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Abstract. To determine the stability and instability of a given steady galaxy
con�guration is one of the fundamental problems in the Vlasov theory for
galaxy dynamics. In this article, we study the stability of isotropic spherical
symmetric galaxy models f0(E), for which the distribution function f0 depends
on the particle energy E only. In the �rst part of the article, we derive the �rst
su¢ cient criterion for linear instability of f0(E) : f0(E) is linearly unstable if
the second-order operator

A0 � ��+ 4�
Z
f 00(E)fI � Pgdv

has a negative direction, where P is the projection onto the function space
fg(E;L)g; L being the angular momentum [see the explicit formulae (27) and
(26)]. In the second part of the article, we prove that for the important King
model, the corresponding A0 is positive de�nite. Such a positivity leads to the
nonlinear stability of the King model under all spherically symmetric pertur-
bations.

1. Introduction

A galaxy is an ensemble of billions of stars, which interact by the gravitational
�eld which they create collectively. For galaxies, the collisional relaxation time is
much longer than the age of the universe ([8]). The collisions can therefore be
ignored and the galactic dynamics is well described by the Vlasov - Poisson system
(collisionless Boltzmann equation)

(1) @tf + v � rxf �rxUf � rvf = 0; �Uf = 4�

Z
R3

f(t; x; v)dv;

where (x; v) 2 R3 � R3, f(t; x; v) is the distribution function and Uf (t; x) is its
gravitational potential. The Vlasov-Poisson system can also be used to describe the
dynamics of globular clusters over their period of orbital revolutions ([11]). One of
the central questions in such galactic problems, which has attracted considerable
attention in the astrophysics literature, of [7], [8], [11], [31] and the references there,
is to determine dynamical stability of steady galaxy models. Stability study can be
used to test a proposed con�guration as a model for a real stellar system. On the
other hand, instabilities of steady galaxy models can be used to explain some of the
striking irregularities of galaxies, such as spiral arms as arising from the instability
of an initially featureless galaxy disk ([7]), ([32]).
In this article, we consider stability of spherical galaxies, which are the simplest

elliptical galaxy models. Though most elliptical galaxies are known to be non-
spherical, the study of instability and dynamical evolution of spherical galaxies
could be useful to understand more complicated and practical galaxy models . By
Jeans�s Theorem, a steady spherical galaxy is of the form

f0(x; v) � f0(E;L
2);

1
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where the particle energy and total momentum are

E =
1

2
jvj2 + U0(x); L2 = jx� vj2 ;

and U0(x) = U0 (jxj) satis�es the self-consistent Poisson equation. The isotropic
models take the form

f0(x; v) � f0(E):

The cases when f 00(E) < 0 (on the support of f0(E)) has been widely studied and
these models are known to be linearly stable to both radial ([9]) and non-radial
perturbations ([2]). The well-known Casimir-Energy functional (as a Liapunov
functional)

(2) H(f) �
Z Z

Q(f) +
1

2

Z Z
jvj2f � 1

8�

Z
jrxUf j2;

is constant along the time evolution. If f 00(E) < 0; we can choose the Casimir
function Q0 such that

Q00(f0(E)) � �E
for all E: By a Taylor expansion of H(f)�H(f0), it follows that formally the �rst
variation at f0 is zero, that is, H(1)(f0(E)) = 0 (on the support of f0(E)); and the
second order variation of H at f0 is

(3) H(2)
f0
[g] � 1

2

Z Z
ff0>0g

g2

�f 00(E)
dxdv � 1

8�

Z
jrxUgj2dx

where Q00(f0) = 1
�f 00(E)

; g = f � f0 and �Ug =
R
gdv. In the 1960s, Antonov ([1],

[2]) proved that

(4) H(2)
f0
[Dh] =

Z Z jDhj2

jf 00(E)j
dxdv � 1

4�

Z
jr hj2 dx

is positive de�nite for a large class of monotone models. Here

D = v � rx �rxU0 � rv;

h(x; v) is odd in v and �� =
R
Dhdv. He showed that such a positivity is

equivalent to the linear stability of f0(E). In [9], Doremus, Baumann and Feix
proved the radial stability of any monotone spherical models. Their proof was
further clari�ed and simpli�ed in [10], [37], [22], and more recently in [33], [21].
In particular, this implies that any monotone isotropic models are at least linearly
stable.
Unfortunately, despite its importance and a lot of research (e.g., [20], [5], [6],

[13]), to our knowledge, no rigorous and explicit instability criterion of non-monotone
models has been derived. When f 00(E) changes sign, functional H

(2)
f0
is inde�nite

and it gives no stability information, although it seems to suggest that these models
are not energy minimizers under symplectic perturbations. In this paper, we �rst
obtain the following instability criterion for general spherical galaxies. We de�ne
the jf 00(E)j �weighted L2

�
R3 �R3

�
space L2jf 00j with the norm k�kjf 00j as

(5) jjhjj2jf 00j �
Z Z

jf 00(E)jh2dxdv:
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Theorem 1.1. Assume that f0(E) has a compact support in x and v; and f 00 is
bounded. For � 2 H1; de�ne the quadratic form

(6) (A0�; �) =

Z
jr�j2dx+ 4�

Z Z
f 00(E) (�� P�)

2
dxdv;

where P is the projector of L2jf 00j to

kerD =
�
g
�
E;L2

�	
;

and more explicitly P� is given by (18) for radial functions and (26) for general
functions. If there exists �0 2 H1 such that

(7) (A0�0; �0) < 0;

then there exists �0 > 0 and � 2 H2; f (x; v) 2 L1 given by (14), such that
e�0t[f; �] is a growing mode to the Vlasov-Poisson system (1) linearized around
[f0(E); U0] :

A similar instability criterion can be obtained for symmetry preserving pertur-
bations of anisotropic spherical models f0

�
E;L2

�
, see Remark 2. We note that the

term P� in the instability criterion is highly non-local and this re�ects the collective
nature of stellar instability. The proof of Theorem 1.1 is by extending an approach
developed in [25] for 1D Vlasov-Poisson, which has recently been generalized to
Vlasov-Maxwell systems ([26], [28]). There are two elements in this approach. One
is to formulate a family of dispersion operators A� for the potential, depending
on a positive parameter �. The existence of a purely growing mode is reduced to
�nd a parameter �0 such that the A�0 has a kernel. The key observation is that
these dispersion operators are self-adjoint due to the reversibility of the particle
trajectories. Then a continuation argument is applied to �nd the parameter �0
corresponding to a growing mode, by comparing the spectra of A� for very small
and large values of �. There are two new complications in the stellar case. First,
the essential spectrum of A� is [0;+1) and thus we need to make sure that the
continuation does not end in the essential spectrum:This is achieved by using some
compactness property due to the compact support of the stellar model. Secondly,
it is more tricky to �nd the limit of A� when � tends to zero. For that, we need an
ergodic lemma (Lemma 2.4) and use the integrable nature of the particle dynamics
in a central �eld to derive an expression for the projection P� appeared in the limit.
In the second part of the article, we further study the nonlinear (dynamical)

stability of the normalized King model:

(8) f0 = [e
E0�E � 1]+

motivated by the study of the operator A0: The famous King model describes
isothermal galaxies and the core of most globular clusters [24]. Such a model
provides a canonical form for many galaxy models widely used in astronomy. Even
though f 00 < 0 for the King model, it is important to realize that, because of the
Hamiltonian nature of the Vlasov-Poisson system (1), linear stability fails to imply
nonlinear stability (even in the �nite dimensional case). The Liapunov functional is
usually required to prove nonlinear stability. In the Casimir-energy functional (2), it
is natural to expect that the positivity of such a quadratic formH(2)

f0
[g] should imply

stability for f0(E). However, there are at least two serious mathematical di¢ culties.
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First of all, it is very challenging to use the positivity of H(2)
f0
[g] to control higher

order remainder in H(f)�H(f0) to conclude stability [38]. For example, one of the
remainder terms is f3 whose L2 norm is di¢ cult to be bounded by a power of the
stability norm. The non-smooth nature of f0(E) also causes trouble here: Second of
all, even if one can succeed in controlling the nonlinearity, the positivity of H(2)

f0
[g]

is only valid for certain perturbation of the form g = Dh [22]. It is not clear at all
if any arbitrary, general perturbation can be reduced to the form Dh. To overcome
these two di¢ culties, a direct variational approach was initiated by Wolansky [39],
then further developed systematically by Guo and Rein in [14], [15], [17], [18], [19].
Their method avoids entirely the delicate analysis of the second order variation
H(2)
f0
in (3), which has led to �rst rigorous nonlinear stability proof for a large class

of f0(E): The high point of such a program is the nonlinear stability proof for every
polytrope [18] f0(E) = (E0 � E)k+. Their basic idea is to construct galaxy models
by solving a variational problem of minimizing the energy under some constraints
of Casimir invariants. A concentration-compactness argument is used to show the
convergence of the minimizing sequence. All the models constructed in this way
are automatically nonlinearly stable.
Unfortunately, despite its success, the King model can not be studied by such a

variational approach. The Casimir function for a normalized King model is

(9) Q0(f) = (1 + f) ln(1 + f)� 1� f;
which has very slow growth for f !1: As a result, the direct variational method
fails. Recently, Guo and Rein [21] proved nonlinear radial stability among a class
of measure-preserving perturbations
(10)

Sf0 �
�
f(t; r; vr; L) � 0 :

Z
Q(f; L) =

Z
Q(f0; L); for Q 2 C1c and Q(0; L) � 0:

�
:

The basic idea is to observe that for perturbations in the class Sf0 , one can write
g = f � f0 as Dh = fh;Eg. Therefore, H(2)

f0
[g] = H(2)

f0
[Dh], for which the positivity

was proved in [22] for radial perturbations. To avoid the di¢ culty of controlling
the remainder term by H(2)

f0
[g], an indirect contradiction argument was used in [21].

As our second main result of this article, we establish nonlinear stability of King�s
model for general perturbations with spherical symmetry:

Theorem 1.2. The King�s model f0 = [eE0�E � 1]+ is nonlinearly stable under
spherically symmetric perturbations in the following sense: given any " > 0 there
exists "1 > 0 such that for any compact supported initial data f(0) 2 C1c with
spherical symmetry, if d (f (0) ; f0) < "1 then

sup
0�t<1

d (f (t) ; f0) < ";

where the distance functional d (f; f0) is de�ned by (35).

For the proof, we extended the approach in [27] for the 1 12D Vlasov-Maxwell
model. To prove nonlinear stability, we study the Taylor expansion ofH(f)�H(f0).
Two di¢ culties as mentioned before are: to prove the positivity of the quadratic
form and to control the remainder. We use two ideas introduced in [27]. The �rst
idea is to use any �nite number of Casimir functional Qi

�
f; L2

�
as constraints.

The di¤erence from [21] is that we do not impose Qi
�
f; L2

�
= Qi

�
f0; L

2
�
in the
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perturbation class, but expand the invariance equationQi
�
f (t) ; L2

�
�Qi

�
f0; L

2
�
=

Qi
�
f (0) ; L2

�
� Qi

�
f0; L

2
�
to the �rst order. In this way, we get a constraint for

g = f�f0 in the form that the coe¢ cient of its projection to @1Qi
�
f0; L

2
�
is small.

Putting these constraints together, we deduce that a �nite dimensional projection of
g to the space spanned by

�
@1Qi

�
f0; L

2
�	
is small. To control the remainder term,

we use a duality argument. Noting that it is much easier to control the potential �,
we use a Legendre transformation to reduce the nonlinear term in g to a new one
in � only. The key observation is that the constraints on g in the projection form
are nicely suited to the Legendre transformation and yields a non-local nonlinear
term in � only with the projections kept. By performing a Taylor expansion of this
non-local nonlinear term in �, the quadratic form becomes a truncated version of
(A0�; �) de�ned by (6), whose positivity can be shown to be equivalent to that of
Antonov functional. The the remainder term now is only in terms of � and can
be easily controlled by the quadratic form. The new complication in the stellar
case is that the steady distribution f0 (E) is non-smooth and compactly supported.
Therefore, we split the perturbation g into inner and outer parts, according to the
support of f0. For the inner part, we use the above constrained duality argument
and the outer part is estimated separately.

2. An Instability Criterion

We consider a steady distribution

f0 (x; v) = f0(E)

has a bounded support in x and v and f 00 is bounded, where the particle energy
E = 1

2 jvj
2 + U0(x): The steady gravitational potential U0(x) satis�es a nonlinear

Poisson equation

�U0 = 4�

Z
f0dv:

The linearized Vlasov-Poisson system is

(11) @tf + v � rxf �rxU0 � rvf = rx� � rvf0; �� = 4�

Z
f(t; x; v)dv:

A growing mode solution (e�tf(x; v); e�t�(x)) to (1) with � > 0 satis�es

(12) �f + v � rxf �rxU0 � rvf = f 00v � rx�:
We de�ne [X(s;x; v); V (s;x; v)] as the trajectory of

(13)

(
dX(s;x;v)

ds = V (s;x; v)
dV (s;x;v)

ds = �rxU0
such that X(0;x; v) = x; and V (0;x; v) = v: Notice that the particle energy E is
constant along the trajectory. Integrating along such a trajectory for �1 � s � 0,
we have

f(x; v) =

Z 0

�1
e�sf 00(E)V (s;x; v) � rx�(X(s;x; v))ds(14)

= f 00(E)�(x)� f 00(E)
Z 0

�1
�e�s�(X(s;x; v))ds:
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Plugging it back into the Poisson equation, we obtain an equation for �

���+ [4�
Z
f 00(E)dv]�� 4�

Z
f 00(E)

Z 0

�1
�e�s�(X(s;x; v))dsdv = 0:

We therefore de�ne the operator A� as

A�� � ���+ [4�
Z
f 00(E)dv]�� 4�

Z
f 00(E)

Z 0

�1
�e�s�(X(s;x; v))dsdv:

Lemma 2.1. Assume that f0(E) has a bounded support in x and v and f 00 is
bounded. For any � > 0, the operator A� : H2 ! L2 is self-adjoint with the
essential spectrum [0;+1) :

Proof. We denote

K�� = �4�[
Z
f 00(E)dv]�+ 4�

Z
f 00(E)

Z 0

�1
�e�s�(X(s;x; v))dsdv:

Recall that f0 (x; v) = f0(E) has a compact support � S � R3x � R3v. We may
assume S = Sx�Sv, both balls in R3. Let � = � (jxj) be a smooth cut-o¤ function
for the spatial support of f0 in the physical space Sx; that is, � � 1 on the spatial
support of f0 and has compact support inside Sx. Let M� be the operator of
multiplication by �. Then K� = K�M� =M�K� =M�K�M�. Indeed,

f 00 (x; v) = f 00 (X(s;x; v); V (s;x; v))

because of the invariance of E under the �ow. So

(K��) (x) = �4�[
Z
f 00(E)dv]�+ 4�

Z
f 00(E)

Z 0

�1
�e�s�(X(s;x; v))dsdv(15)

= �4�[
Z
f 00(E)dv]�+ 4�

Z Z 0

�1
�e�s (f 00(E)�) (X(s;x; v))dsdv

= (M�K�M��)(x):

First we claim that

kK�kL2!L2 � 8�
����Z jf 00(E)j dv

����
1
:

Indeed, the L2 norm for the �rst term in K� is easily bounded by 4�
��R f 00(E)dv��1.

For the second term, we have for any  2 L2;

j
Z 0

�1

Z Z
4��e�sf 00(E)�(X(s;x; v))dsdv (x)dxj

(16)

� 4�
Z 0

�1
�e�s

�Z Z
jf 00(E)j�2(X(s;x; v))dvdx

� 1
2
�Z Z

jf 00(E)j 2(x)dvdx
� 1

2

ds

= 4�

Z 0

�1
�e�s

�Z Z
jf 00(E)j�2(x)dvdx

� 1
2
�Z Z

jf 00(E)j 2(x)dvdx
� 1

2

ds

= 4�

�Z Z
jf 00(E)j�2(x)dvdx

� 1
2
�Z Z

jf 00(E)j 2(x)dvdx
� 1

2

� 4�
����Z jf 00(E)j dv

����
1
k�k2 k k2 .
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Moreover, we have that K� is symmetric Indeed, for �xed s; by making a change of
variable (y; w)! (X(s;x; v); V (s;x; v)); so that (z; v) = (X(�s; y; w); V (�s; y; w));
we deduce thatZ Z

4�f 00(E)

Z 0

�1
�e�s�(X(s;x; v))dsdv (x)dx

=

Z 0

�1
�e�s

Z Z
4�f 00(E)�(y) (X(�s; y; w))dydwds

=

Z Z
4�f 00(E)

Z 0

�1
�e�s (X(�s; y;�w))�(y)dydwds

=

Z Z
4�f 00(E)

Z 0

�1
�e�s (X(s;x; v))�(x)dvdxds:

Here we have used the fact [X(s; y; w); V (s; y; w)] = [X(�s; y;�w);�V (s; y;�w)]
in the last line: Hence

(K��;  ) = (�;K� ):

Since K� = K�M� and M� is compact from H2 into L2 space with support in Sx,
so K� is relatively compact with respect to ��. Thus by Kato-Relich and Weyl�s
Theorems, A� : H2 ! L2 is self-adjoint and �ess(A�) = �ess(��): �

Lemma 2.2. Assume that f 00(E) has a bounded support in x and v and f 00 is
bounded. Let

k(�) = inf
�2D(A�);jj�jj2=1

(�;A��);

then k(�) is a continuous function of � when � > 0. Moreover, there exists 0 <
� <1 such that for � > �

(17) k(�) � 0:

Proof. Fix �0 > 0; � 2 D(A�); and jj�jj2 = 1: Then

k(�0) � (�;A�0�)
� (�;A��) + j(�;A�0�)� (�;A��)j

� (�;A��) + 4�
Z Z

jf 00(E)j
Z 0

�1
[�e�s � �0e�0s]�(X(s;x; v))�(x)dsdvdx

� (�;A��) + 4�
Z Z

jf 00(E)j
Z 0

�1

Z �

�0

[~�jsje~�s + e~�s]d~��(X(s;x; v))�(x)dsdvdx

� (�;A��) + C
Z 0

�1

Z �

�0

[~�jsje~�s + e~�s]d~�ds

� (�;A��) + Cj ln�� ln�0j:

We therefore deduce that by taking the in�mum over all �;

k(�0) � k(�) + Cj ln�� ln�0j:

Same argument also yields k(�) � k(�0) + Cj ln� � ln�0j:Thus jk(�0)� k(�)j �
Cj ln�� ln�0j and k(�) is continuous for � > 0.
To prove (17), by (14), we recall from Sobolev�s inequality in R3
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j(K��;  )j =
����Z Z 4�f 00(E)e

�sr�(X(s;x; v))V (s)dsdv (x)dx
����

�
Z 0

�1
e�s
�Z Z

j j2jf 00(E)jdvdx
�1=2

�

� [
Z Z

jr�(X (s))j2jf 00(E)jjV (s) j2dxdv]1=2ds

=

Z 0

�1
e�s
�Z Z

j j2jf 00(E)jdvdx
�1=2 Z Z

v2jr�(x)j2jf 00(E)jdxdv]1=2ds

� C

�
jj jj6jjr�jj2 �

C

�
jjr jj2jjr�jj2;

since f0 has compact support. Therefore,

(A��; �) = jjr�jj2 � (K��; �) � (1�
C

�
)jjr�jj2 � 0

for � large. �

We now compute lim�!0+A�. We �rst consider the case when the test function
� is spherically symmetric.

Lemma 2.3. For spherically symmetric function �(x) = � (jxj) ; we have

lim
�!0+

(A��; �) = (A0�; �) �
Z
jr�j2dx+ 4�

Z Z
f 00(E)dv�

2dx

� 32�3
Z E

minU0

Z 1

0

f 00(E)

�R r2(E;L)
r1(E;L)

�drp
2(E�U0�L2=2r2)

�2
R r2(E;L)
r1(E;L)

drp
2(E�U0�L2=2r2)

dLdE

=

Z
jr�j2 + 32�3

Z
f 00(E)

Z r2(E;L)

r1(E;L)

(�� ��)2
drdEdLp

2(E � U0 � L2=2r2)
:

(18)

Proof. Given the steady state f0(E), U0(jxj) and any radial function � (jxj) : To
�nd the limit of

(A��; �) =

Z
jr�j2dx+ 4�

Z Z
f 00(E)dv�

2dx(19)

� 4�
Z Z

f 00(E)

�Z 0

�1
�e�s�(X(s;x; v))ds

�
� (x) dxdv;

we study the following

(20) lim
�!0+

Z 0

�1
�e�s�(X(s;x; v))ds:

Note that we only need to study (20) for points (x; v) with E = 1
2 jvj

2+U0j (xj) < E0
and L = jx� vj > 0, because in the third integral of (19) f 00(E) has support in
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fE < E0g and the set fL = 0g has a zero measure. We recall the linearized Vlasov-
Poisson system in the r; vr; L coordinates takes the form

@tf + vr@rf +

�
L2

r3
� @rU0

�
@vrf = @rUf@vrf0;

@rrUf +
2

r
@rUf = 4�

Z
fdv:

For the corresponding linearized system, for points (x; v) with E < E0 and L > 0;
the trajectory of (X(s;x; v); V (s;x; v)) in the coordinate (r; E; L) is a periodic
motion described by the ODE (see [8])

dr(s)

ds
= vr(s);

dvr(s)

ds
= �U 00(r) +

L2

r3
:

with the period

T (E;L) = 2

Z r2(E;L)

r1(E;L)

drp
2(E � U0 � L2=2r2)

;

where 0 < r1(E;L) � r2(E;L) < +1 are zeros of E � U0 � L2=2r2:So by Lin�s
lemma in [25],

lim
�!0

Z 0

�1
�e�s�(X(s;x; v))ds =

1

T

Z T

0

�(X(s;x; v))ds:

Since �(X(s;x; v) = �(r(s)); a change of variable from s! r(s) leads to

Z T

0

�(X(s;x; v))ds = 2

Z r2

r1

�(r)drp
2(E � U0 � L2=2r2)

:

For any function g(r; E; L); we de�ne its trajectory average as

�g(E;L) �

R r2(E;L)
r1(E;L)

g(r;E;L)drp
2(E�U0�L2=2r2)R r2(E;L)

r1(E;L)
drp

2(E�U0�L2=2r2)

:

Then

lim
�!0+

Z 0

�1
�e�s�(X(s;x; v))ds = 2

Z r2

r1

�(r)drp
2(E � U0 � L2=2r2)

=T (E;L) = �� (E;L)
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and the integrand in third term of (19) converges pointwise to f 00(E)���. Thus by
the dominated convergence theorem, we have

lim
�!0+

(A��; �) =

Z
jr�j2dx+ 4�

Z Z
f 00(E)�

2dxdv � 4�
Z Z

f 00(E)
��� dxdv

=

Z
jr�j2dx+ 4�

Z Z
f 00(E)�

2dxdv

� 32�3
Z E

minU0

Z 1

0

f 00(E)

Z r2(E;L)

r1(E;L)

�� (E;L)� (r)
drdEdLp

2(E � U0 � L=2r2)

=

Z
jr�j2dx+ 4�

Z Z
f 00(E)�

2dxdv

� 32�3
Z E

minU0

Z 1

0

f 00(E)

�R r2(E;L)
r1(E;L)

�drp
2(E�U0�L=2r2)

�2
R r2(E;L)
r1(E;L)

drp
2(E�U0�L=2r2)

dEdL

=

Z
jr�j2 + 32�3

Z
f 00(E)

Z r2(E;L)

r1(E;L)

(�� ��)2
drdEdLp

2(E � U0 � L=2r2)
:

This �nishes the proof of the lemma. �

To compute lim�!0+(A��; �) for more general test function �; we use the fol-
lowing ergodic lemma which is a direct generalization of the result in [26].

Lemma 2.4. Consider the solution (P (s; p; q) ; Q (s; p; q)) to be the solution of a
Hamiltonian system

_P = @qH (P;Q)

_Q = �@pH (P;Q)

with (P (0) ; Q (0)) = (p; q) 2 Rn �Rn. Denote

Q�m =

Z 0

�1
�e�sm (P (s) ; Q (s)) ds:

Then for anym (p; q) 2 L2 (Rn �Rn), we have Q�m! Pm strongly in L2 (Rn �Rn).
Here P is the projection operator of L2 (Rn �Rn) to the kernel of the transport
operator D = @qH@p � @pH@q and Pm is the phase space average of m in the set
traced by the trajectory.

Proof. Denote U (s) : L2 (Rn �Rn)! L2 (Rn �Rn) to be the unitary semigroup
U (s)m = m (P (s) ; Q (s)). By Stone Theorem ([40]), U (s) is generated by iR = D,
where R = �iD is self-adjoint and

U (s) =

Z +1

�1
ei�sdM�

where
�
M�;� 2 R1

	
is spectral measure of R. SoZ 0

�1
�e�sm(P (s); Q(s))ds =

Z 0

�1
�e�s

Z
R
ei�sdM�m ds =

Z
R

�

�+ i�
dM�m:
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On the other hand, the projection is P = Mf0g =
R
R �dM� where �(�) = 0 for

� 6= 0 and �(0) = 1. Therefore



Z 0

�1
�e�sm(P (s); Q(s))ds� Pm





2
L2
=

Z
R

���� �

�+ i�
� �(�)

����2 dkM�mk2L2

by orthogonality of the spectral projections. By the dominated convergence theorem
this expression tends to 0 as � ! 0+, as we wished to prove. The explanation of
Pm as the phase space average of m is in our remark below. �

Remark 1. Since
R 0
�1 �e�sds = 1, the function

(21)
�
Q�m

�
(x; v) =

Z 0

�1
�e�sm (P (s); Q(s)) ds

is a weighted time average of the observable m along the particle trajectory. By the
same proof of Lemma 2.4, we have

(22) lim
T!1

1

T

Z T

0

m (P (s); Q(s)) ds = Pm:

But from the standard ergodic theory ([3])of Hamiltonian systems, the limit of the
above time average in (22) equals the phase space average of m in the set traced
by the trajectory. Thus Pm has the meaning of the phase space average of m and
Lemma 2.4 states that the limit of the weighted time average (21) yields the same
phase space average. In particular, if the particle motion is ergodic in the invariant
set SI determined by the invariants E1; � � � ; Ik, and if d�I denotes the induced
measure of Rn �Rn on SI , then

(23) Pm =
1

�I (SI)

Z
SI

m (p; q) d�I (p; q) :

For integrable systems, using action-angle variables (J1; � � � ; Jn;'1; � � � ; 'n) we
have
(24)

(Pm) (J1; � � � ; Jn) = (2�)�n
Z 2�

0

� � �
Z 2�

0

m (J1; � � � ; Jn; '1; � � � ; 'n) d'1; � � � d'n

for the generic case with independent frequencies (see [4]).

Recall the weighted L2 space L2jf 00j in (5). Then U (s) : L
2

jf 00j ! L2jf 00j de�ned by
U (s)m = m (X(s;x; v); V (s;x; v)) is an unitary group, where (X(s;x; v); V (s;x; v))
is the particle trajectory (13). The generator of U (s) is D = v �@x�rxU0 �rv and
R = �iD is self-adjoint by Stone Theorem. By the same proof, Lemma 2.4 is still
valid in L2jf 00j. In particular, for any � (x) 2 L

2
�
R3
�
we have

(25)
Z 0

�1
�e�s�(X(s;x; v))ds! P�

in L2jf 00j, where P is the projector of L
2

jf 00j to kerD.
Now we derive an explicit formula for the above limit P�. Note that as in the

proof of lemma 2.3, we only need to derive the formula of P� for points (x; v) with
E < E0 and L > 0. Since U0 (x) = U0 (r), the particle motion (13) in such a center
�eld is integrable and has been well studied (see e.g. [8], [4]). For particles with
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energy E < E0 < 0, L > 0 and momentum ~L = x� v, the particle orbit is a rosette
in the annulus

AE;L = fr1(E;L) � r � r2(E;L)g =
�
E � U0 � L2=2r2 � 0

	
;

lying on the orbital plane perpendicular to ~L. So we can consider the particle
motion to be planar. For such case, the action-angle variables are as follows (see
e.g. [30]): the actions variables are

Jr =
2�

T (E;L)
; J� = L;

where

T (E;L) = 2

Z r2(E;L)

r1(E;L)

drp
2(E � U0 � L2=2r2)

:

is the radial period, the angle variable 'r is determined by

d'r =
2�

T (E;L)

drp
2(E � U0 � L2=2r2)

and '� = � ��� where

d (��) =
Lr�2 � 
�p

2(E � U0 � L2=2r2)
dr

and


� (E;L) =
1

T (E;L)

Z r2(E;L)

r1(E;L)

L

r2
p
2(E � U0 � L2=2r2)

dr

is the average angular velocity. For any function � (x) 2 H2
�
R3
�
, we denote

�~L (r; �) to be the restriction of � in the orbital plane perpendicular to
~L. Then by

(24), for the generic case when the radial and angular frequencies are independent,
we have

(P�)
�
E; ~L

�
= (2�)

�2
Z 2�

0

Z 2�

0

�~Ld'�d'r(26)

=
1

�T (E;L)

Z r2(E;L)

r1(E;L)

Z 2�

0

�~L (r; �) d�drp
2(E � U0 � L2=2r2)

:

In particular, for a spherically symmetric function � = � (r), we recover

(27) (P�) (E;L) = 2

T (E;L)

Z r2(E;L)

r1(E;L)

�(r)drp
2(E � U0 � L2=2r2)

:

We thus conclude the following

Lemma 2.5. Assume that f0(E) has a bounded support in x and v and f 00 is
bounded. For any � 2 H1

�
R3
�
, we have

lim
�!0+

(A��; �) = (A0�; �)

(28)

=

Z
jr�j2dx+ 4�

Z Z
f 00(E)dv�

2dx� 4�
Z Z

f 00(E) (P�)
2
dxdv

=

Z
jr�j2dx+ 4�

Z Z
f 00(E) (�� P�)

2
dxdv
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where P is the projector of L2jf 00j to kerD and more explicitly P� is given by (26).
The limiting operator A0 is

(29) A0� = ���+ [4�
Z
f 00(E)dv]�� 4�

Z
f 00(E)P�dv:

Now we give the proof of the instability criterion.

Proof of Theorem 1.1. We de�ne

�� = sup
k(�)<0

�:

By assumption (7) and Lemmas 2.1 and 2.5, we deduce that

0 < �� � � <1:
Therefore, by the continuity of k(�); we have

k(��) = 0:

Hence, there exists an increasing sequence of 0 < �n < �n+1 < �� so that �n ! ��,
kn � k(�n) < 0; and

kn ! k(��) = 0:

By Lemma 2.1, kn are negative eigenvalues of A�n . So we get a sequence 0 6= �n 2
H2 such that

(30) A�n�n = kn�n

with kn < 0, kn ! 0 and �n ! �� � �0 > 0, as n ! 1. Recall � (jxj) to be
the cuto¤ function of the x�support of f0(E) such that � � 1 in ff0(E) > 0g : We
claim that ��n is a nonzero function for any n. Suppose otherwise, ��n � 0, then
from the equation (30) we have (��� kn)�n = 0 which implies that �n = 0, a
contradiction:Thus we can normalize �n by k��nk2 = 1. Taking inner product of
(30) with �n and integrating by parts, we have

k5�nk22 � �4�
Z Z

f 00(E)�
2
n dvdx+

Z Z
4�f 00(E)

Z 0

�1
�ne

�ns�n(X(s;x; v))ds�n (x) dx

= �4�
Z Z

f 00(E) (��n)
2
dvdx

+

Z Z
4�f 00(E)

Z 0

�1
�ne

�ns (��n) (X(s;x; v))ds (��n) (x) dvdx

� 8�
����Z f 00(E)dv

����
1
k��nk22 :

Here in the second equality above, we use the fact � = 1 on the support of
f 00(E) (f0(E)) and that (��n) (X(s;x; v)) = �n(X(s;x; v)� due to the invariance
of the support under the trajectory �ow, as in (15). In the last inequality, we use
the same estimate as in (16). Thus,

sup
n
jj�njjL6 � C sup

n
k5�nk2 < C 0;

for some constant C 0 independent of n. Then there exists � 2 L6 and r� 2 L2

such that

�n ! � weakly in L6, and r�n ! r� weakly in L2:
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This implies that ��n ! �� strongly in L2. Therefore k��k2 = 1 and thus � 6= 0:
It is easy to show that � is a weak solution of A�0� = 0 or

(31) ��� = �[4�
Z
f 00(E)dv]�+ 4�f

0
0(E)

Z 0

�1
�0e

�0s�(X(s;x; v))dsdv = �:

We have that

Z
�dx = �4�

Z Z
f 00(E)� (x) dxdv +

Z 0

�1
�0e

�0s

Z Z
4�f 00(E)�(X(s;x; v))dxdvds

= �4�
Z Z

f 00(E)� (x) dxdv +

Z 0

�1
�0e

�0s

Z Z
4�f 00(E)�(x)dxdvds = 0

and by (31) � has compact support in Sx, the x�support of f0(E): Therefore from
the formula � (x) =

R �(y)
jx�yjdy, we have

� (x) =

Z
� (y)

jx� yjdy =
Z

� (y)

jx� yjdy �
Z
� (y)

jxj dy = O
�
jxj�2

�
;

for x large, and thus � 2 L2. By elliptic regularity, � 2 H2. We de�ne f (x; v) by
(14), then f 2 L1 with the compact support in S. Now we show that e�0t[f; �] is a
weak solution to the linearized Vlasov-Poisson system. Since � satis�es the Poisson
equation (31), we only need to show that f satis�es the linearized Vlasov equation
(12) weakly. For that, we take any g 2 C1c

�
R3 � R3

�
; and

ZZ
R3�R3

(Dg) fdxdv

=

ZZ
R3�R3

(Dg) (f 00(E)�(x)) dxdv �
ZZ

R3�R3
(Dg) f 00(E)

Z 0

�1
�0e

�0s�(X(s;x; v))dsdxdv

= I + II:

Since D is skew-adjoint, the �rst term is

I = �
ZZ

R3�R3
gD (f 00(E)�) dxdv = �

ZZ
R3�R3

f 00(E)gD�dxdv:
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For the second term,

II = �
Z 0

�1
�0e

�0s

ZZ
R3�R3

f 00(E) Dg(x; v) � (X(s;x; v)) dxdvds

= �
Z 0

�1
�0e

�0s

ZZ
R3�R3

f 00(E) (Dg) (X(�s); V (�s))� (x) dxdvds

= �
ZZ

R3�R3
f 00(E)

Z 0

�1
�0e

�0s

�
� d

ds
g (X(�s); V (�s))

�
ds � (x) dxdv

=

ZZ
R3�R3

f 00(E)

�
�0g (x; v)�

Z 0

�1
�20e

�0sg (X(�s); V (�s)) ds
�
� (x) dxdv

=

ZZ
R3�R3

�
f 00(E)�0� (x)� f 00(E)

Z 0

�1
�20e

�0s� (X(s); V (s)) ds

�
g (x; v) dxdv

= �0

ZZ
R3�R3

�
f 00(E)� (x)� f 00(E)

Z 0

�1
�0e

�0s� (X(s); V (s)) ds

�
g dxdv

= �0

ZZ
R3�R3

fgdxdv:

Thus we haveZZ
R3�R3

(Dg) fdxdv =

ZZ
R3�R3

(�0f � f 00(E)D�) gdxdv

which implies that f is a weak solution to the linearized Vlasov equation

�0f +Df = f 00 (E) v � rx�:
�

Remark 2. Consider an anisotropic spherical galaxy with f0 (x; v) = f0
�
E;L2

�
.

For a radial symmetric growing mode e�t (�; f) with � = � (jxj) and f = f
�
jxj ; E; L2

�
.

The linearized Vlasov equation (11) becomes

�f + v � rxf �rxU0 � rvf

= rx� � rvf0 = rx� �
�
@f0
@E

v +
@f0
@L2

rv
�
jx� vj2

��
= �0 (jxj) xjxj �

�
@f0
@E

v + 2
@f0
@L2

[(x� v)� x]
�
=
@f0
@E

v � rx�;

which is of the same form as in the isotropic case (20). So by the same proof of The-
orem 1.1, we also get an instability criterion for radial perturbations of anisotropic
galaxy, in terms of the quadratic form (18) with f 00(E) being replaced by

@f0
@E .

3. Nonlinear Stability of the King�s Model

In the second half of the article, we investigate the nonlinear stability of the King
model (8). We �rst establish:

Lemma 3.1. Consider spherical models f0 = f0 (E) with f 00 < 0 on the support of
f0: Then the operator A0 : H2

r ! L2r

A0� = ���+ [4�
Z
f 00dv]�� 4�

Z
f 00P�dv
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is positive, where H2
r and L

2
r are spherically symmetric subspaces of H

2 and L2,
and the projection P� is de�ned by (27). Moreover, for � 2 H2

r we have

(32) (A0�; �) � "0

�
jr�j22 + j�j

2
2

�
for some constant "0 > 0.

Proof. De�ne k0 = inf (A0�; �) = (�; �) :We want to show that k0 > 0. First, by
using the compact embedding of H2

r ,! L2r it is easy to show that the minimum
can be obtained and k0 is the lowest eigenvalue. Let A0�0 = k0�0 with �0 2 H2

r

and k�0k2 = 1. The fact that k0 � 0 follows immediately from Theorem 1.1 and the
nonexistence of radial modes ([9], [22]) for monotone spherical models. The proof
of k0 > 0 is more delicate. For that, we relate the quadratic form (A0�; �) to the
Antonov functional (4). We de�ne D = v �@x�rxU0 �rv to be the generator of the
unitary group U (s):L2;rjf 00j

! L2;rjf 00j
de�ned by U (s)m = m (X(s;x; v); V (s;x; v)) :

Here L2;rjf 00j
is the spherically symmetric subspace of L2jf 00j, which is preserved under

the �ow mapping U (s). By the de�nition of P�, we have �0 � P�0 ? kerD. By
Stone theorem iD is self-adjoint and in particular D is closed. Therefore by the
closed range theorem ([40]), we have (kerD)? = R (D) , where R (D) is the range
of D. So there exists h 2 L2;rjf 00j

such that Dh = �0�P�0. Moreover, since �0�P�0
is even in v and the operator D reverses the parity in v, the function h is odd in v.
De�ne f� = f 00h: We have

k0 = (A0�0; �0) =

Z
jr�0j2 dx+ 4�

Z Z
f 00 (�0 � P�0)

2
dxdv

=

Z
jr�0j2 dx� 8�

Z Z
jf 00j (�0 � P�0)�0dxdv

+ 4�

Z Z
jf 00j (�0 � P�0)

2
dxdv

= 4�

 Z Z jDf�j2

jf 00j
dxdv + 2

Z
�0

Z
Df�dvdx+

1

4�

Z
jr�0j2 dx

!

= 4�

 Z Z jDf�j2

jf 00j
dxdv +

1

2�

Z
�0��

�dx+
1

4�

Z
jr�0j2 dx

!

= 4�

 Z Z jDf�j2

jf 00j
dxdv +

1

4�

Z �
jr�0j2 � 2r�0 � r��

�
dx

!

� 4�
 Z Z jDf�j2

jf 00j
dxdv � 1

4�

Z ��r����2 dx!

where ��� = 4�
R
Df�dv:Notice that the last expression above is the Antonov

functional 4�H (f�; f�). Since f� is spherical symmetric and odd in v;we have
H (f�; f�) > 0 by the proof in [22] which was further clari�ed in [33] and [21].
Therefore we get k0 > 0 as desired and (A0�; �) � k0 j�j22.
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To get the estimate (32), we rewrite

(A0�; �) = "

�Z
jr�j2 dx+ 4�

Z Z
f 00 (�� P�)

2
dxdv

�
+ (1� ") (A0�; �)

� "

Z
jr�j2 dx� 4�" k�� P�k2L2jf00j

+ (1� ") k0 j�j22

� "

Z
jr�j2 dx� 8�" k�k2L2jf00j

+ (1� ") k0 j�j22 (since kPkL2jf00j!L2jf00j
� 1)

� "

Z
jr�j2 dx+ ((1� ") k0 � C") j�j22 � "

Z
jr�j2 dx+ k0

2
j�j22

if " is small enough:The estimate (32) follows with "0 = min
�
"; k02

	
. �

Next, we will approximate the kerD by a �nite dimensional approximation. Let
f�i(E;L) = �i(E)�i(L)g1i=1 be a smooth orthogonal basis for the subspace kerD =

fg(E;L)g � L2;rjf 00j
:De�ne the �nite-dimensional projection operator PN : L2;rjf 00j

!

L2;rjf 00j
by

(33) PNh �
NX
i=1

(h; �i)jf 00j�i

and the operator AN : H2
r ! L2r by

AN� = ���+ [4�
Z
f 00dv]�� 4�

Z
f 00PN�dv:

Lemma 3.2. There exists K; �0 > 0 such that when N > K we have

(34)
�
AN�; �

�
� �0 jr�j22

for any � 2 H2
r .

Proof. First we have AN ! A0 strongly in L2: In deed, for any � 2 H2
r ,

AN��A0�

2 = 



Z 4�f 00 (PN�� P�) dv






2

� C kPN�� P�kL2jf00j
! 0

as N !1:We claim that for N su¢ ciently large, the lowest eigenvalue of AN is at
least k0=2 where k0 > 0 is the lowest eigenvalue of A0, as in the proof of Lemma
3.1. Suppose otherwise, then there exists a sequence f�ng and f�ng � H2

r with
�n < k0=2, k�nk2 = 1 and An�n = �n�n. This implies that ��n is uniformly
bounded in L2, by elliptic estimate we have k�nkH2 � C for some constant C
independent of n. Therefore there exists �0 2 H2

r such that �n ! �0 weakly in
H2
r . By the compact embedding of H

2
r ,! L2r, we have �n ! �0 strongly in L2r and

k�0k2 = 1. The strong convergence of An�0 ! A0�0 implies that

An�n ! A0�0

weakly in L2. Let �n ! �0 � k0=2, then we have A0�0 = �0�0, a contradiction.
Therefore we have

�
AN�; �

�
� k0=2 j�j22 for � 2 H2

r ; when N is large enough. The
estimate (34) is by the same proof of (32) in Lemma 3.1. �
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Recalling (8) with f0 = [eE0�E�1]+ and Q0(f) = (f+1) ln(f+1)�f; we further
de�ne functionals (related to the �nite dimensional approximation of kerD) as

Ai(f) �
Z f

0

�i(� ln(s+ 1) + E0)ds;

Qi(f; L) � Ai(f)�i(L); for 1 � i � N:

for 1 � i � N: Clearly,

@1Qi(f0; L) = �i(� ln(f0 + 1) + E0)�i(L) = �i(E)�i(L) = �i(E;L);

where f�i(E;L)gNi=1 are used to de�ne PN in Lemma 3.2. De�ne the Casimir
functional (E0 < 0 )

I(f) =

Z
[Q0(f) +

1

2
jvj2f � E0f ]dxdv �

1

8�

Z
jr�j2dx

which is invariant of the nonlinear Vlasov-Poisson system. We introduce additional
N invariants

Ji(f; L) �
Z
Qi(f; L)dxdv:

for 1 � i � N . We de�ne 
 to be the support of f0(E): We �rst consider

I(f)� I(f0) =
Z
[Q0(f)�Q0(f0) +

1

2
jvj2(f � f0)� E0(f � f0)]dxdv

� 1

4�

Z
rU0 � r(U � U0)�

1

8�

Z
jr(U � U0)j2dx

=

Z
[Q0(f)�Q0(f0) + (E � E0)(f � f0)]dxdv �

1

8�

Z
jr(U � U0)j2dx:

We de�ne
g = f � f0; � = U � U0

and

gin � (f�f0)1
; gout � (f�f0)1
c ; ��in �
Z
gindv; ��out �

Z
gout dv:

And we de�ne the distance function for nonlinear stability as

d(f; f0) �
�Z Z

[Q0(gin + f0)�Q0(f0) + (E � E0)gin ]dxdv
�
+
1

8�

Z
jr�in j2dx

(35)

+

�Z Z
Q0(gout)dxdv +

Z
E�E0

(E � E0)goutdxdv
�

= din +
1

8�

Z
jr�in j2dx+ dout ;

for which each term is non-negative. We therefore split:

I(f)� I(f0)

=

�Z
[Q0(f0 + gin)�Q0(f0) + (E � E0)gin ]dxdv �

1

8�

Z
jr�in j2dx

�
+�Z

Q0(gout)dxdv +

Z
E�E0

(E � E0)goutdxdv �
1

8�

Z
jr�out j2dx�

1

4�

Z
r�out � r�indx

�
= Iin + Iout :
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In the estimates below, we use C;C 0; C 00 to denote general constants depending
only on f0 and quantities like kf (t)kLp (p 2 [1;+1]) which equals kf (0)kLp and
therefore always under control. We �rst estimate kr�outk22 to be of higher order of
d, which also implies that

R
r�out � r�indx is of higher order of d.

Lemma 3.3. For " > 0 su¢ ciently small, we haveZ
jr�out j2dx � C

�
"d(f; f0) +

1

"5=3
[d(f; f0)]

5=3

�
:

Proof. In fact, sinceZ
jr�out j2dx � Cjj

Z
gout dvjj2L6=5

� Cjj
Z
gout 1E0�E�E0+"dvjj2L6=5 + Cjj

Z
gout 1E>E0+"dvjj2L6=5 :

The �rst term is bounded by�Z
[

Z
g2out dv]

3=5[

Z
1E0�E�E0+"dv]

3=5dx

�5=3
� [
Z
g2out dvdx]�

�Z
[

Z
1E0�E�E0+"dv]

3=2dx

�2=3
� C"[

Z
g2out dvdx] � C"[

Z
g2out dvdx]

� C"d(f; f0):

In the above estimates, we use that
R R

Q0(gout)dvdx � c
R
g2out dvdx andZ

1E0�E�E0+"dv � C";

which can be checked by an explicit computation when " > 0 is su¢ ciently small
such that E0 + " � 0.
On the other hand, by the standard estimates (see [12, P. 120-121])

jj
Z
gout 1E>E0+"dvjj2L6=5

�
�Z Z

gout 1E>E0+"dxdv

� 7
6

�
�Z Z

jvj2gout 1E>E0+"dxdv
� 1
2

�
�
1

"

Z Z
(E � E0)gout 1E>E0+"dxdv

� 7
6

�
�Z Z

(E � E0)gout 1E>E0+"dxdv + 2 sup jU0j
Z Z

gout 1E>E0+"dxdv

� 1
2

�
�
1

"
d

� 7
6
�
d+

2 sup jU0j
"

d

� 1
2

� C

"5=3
d5=3.

�
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By Lemma 3.3, we have����Z r�out � r�indx
���� � kr�outk2 kr�ink2
� C

�
"1=3d(f; f0) +

1

"5=6
[d(f; f0)]

4=3

�
and therefore for " su¢ ciently small,

(36) Iout � dout � C
�
"1=3d(f; f0) +

1

"5=6
[d(f; f0)]

4=3 +
1

"5=3
[d(f; f0)]

5=3

�
:

To estimate Iin , we split it into three parts:

Iin = �

�Z
[Q0(f0 + gin)�Q0(f0) + (E � E0)gin + �ingin ]dxdv +

1

8�

Z
jr�in j2dx

�
+ (1� �)

�Z
[Q0(f0 + gin)�Q0(f0) + (E � E0)gin + (I � PN )�ingin ]dxdv +

1

8�

Z
jr�in j2dx

�

+ (1� �)
Z
PN�ingindxdv

(37)

= I1in + I
2
in + I

3
in ;

where ��in = 4�
R
gin dv: We estimate each term in the following lemmas.

Lemma 3.4.

(38) I1in �
�

2
din � C�

Z
jr�in j2dx:

Proof. In fact, since the integration region 
 is �nite, we have

I1in =�

�Z Z
[Q0(f0 + gin)�Q0(f0) + (E � E0)gin + �ingin ]dxdv +

1

8�

Z
jr�in j2dx

�
� �

Z Z
[Q0(f0 + gin)�Q0(f0) + (E � E0)gin ]dxdv � C� jj�in jjL6 jjgin jjL6=5

� �

Z Z
[Q0(f0 + gin)�Q0(f0) + (E � E0)gin ]dxdv � C 0� jjr�in jjL2 jjgin jj2

� �

2
din � C 00� jjr�in jj22;

since

din =

Z
[Q0(f0 + gin)�Q0(f0) + (E � E0)gin ]dxdv � Cjjgin jj22:

�

To estimate I2in , we need the following pointwise duality lemma from elementary
calculus.

Lemma 3.5. For any c; and any h; we have

gc;f0 (h) = Q0(h+ f0)�Q0(f0)�Q00(f0)h� ch � (f0 + 1)(1 + c� ec):

Proof. Direct computation yields that the minimizer fc of gc;f0 (h) satis�es the
Euler-Lagrange equation

ln (fc + f0 + 1)� ln (f0 + 1)� c = 0;
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so
fc = (f0 + 1) (e

c � 1) :
Thus by using the Euler-Lagrange equation, we deduce

min gc;f0 (h) = gc;d (fc)

= (fc + f0 + 1) ln(1 + fc + f0)

� (f0 + 1) ln(1 + f0)� [1 + ln(f0 + 1)]fc � cfc
= (fc + f0 + 1)[ln(1 + fc + f0)� ln(f0 + 1)� c]

+ fc ln(1 + f0) + c(f0 + 1)� [1 + ln(f0 + 1)]fc
= (f0 + 1)(1 + c� ec):

�

Lemma 3.6.

(39) I2in �
(1� �) �0

8�

Z
jr�in j2dx� CeC

0d
1
2 d

3
2 :

Proof. Recall (37). By using Lemma 3.5 for c = � (�in � PN�in) and using the
Taylor expansion, we have

I2in = (1� �)
Z Z

[Q0(f0 + gin)�Q0(f0) + (E � E0)gin + (�in � PN�in) fin ]dxdv

+
1

8�
(1� �)

Z
jr�in j2dx

� 1

8�
(1� �)

Z
jr�in j2dx+ (1� �)

Z Z
(f0 + 1)1
(1 + �in � PN�in � e�i n�PN�i n )dxdv

� 1� �
8�

�Z
jr�in j2dx� 4�

Z Z
jf 00 (E)j (�in � PN�in)

2
dxdv

�
� Cej�i n�PN�i n j1

Z Z
jf 00 (E)j j�in � PN�in j

3
dxdv (Note (f0(E) + 1)1
 = jf 00(E)j)

� (1� �) �0
8�

Z
jr�in j2dx� Cej�i n�PN�i n j1

Z Z
jf 00 (E)j j�in � PN�in j

3
dxdv:

In the last line, we have used Lemma 3.2. To estimate the last term above and
conclude our lemma, it su¢ ces to show

j�in � PN�in j1 � CNd
1
2 :

This follows from the facts that for the �xed N smooth functions �i; we have

jPN�in j1 =

�����
NX
i=1

(�in ; �i)jf 00j�i

�����
1

� CN j�in j1 ;

and since �in is spherically symmetric,

j�in j (r) =
�����1r
Z r

0

u2�in (u) du+

Z R

r

u�in (u) du

�����
� C 0

p
R j�in j2 � C 00 kgink2 � CNd

1
2

where �in =
R
gindv and R is the support radius of �in . �
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We now estimate the term
R R

PN�infindxdv, for which we use the additional
invariants.

Lemma 3.7. For any " > 0; we have

(40)
��I3in �� � C(d1=2(0) + "1=2d1=2 +

1

"
d)d1=2:

Proof. By the de�nition of I3in in (37); it su¢ ces to estimate (gin ; �i): We expand

Ji(f; L)� Ji(f0; L)
= Ji(f0 + gin ; L)� Ji(f0; L) + Ji(gout ; L)
= (gin ; �i) +O(d) + Ji(gout ; L):

Notice that

jJi(gout ; L)j � Cjjgout jjL1 � Cjj1fE0�E�E0+"ggout jjL1 + Cjj1fE�E0+"ggout jjL1

� "1=2jjgout jjL2 +
C

"
jj1fE�E0+"g(E � E0)gout jjL1 � C["1=2d1=2 +

1

"
d]:

It thus follows that

j(gin ; �i)j � jJi(f(0); L)� Ji(f0; L)j+ C["1=2d1=2 +
1

"
d]

� C[d1=2(0) + "1=2d1=2 +
1

"
d]:

Therefore��I3in �� = (1� �) ����Z Z PN�ingin dxdv

���� =
�����
Z Z  NX

i=1

(�in ; �i)jf 00j�i

!
gin dxdv

�����
�

NX
i=1

���(�in ; �i)jf 00j��� j(�i; gin)j � C 0
NX
i=1

j�in j1 j(�i; gin)j

� Cd1=2[d1=2(0) + "1=2d1=2 +
1

"
d]:

�

Now we prove the nonlinear stability of King model.

Proof of Theorem 1.2. The global existence of classical solutions of 3D Vlasov-
Poisson system was shown in [34] for compactly supported initial data f (0) 2 C1c .
Let the unique global solution be (f (t) ; � (t)). Let d (t) = d(f (t) ; f0). Combining
estimates (36), (38), (39) and (40), we have

I(f (0))� I(f0) = I(f (t))� I(f0)

� dout +
�

2
din +

�
(1� �) �0

8�
� C�

�Z
jr�in j2dx

� C
�
"1=3d (t) +

1

"5=6
d (t)

4=3
+

1

"5=3
d (t)

5=3

�
� CeC

0d(t)
1
2 d (t)

3
2

� Cd (t)1=2 [d1=2(0) + "1=2d (t)1=2 + 1
"
d (t)]:
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Thus by choosing " and � su¢ ciently small, there exists �0 > 0 such that

I(f (0))� I(f0) � �0d(t)� C
�
d (t)

4=3
+ d (t)

5=3
+ d (t)

3=2
�
� CeC

0d(t)
1
2 d (t)

3
2

(41)

� Cd (t)1=2 d1=2(0):

It is easy to show that I(f (0)) � I(f0) � C 00d (0). De�ne the functions y1 (x) =
�0x2 � CeC

0xx3 � C
�
x8=3 + x10=3 + x3

�
and y2 (x) = Cd (0)

1=2
x + C 00d (0). Then

above estimates implies that y1
�
d (t)

1=2
�
� y2

�
d (t)

1=2
�
. The function y1 is in-

creasing in (0; x0) where x0 is the �rst maximum point. So if d (0) is su¢ ciently
small, the line y = y2 (x) intersects the curve y = y1 (x) at points x1; x2; � � � ;
with x1 (d (0)) < x0 < x2 (d (0)) < � � � . Thus the inequality y1 (x) � y2 (x) is
valid in disjoint intervals [0; x1 (d (0))] and [x2 (d (0)) ; x3 (d (0))]; � � � : Because d (t)
is continuous, we have that d (t)1=2 < x1 (d (0)) for all t < 1, provided we choose
d (0)

1=2
< x0. Since x1 (d (0)) ! 0 as d (0) ! 0, we deduce the nonlinear stability

in terms of the distance functional d (t)1=2. �
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