 2. Show your work and explain your answers and reasoning.
 3. Calculators may be used, but are by no means necessary. Pay particular attention to instruction 2. **To receive credit, you must show your work.** Unexplained answers, and answers not supported by the work you show, will not receive credit.
 4. Express your answers in simplified form.

1. (25) Evaluate

 a. \(\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{-3n} \)

 b. \(\lim_{n \to \infty} \left(1 - \frac{2}{n} \right)^n \)

 c. \(\int_0^\pi \cos^2 x \sin x \, dx \)

 d. The first and second derivatives of \(F(x) = \int_{\frac{2}{2}}^x \sin(t^2) \, dt \)

2. (25) A cookie box, as shown below, has been made from a 12 inch by 12 inch square of cardboard. Find the value of \(x \) that maximizes the volume of the box, and use the second derivative test to show that you have found a local maximum.
3. (25) Drawn at the left is the graph of the derivative of a mysterious function named f. On the right is a blank set of axes.

Graph of $\frac{df}{dx}$

a. On what interval(s) is f increasing? Explain your answer.

b. On what interval(s) is f decreasing? Explain your answer.

c. Tell me the critical point(s) of f, and tell me which are local minima and which are local maxima. Explain your answer.

d. For which value(s) of x is $\frac{d^2x}{dx^2} = 0$? Explain your answer.

4. (25) Sketch the region bounded by the parabola $y = x^2 + 1$ and the line $y = -2x + 9$, and calculate the area of this region.
ANSWERS

1. a. e^{-3}
 b. e^{-2}
 c. $\frac{2}{3}$
 d. $\sin(x^2), 2x\cos(x^2)$

2. $x = 2$, $V''(2) = -24 < 0$

3. a. $(\infty, 0)$ and $(2, \infty)$
 b. $(0, 2)$
 c. By the first derivative test, there is a local maximum at 0 and a local minimum at 2.
 d. -1 and 1

4. The area is 36