,(60)

where Ωmin and Ωmax are the minimum and maximum of Ω (r) in [R1, R2] .
Proof. Let φ be a solution to (57). As in the proof of the last lemma, φ satisfies

(59), which we can rewritten as

(
r
(
φ′(Ω− c)r − ((Ω− c)r)

′
φ
))′

=
(
α2 − 1

)
φ(Ω− c).(61)
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The above identity is equivalent to(
r3(Ω− c)2

(
φ

(Ω− c)r

)′)′
=
(
α2 − 1

)
φ(Ω− c).(62)

Now ψ = φ
(Ω−c)r is a regular function since Im c �= 0. Then (62) becomes

(
r3(Ω− c)2ψ

)′
=
(
α2 − 1

)
r(Ω− c)2ψ.(63)

Multiplying (63) by ψ∗ (conjugate of ψ) and integrating it, we obtain

∫ R2

R1

(Ω− c)2
(
r3 |ψ′|2 + (α2 − 1

)
r |ψ|2

)
dr = 0.(64)

The rest of the proof is the same as in the case of shear flows [14], [6]. We repeat it
here for completeness. Let

P ≡ r3 |ψ′|2 + (α2 − 1
)
r |ψ|2 .

Then (64) becomes

∫ R2

R1

(Ω− c)2P dr = 0.(65)

The function P is nonnegative and not identically zero. Comparing the real and
imaginary parts of (65), we get

∫ R2

R1

(
(Ω− cr)

2 − c2i
)
P dr = 0 and 2ci

∫ R2

R1

(Ω− cr)P dr = 0.(66)

Observe that

0 ≥
∫ R2

R1

(Ω− Ωmin) (Ω− Ωmax)P dr

=

∫ R2

R1

{(
c2r + c2i

)− (Ωmin +Ωmax) cr +ΩminΩmax

}
P dr,

where (66) is used. So(
c2r + c2i

)− (Ωmin +Ωmax) cr +ΩminΩmax ≤ 0

and the conclusion follows.
We also have an a priori bound for unstable solutions. The proof of the following

lemma is essentially the same as that of Lemma 3.7 in the shear flow case. So we
state only the result.

Lemma 5.3. Denote ω (r) = rD2Ω+3DΩ. For any solution (α, c, φ) to (57) with
α real positive, c = cr + ici (ci > 0), and ‖φ‖2 = 1, we have the identities

∫ R2

R1

r |Dφ|2 dr + α2

∫ R2

R1

1

r
|φ|2 dr +

∫ R2

R1

ω (r) |φ|2 (Ω− q)

|Ω− c|2 dr = 0 ∀q ∈ R,(67)
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∫ R2

R1

(
|D∗Dφ|2 r3 + 2α2r |Dφ|2 dr + α4 1

r
|φ|2

)
dr =

∫ R2

R1

r
ω (r)

2

|Ω− c|2 |φ|2 dr.(68)

For a flow of class K+, we have the inequalities

∫ R2

R1

(
r (Dφ)

2
+ α2 1

r
|φ|2

)
dr <

∫ R2

R1

K (r)φ2dr(69)

and ∫ R2

R1

(
|D∗Dφ|2 r3 + 2α2r |Dφ|2 dr + α4 1

r
|φ|2

)
dr < R2 ‖ω‖∞

∫ R2

R1

K (r)φ2dr.(70)

In particular, we have the a priori estimate ‖φ‖H2 ≤ C (Ω), where C (Ω) is some
constant depending only on Ω.

Indeed, (67), (68), (69), (70) are the analogues of (29), (31), (27), and (28),
respectively. Their proofs are similar to that of the shear flow case.

Remark 5.4. From (69) we see that a necessary condition for instability in the
rotating case is

inf
φ∈H1

0(R1,R2)

∫ R2

R1
r (Dφ)

2
dr − ∫ R2

R1
K (r)φ2dr∫ R2

R1

1
rφ

2dr
< −1,

since α must be a positive integer.
We now define the neutral limiting modes for the rotating case.
Definition 5.5. The triple (cs, αs, φs) with cs real and αs > 1 is said to be a

neutral limiting mode if it is the limit of growing solutions (ck, αk, φk) (with Im ck > 0)
of the extended Rayleigh equation (57). The precise notion of convergence of φk to φs
is made clear in Lemma 5.6. Formally (cs, αs, φs) ought to satisfy

(Ω− cs)
(
D∗D − α2

s/r
2
)
φs − r−1ω (r)φs = 0.(71)

We call cs the neutral limiting phase speed and αs the neutral limiting wave number.
The following is the analogue of Lemma 3.6.
Lemma 5.6. Let {(ck, αk, φk) (with Im ck > 0)}∞k=1 be the solutions to the extended

Rayleigh equation (57) with ‖φk‖ = 1, and let (ck, αk) converge to (cs, αs) with αs > 1.
Then φk converges uniformly to a function φs on any compact subset of S0, φ

′′
s exists

on S0, and φs satisfies (71) .
We state the following results about neutral limiting modes without proof. They

are the analogues of Theorems 1.7 and 3.9, respectively.
Lemma 5.7. If the rotating flow is in class K+, then for any neutral limiting

mode (cs, αs, φs) with αs > 1, we must have cs = Ωs, and φs ∈ H2 ∩ H1
0 (R1, R2)

must satisfy (
D∗D − α2

s/r
2
)
φs + r−1K (r)φs = 0.(72)

Lemma 5.8. Let Ω (y) be as in Theorem 1.3. Let Ξ be the set of all unstable wave
numbers greater than 1. Then Ξ is open and any real boundary point αs of Ξ is either
1 or some wave number satisfying (72) for some nontrivial φs in H2 ∩H1

0 (R1, R2) .
We also have a perturbation result near neutral modes, the analogue of Theo-

rem 4.1.
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Theorem 5.9. Suppose Ω (y) is in class K+ and (φs, αs,Ωs) (αs > 1) satisfies

(Ω− Ωs)
(
D∗D − α2

s/r
2
)
φs − r−1ω (r)φs = 0,(73)

with φs (R1) = φs (R2) = 0. Then there exists ε0 < 0 such that if ε0 < ε < 0, there
is a nontrivial solution φε to the extended Rayleigh equation

(Ω− Ωs − c (ε))
(
D∗D − α (ε)

2
/r2
)
φε − r−1ω (r)φε = 0,

with φε (R1) = φε (R2) = 0. Here α (ε) =
√

ε+ α2
s is the perturbed wave number and

Ωs+c (ε) is an unstable eigenvalue with Im c (ε) > 0. The function c (ε) is differentiable
in (−ε0, 0) and

lim
ε→0−

c (ε) = 0,

lim
ε→0−

c′ (ε) =

∫ R2

R1

1
rφ

2
s (r) dr

iπ
∑l
k=1

(
|Ω′|−1

Kφ2
s

)
|y=rk + P

∫ R2

R1
(K (r)φ2

s (r)) / (Ω (r)− Ωs) dr
,

(74)

where r1, . . . , rl are the points such that Ω (r) = Ωs and P ∫ y2
y1

denotes the Cauchy
principal part.

Proof of Theorem 1.3. If (11) is satisfied, we know that for any α ∈ (1, αmax) ,
there is an unstable solution to the extended Rayleigh equation (57). The proof is
essentially the same as that of Theorem 1.2, by using Theorem 5.9 and Lemma 5.8,
so we skip it here. If condition (12) is satisfied, then αmax > 2, and we get instability
at n = 2 for the rotating Rayleigh equation (8).

Now we turn to the case when 1 < αmax ≤ 2 and Ω (R1) �= Ω(R2). We want
to show that there exists an unstable mode for n = 1. This is the bottom case for
rotating flows. Now for each α ∈ (1, αmax) , we already have an unstable mode. We
shall show that the growth rate Im c (α) has some positive lower bound when α tends
to 1. Assuming this, we can find some unstable mode for α = 1 by using the same
argument as in the proof of Theorem 1.2.

We now prove that Im c (α) has some positive lower bound. The argument we use
here is similar to that in the proof of Lemma 4.3. Supposing otherwise, we can find
a sequence {(ck, αk, φk)}∞k=1 with αk → 1+, Im ck → 0, Re ck → c. The convergence
of {ck} is guaranteed by (60), from which we also know that c is in the range of Ω.
Because of Lemma 5.3, ‖φk‖H2 is uniformly bounded. So there exists some nonzero
φ0 in H2 ∩H1

0 such that a subsequence {φnk
} converges to it in the C1 sense. By

passing to the limit in the equation

(Ω− cnk
)
(
D∗D − α2

nk
/r2
)
φnk

− r−1(rD2Ω+ 3DΩ)φnk
= 0,

we deduce that the function φ0 satisfies

(Ω− c)
(
D∗D − 1/r2

)
φ0 − r−1(rD2Ω+ 3DΩ)φ0 = 0(75)

sectionally in each (ri, ri+1). Here r1 < r2 < · · · < rkc are the zeros of Ω (y)− c and
r0 = R1, rkc+1 = R2. By (59), φ0 satisfies(

(Ω− c)
(
r2φ0

)′ − r2φ0Ω
′
)′

− 3 ((rφ0) (Ω− c))
′
= 0,
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which is equivalent to (
r
(
((Ω− c)r)

′
φ0 − φ′

0(Ω− c)r
))′

= 0.(76)

From (76) , we deduce that φ0 must be nonzero at each point ri (i = 1, . . . , kc) . Indeed,
supposing otherwise, by the same argument as in the proof of Lemma 4.3, we can show
that there is some constant b such that (Ω (r)− c)r = bφ0 (r) in [R1, R2]. This implies
that Ω (R1) = Ω (R2) , a contradiction. Now by the same argument as in the last part
of the proof of Theorem 1.2, we can show that there is no perturbation of the neutral
mode at α = 1 to its right neighborhood. This contradiction shows that Im c (α) is
bounded below and Im c > 0. Thus φ0 satisfying (75) is an unstable solution to the
rotating Rayleigh equation (8) .

Combining this result with Remark 5.4, we deduce that the condition (11) is sharp
for instability when Ω (R1) �= Ω(R2) . This finishes the proof of Theorem 1.3.

6. Unbounded flows. We now consider the unbounded shear flows. We prove
Theorem 1.5(i) only for the flow U(y) defined on (−∞,+∞) . The proof of Theorem
1.5(i) for the shear flows defined on the half line is similar. The flow with U (−∞) =
U (+∞) is called a jet and the one with U (−∞) �= U (+∞) is called a shear layer, as
in [7].

Proof of Theorem 1.5(i). We divide the proof into several steps.
Step 1. First we observe that for any real c, U (y) = c holds for only a finite

number of points. Otherwise, there exists some real c0 and an infinite sequence {yn}
such that U (yn) = c0 for each n. Then {yn} must be bounded by our condition
that U (±∞) are obtained at only a finite number of points. So there exists some
y0 such that a subsequence {ynk

} converges to it. Since U (y) is a C2 function, we
deduce that U (y0) = c0 and U ′ (y0) = U ′′ (y0) = 0. So y0 is an inflection point and
c0 equals the inflection value Us. But then K (y) defined by (5) is unbounded at y0

since U ′ (y0) = 0. This is a contradiction.

Since K (y) → 0 as y → ∞, it is easy to see that − d2

dy2 − K (y) is a relatively

compact perturbation of − d2

dy2 defined on H2 (R). So by Weyl’s theorem [21]

σess

(
− d2

dy2
−K (y)

)
= σess

(
− d2

dy2

)
= (0,+∞) .

Thus− d2

dy2 −K (y) has only a discrete set of negative eigenvalues which can accumulate

only at 0. Let −α2
0 < −α2

1 < · · · < −α2
k < · · · < 0 denote all the negative eigenvalues

of the operator − d2

dy2 −K (y) on H2 (R). We fix some α in (0, α0) and assume α �= αi

for each i ≥ 1. Let In = (−n, n) and let Ln denote the operator − d2

dy2 − K (y) on

H2 (In) ∩H1
0 (In) . Take n large enough so that all the inflection points of K (y) are

included in In. Denote by −α2
0,n the lowest eigenvalue of Ln. Then by the result of [3],

−α2
0,n converges to −α2

0 as n tends to infinity. So by taking n large enough, α is in
(0, α0,n) . Now since U (y) |In is clearly in class K+, by applying Theorem 1.2 to this
truncated flow, we obtain a solution φn in H2 (In) ∩H1

0 (In) satisfying the Rayleigh
equation with cn (Im cn > 0), that is,

(U − cn)

(
d2

dy2
− α2

)
φn − U ′′φn = 0(77)

in In.
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Step 2. Now we have a sequence {(φn, cn)} satisfying (77) with ‖φn‖L2(In) = 1.

By Lemma 3.7, we have ‖φn‖H2(In) ≤ C (where C is some constant depending only

on ‖K‖∞). We extend φn to a function in H2 (R) by setting it to be zero on Icn. For
convenience, we still use φn to denote the extended function. Then ‖φn‖H2(R) ≤ C.

So φn converges weakly in H2 (R) to a function φ0 ∈ H2 (R). We shall show that φ0

is not identically zero.
Let n0 be sufficiently large such that

K (y) <
1

2
α2 if y ∈ Icn0

.

From (27) we have ∫
In

(
|φ′
n|2 + α2 |φn|2

)
dy <

∫
In

K (y) |φn|2 dy.(78)

For any n > n0, from (78) and K > 0 we have∫
In0

K (y) |φn|2 dy > α2 −
∫
Icn0

∩In
K (y) |φn|2 dy

> α2 − 1

2
α2

∫
Icn0

∩In
|φn|2 dy

>
1

2
α2.(79)

Since φn converges strongly in H1 (In0) to φ0, from (79) we get∫
In0

K (y) |φ0|2 dy ≥ 1

2
α2.

This shows that φ0 is nontrivial.
Step 3. By Howard’s semicircle theorem (see (4)), {cn} is bounded. Supposing cn

to converge to c0, we shall show that Im c0 > 0. Otherwise, c0 is some real number in
the range of U (y) . From the a priori H2 bound provided by Lemma 3.7, we deduce
that φn converges to φ0 locally in C1. Suppose z1 < · · · < zk0 are all the points such
that U (zi) = c0. Then by taking limit k → ∞ in (77) , we deduce that φ0 satisfies

(U − c0)

(
d2

dy2
− α2

)
φ0 − U ′′φ0 = 0(80)

within each interval (−∞, z1) , (z1, z2) , . . . , (zk0 ,∞) . Since φ0 �= 0, by the proof of
Lemma 3.5, we deduce that φ0 (zi) �= 0 for some zi. Then by the same argument as
in the proof of Theorem 3.3, we know that c0 must be an inflection value of U (y),
which can only be Us. Now

U ′′

U − c0
= −K (y)

is a bounded continuous function and φ0 is in C1. So from (80) , φ0 satisfies(
d2

dy2
− α2

)
φ0 +K (y)φ0 = 0
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on R and φ0 ∈ H2 (R). Thus −α2 is a negative eigenvalue of

− d2

dy2
−K (y)

on H2(R), which is a contradiction to our assumption that α �= αi for all i. So we
must have Im c0 > 0.

Now U ′′
U−c0 is a bounded continuous function. By passing to limits in (77) , we

deduce that φ0 �= 0 satisfies the Rayleigh equation (3) on the whole line, with Im c0 >
0. We thus get instability for each wave number α in (0, α0) such that α �= αi (i ≥ 1) .

Step 4. Now we investigate the possibility of an instability at α = αi (i ≥ 1) .
The argument is the same as in the proof of Theorem 1.2 for the case when a wave
number equals some neutral limiting wave number. We only sketch it here. For each
α > αi, we get instability by the previous steps. The main point is still to show that
the growth rate Im c (α) has some positive lower bound when α → αi + . Supposing
otherwise, we get a sequence {(ck, αk, φk)}∞k=1 of solutions to Rayleigh’s equation (3),
with αk → αi+ and Re ck → cs, Im ck → 0 + . It is not difficult to see that we can
extend Theorem 1.7 to the current case, so cs must equal Us. By the same argument
as in Step 2, we deduce that φk converges to some φs �= 0 weakly in H2 (R) and
locally in C1. Now φs satisfies

− d2

dy2
φs +

U ′′

U − Us
φs = −α2

iφs.(81)

By Remark 7.2 in the appendix, the analogues of the two limits (52) and (53) still
hold true. That is, we have ∫

R

φkφs →
∫
R

|φs|2 dy(82)

and

∫
R

K (y)φsφk
U − ck

dy → P
∫
R

K (y)φ2
s

(U − Us)
dy + iπ

l∑
i=1

(
|U ′|−1

Kφ2
s

)
|y=ai .(83)

Here a1, . . . , al are all the inflection points and ck → Us with Im ck > 0. Then the
rest of the proof just follows what we did in the last part of the proof of Theorem 1.2.
So we skip it here.

Proof of Theorem 1.5(ii). Assume φ is odd on the whole line. Fix α in the interval
(α2k0−1, α2k0−2) for some k0. Using the same notation as in Step 1 of the proof of
(i), we get the truncated operator Ln defined on In = (−n, n). Let −α2

0,n < −α2
1,n <

· · · < −α2
k,n < · · · < 0 be all the negative eigenvalues of Ln. By the result in [3], Ln has

at least 2k0 negative eigenvalues when n is large enough and (−α2
0,n, . . . ,−α2

2k0−1,n)

converges to
(−α2

0, . . . ,−α2
2k0−1

)
as n tends to infinity. So for n large enough, α is in

the interval (α2k0−1,n, α2k0−2,n) . Since U (y) |In is odd, by Theorem 1.4 we obtain an
unstable solution φn satisfying (77) in In, with cn = iλn (λn > 0). We get the same a
priori bound as in Lemma 3.7 directly as follows. By Lemma 3.5 with q = 0, we have

∫
In

(
|φ′
n|2 + α2 |φn|2 + U ′′U

|U − iλn|2
|φn|2

)
dy = 0.
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Thus ∫
In

(
|φ′
n|2 + α2 |φn|2

)
dy =

∫
In

K (y)
U2

U2 + λ2
n

|φn|2 dy

≤
∫
In

|K (y)| |φn|2 dy.(84)

Similarly, we get from (31) that∫
In

(
|φ′′
n|2 + 2α2 |φ′

n|2 + α4 |φ|2
)
dy <

∫
In

K (y)
2 |φn|2 dy.(85)

From (84) and (85) , we have ‖φn‖H2(R) ≤ C (‖K‖∞). So φn converges to some φ0

weakly in H2 (R). Let λn converge to some nonnegative λ0. By the same argument
as in Steps 2 and 3 of the proof of (i), we show that φ0 �= 0 and λ0 > 0. Then we get
an unstable solution φ0 to the Rayleigh equation on the whole line, with the unstable
eigenvalue c = iλ0. The proof of Theorem 1.5(ii) is thus finished.

Using the same argument as in the proof of Lemma 4.3, we can show that if
U (−∞) �= U (+∞) (the shear layer case), then at α = 0 there is also an unstable
solution to the Rayleigh equation. This coincides with the conclusion in [7], which
was deduced from the asymptotic expansion in the long wave limit.

7. Appendix. In this appendix, we prove some asymptotic formulas used in the
proof of Theorems 4.1 and 1.2.

Lemma 7.1. Assume a sequence of differentiable functions {ψk}∞k=1 converges
in C1[y1, y2] to ψ0 (y) . Let ck = pk + ibk (bk > 0) converge to 0. Denote Wk (y) =
U (y)− Us − pk. Then we have following limits:

lim
k→∞

∫ y2

y1

ψk (y)Wk (y)

Wk (y)
2
+ b2k

dy = P
∫ y2

y1

ψ0 (y)

U (y)− Us
dy,(86)

lim
k→∞

∫ y2

y1

ψk (y)Wk (y)
3(

Wk (y)
2
+ b2k

)2 dy = P
∫ y2

y1

ψ0 (y)

U (y)− Us
dy,(87)

lim
k→∞

∫ y2

y1

ψk (y) bk

Wk (y)
2
+ b2k

dy = π

l∑
i=1

(
|U ′|−1

ψ0

)
|y=ai ,(88)

lim
k→∞

∫ y2

y1

ψk (y) b
3
k(

Wk (y)
2
+ b2k

)2 dy =
1

2
π

l∑
i=1

(
|U ′|−1

ψ0

)
|y=ai ,(89)

lim
k→∞

∫ y2

y1

ψk (y) b
2
kWk(

Wk (y)
2
+ b2k

)2 dy = lim
k→∞

∫ y2

y1

ψk (y) b
3
k(

Wk (y)
2
+ b2k

)2 dy = 0.(90)

Here a1, . . . , al are all the points such that U (y) = Us, and we assume U ′ (y) �= 0 at
each ak.
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Proof. Let ‖ψk‖C1 ≤ M (independent of k). For δ0 > 0, we can find r0 > 0
such that |U ′ (y)| ≥ δ0 for all y in the set Er0 = ∪li=1I (ai; r0). Here I (ai; r0) =
(ai − r0, ai + r0) . Taking k large enough, then we know there are exactly l points

such that Wk (y) = 0, one in each I (ai; r0), which we denote by a
(k)
i .

Proof of (86). By the definition of Cauchy principal part, for any ε > 0, there
exists some r1 > 0 such that if 0 < r < r1, then∣∣∣∣∣

∫
Ec

r

ψ0 (y)

U (y)− Us
dy − P

∫ y2

y1

ψ0 (y)

U (y)− Us
dy

∣∣∣∣∣ < ε

3
.(91)

Now

ψk (y)Wk (y)

Wk (y)
2
+ b2k

→ ψ0 (y)

U (y)− Us

in Ecr uniformly as k → ∞ . So if k is large enough, then∣∣∣∣∣
∫
Ec

r

ψk (y) bk

Wk (y)
2
+ b2k

dy −
∫
Ec

r

ψ0 (y)

U (y)− Us
dy

∣∣∣∣∣ < ε

3
.(92)

Let r < min {r0, r1} . We estimate the integral on each I (ai; r). Suppose U is increas-
ing on I (a1; r). Let

t = Wk (y) , tk1 = Wk (a1 + r) , tk0 = Wk (a1 − r) ,

ψ̃k (t) = ψk (Wk (t))
1

U ′ (Wk (t))
.

Then∫
I(a1;r)

ψk (y)Wk (y)

Wk (y)
2
+ b2k

dy

=

∫ tk1

tk0

ψ̃k (t) t

t2 + b2k
dt = ψ̃k (0)

∫ tk1

tk0

t

t2 + b2k
dt+


∫ tk1

tk0

(
ψ̃k (t)− ψ̃k (0)

)
t

t2 + b2k
dt


 = I + II.

We have ∣∣tk1 − tk0
∣∣ ≤ ‖U ′‖∞ 2r,

and |ψ̃′
k (t) | ≤ M ′ (independent of k) in I (a1; r) . So

‖II‖ ≤ M ′ ∣∣tk1 − tk0
∣∣ ≤ M ′ ‖U ′‖∞ 2r.

And

I = ψ̃k (0)
1

2
ln

tk1 + b2k
tk0 + b2k

tends to zero as k tends to infinity for any fixed r > 0. Thus by choosing r small
enough and then letting k large, we have∣∣∣∣∣

∫
Er

ψk (y)Wk (y)

Wk (y)
2
+ b2k

dy

∣∣∣∣∣ < ε

3
.
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Combining with (91) and (92), we have for k large enough∣∣∣∣∣
∫ y2

y1

ψk (y)Wk (y)

Wk (y)
2
+ b2k

dy − P
∫ y2

y1

ψ0 (y)

U (y)− Us
dy

∣∣∣∣∣ < ε.

This ends the proof of (86).
We prove (87) and (90) in the same way.
Proof of (88). For any fixed r,

lim
k→∞

∫
Ec

r

ψk (y) bk

Wk (y)
2
+ b2k

dy = 0.

So we only need to consider the integral on each small interval I (ai; r). Using the
same notation as above, we have∫
I(a1;r)

ψk (y) bk

Wk (y)
2
+ b2k

dy

=

∫ tk1

tk0

ψ̃k (t) bk
t2 + b2k

dt = ψ̃k (0)

∫ tk1

tk0

bk
t2 + b2k

dt+


∫ tk1

tk0

(
ψ̃k (t)− ψ̃k (0)

)
bk

t2 + b2k
dt


 = I + II.

Then it is easy to see

|II| ≤ 1

2
M ′ ∣∣tk1 − tk0

∣∣ ≤ M ′ ‖U ′‖∞ r.

Since

lim
k→∞

ψ̃k (0) = lim
k→∞

ψk

(
a
(k)
1

) 1

U ′
(
a
(k)
1

) = ψ0 (a1)
1

U ′ (a1)
,

lim
k→∞

tk1 = U (a1 + r)− U (a1) > 0, lim
k→∞

tk0 = U (a1 − r)− U (a1) < 0

so we have

lim
k→∞

I = lim
k→∞

ψ̃k (0)

∫ tk0
bk

tk0
bk

1

t2 + 1
dt = ψ0 (a1)

1

U ′ (a1)

∫ +∞

−∞

1

t2 + 1
dt = πψ0 (a1)

1

U ′ (a1)
.

Summing the contributions from each I (ai; r), we deduce (88). The proof of (89) is
the same by noticing that ∫

R

1

(1 + t2)
2 dt =

1

2
π.

Now (53) follows directly from the above lemma. Indeed letting ψk = K (y)φsφk,
ck = pk + ibk, we can write Bk in (53) as

Bk =

∫ y2

y1

ψk (y)Wk (y)

Wk (y)
2
+ b2k

dy + i

∫ y2

y1

ψk (y) bk

Wk (y)
2
+ b2k

dy.

Since

ψk → ψ0 = K (y)φ2
s in C1[y1, y2] as k → ∞,
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by (86) and (88) we have

lim
k→∞

Bk = P
∫ y2

y1

K (y)φ2
s

(U − Us)
dy + iπ

l∑
k=1

(
|U ′|−1

Kφ2
s

)
|y=ak .

Remark 7.2. The limit (53) still holds for the case [y1, y2] = (−∞,+∞) or
(0,+∞) under the assumption that {φk}∞k=1 converges weakly in L2 (y1, y2) and locally
in C1 to φ0 (y). To see it, we notice that for fixed r0 > 0,

lim
k→∞

∫
R/Er0

K (y)φsφkWk (y)

Wk (y)
2
+ b2k

dy =

∫
R/Er0

K (y)φ2
s

U (y)− Us
dy

by weak convergence of φk. We can deal with the integral on each small interval
I (ai; r0) in the same way as in the proof of Lemma 7.1, noticing that the C1 norm of
φk is locally uniformly bounded.

To prove (41) we need the following lemma.

Lemma 7.3. Assume a sequence of differentiable functions {Γk}∞k=1 converges in
C1[y1, y2] to Γ0 (y). Let ck = pk + ibk converge to 0, where bk > 0 and |pk| ≤ Rbk.
Then we have

lim
k→∞

−
∫ y2

y1

U ′′ (y) Γk (y)

(U − Us − ck)
2 dy = P

∫ y2

y1

K (y) Γ0 (y)

U (y)− Us
dy + iπ

l∑
i=1

(
|U ′|−1

Kφ0

)
|y=ai .

(93)

Proof. Denote Wk (y) = U (y)− Us − pk. We have

∫ y2

y1

−U ′′ (y) Γk (y)

(U − Us − ck)
2 dy

=

∫ y2

y1

K (y) Γk (y) (U (y)− Us)

(Wk (y)− ibk)
2 dy

=

∫ y2

y1

K (y) Γk (y) (Wk + pk)
(
W 2
k + 2ibkWk − b2k

)
(W 2

k + b2k)
2 dy

=

∫ y2

y1

K (y) Γk (y)W
3
k

(W 2
k + b2k)

2 dy + 2i

∫ y2

y1

K (y) Γk (y) bkW
2
k

(W 2
k + b2k)

2 dy −
∫ y2

y1

K (y) Γk (y)Wkb
2
k

(W 2
k + b2k)

2 dy

+

∫ y2

y1

K (y) Γk (y) pk
(
W 2
k − b2k

)
(W 2

k + b2k)
2 dy + 2i

∫ y2

y1

K (y) Γk (y) pkbkWk

(W 2
k + b2k)

2 dy

= I + II + III + IV + V .

Now we estimate each term separately. By (87) in Lemma 7.1, we have

lim
k→∞

I = P
∫ y2

y1

K (y) Γ0 (y)

U (y)− Us
dy.
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By (88) and (89), we have

lim
k→∞

II = 2i

(
lim
k→∞

∫ y2

y1

K (y) Γk (y) bk
W 2
k + b2k

dy − lim
k→∞

∫ y2

y1

K (y) Γk (y) b
3
k

(W 2
k + b2k)

2 dy

)

= 2i

(
π

l∑
i=1

(
|U ′|−1

Kφ0

)
|y=ai −

1

2
π

l∑
i=1

(
|U ′|−1

Kφ0

)
|y=ai

)

= iπ

l∑
i=1

(
|U ′|−1

Kφ0

)
|y=ai .

By (90), limk→∞ III = 0. Notice that

IV =
pk
bk

∫ y2

y1

K (y) Γk (y) bk
(
W 2
k + b2k − 2b2k

)
(W 2

k + b2k)
2 dy

=
pk
bk

(∫ y2

y1

K (y) Γk (y) bk
W 2
k + b2k

dy − 2

∫ y2

y1

K (y) Γk (y) b
3
k

(W 2
k + b2k)

2 dy

)

=
pk
bk

V I.

By (88) and (89), we have

lim
k→∞

V I = lim
k→∞

∫ y2

y1

K (y) Γk (y) bk
W 2
k + b2k

dy − 2 lim
k→∞

∫ y2

y1

K (y) Γk (y) b
3
k

(W 2
k + b2k)

2 dy

= π
l∑
i=1

(
|U ′|−1

K Γ0

)
|y=ai − 2

1

2
π

l∑
i=1

(
|U ′|−1

K Γ0

)
|y=ai

= 0.

Combining it with the fact that |pk| ≤ Rbk, we have limk→∞ IV = 0. Now for the
last term, we have

V = 2i
pk
bk

∫
K (y) Γk (y) b

2
kWk

(W 2
k + b2k)

2 dy = 2i
pk
bk

V II.

By (90), limk→∞ V II = 0. Thus we also have limk→∞ V = 0 since |pk| ≤ Rbk.

Combining the five terms above, we get (93).

Proof of (41). We must show that (41) holds uniformly in E(R,b1,b2). Suppos-
ing otherwise, we can find some δ0 > 0 and a sequence (ck, εk) in ER,b1,b2 with
max

{
bk1 , b

k
2

}
tending to 0 such that

∣∣∣∣∂I∂c (ck, εk)− (C + iD)

∣∣∣∣ > δ0,

where

C + iD =
1

φ′
s (y2)

(
iπ

l∑
k=1

(
|U ′|−1

Kφ2
s

)
|ak + P

∫ y2

y1

(
K (y)φ2

s (y)
)
/ (U (y)− Us) dy

)
.
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But

∂I

∂c
(ck, εk) =

∫ y2

y1

−U ′′ (y) Γk (y)

(U − Us − ck)
2 dy,

where

Γk (y) = −N (y, y2; εk, ck)φ1 (y; ck, εk) .

Since Γk converges in C1 to

−N (y, y2; 0, 0)φ1 (y; 0, 0) =
1

φ′
s (y2)

φ2
s (y) ,

Lemma 7.3 implies

lim
k→∞

∂I

∂c
(ck, εk)

=
1

φ′
s (y2)

(
iπ

l∑
k=1

(
|U ′|−1

Kφ2
s

)
|ak + P

∫ y2

y1

(
K (y)φ2

s (y)
)
/ (U (y)− Us) dy

)

= C + iD,

which is a contradiction. Thus the uniform convergence of (41) is proved.
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