Exercise 1
Consider the differential equation
\[\dot{x} = f(x, t) \]
with initial condition \(x(t_0) = x_0 \). Assume that \(f \in C^1(\mathbb{R}^{n+1}, \mathbb{R}^n) \). Given \(h > 0 \) we call \(x^h(t) \) (Euler approximation) the function defined by
\[
\begin{align*}
 x^h(nh + t) &= x^h(nh) + f(x^h(nh), nh)t \quad \text{for } n \geq 0 \text{ and } 0 \leq t \leq h \\
 x^h(nh + t) &= x^h(nh) + f(x^h(nh), nh)t \quad \text{for } n \leq 0 \text{ and } -h \leq t \leq 0
\end{align*}
\]
Prove existence and uniqueness of the solution of eq.(1) using the Euler approximations. Show how it happens that, if the function \(f \) is not Lipschitz, the solution may fail to be unique.

Exercise 2
Let \(x(t) \) be a solution of
\[\dot{x} = f(x) \]
with \(x(0) = x_0 \) and \(x(1) = x_1 \). Call \(\gamma \) the trajectory \(\{x(t), \ t \in [0,1]\} \). Assume that \(f \in C^2(\mathbb{R}^n, \mathbb{R}^n) \). Let \(h_0(x) \) and \(h_1(x) \) to smooth function from \(\mathbb{R}^n \) in \(\mathbb{R} \) such that
\[h_0(x_0) = 0 \quad h_1(x_1) = 0 \]
Under which condition the equations:
\[h_0(x) = 0 \quad h_1(x) = 0 \]
define two \((n-1)\)-cells \(S_0 \) and \(S_1 \) transverse to \(\gamma \)?
Under these condition, show that there is a differentiable function \(F \) from a small neighbor of \(x_0 \) on \(S_0 \) to a small neighbor of \(x_1 \) in \(S_1 \) such that \(F(x) \) is on the trajectory of eq.(3) starting from \(x \). Compute
\[\frac{\partial F}{\partial x}(x) \]

Exercise 3
Consider the differential equation
\[
\begin{aligned}
\dot{x} &= -y + \epsilon f_x(x, y) \\
\dot{y} &= x + \epsilon f_y(x, y)
\end{aligned}
\] (7)

where \(f = (f_x, f_y) \) is a smooth function from \(\mathbb{R}^2 \) in \(\mathbb{R}^2 \) and \(\epsilon \) is a small parameter. Call \(\phi(\xi, t) \) the solution of eq.(7) starting at \(\xi \) at time 0. Let \(\xi = (x, 0), \ x > 0, \) be a point on the positive \(x \) axis. Show that if \(\epsilon \) is small enough, there is a time \(t_\epsilon(x) \) close to \(2\pi \) such that \(\phi((x, 0), t(x)) \) is again on the positive \(x \) axis.

Call \(F_\epsilon(x) \) the map define by \(F_\epsilon(x) = \phi_x((x, 0), t(x)) \) where \(\phi(\xi, t) = (\phi_x(\xi, t), \phi_y(\xi, t)) \). Show that, for \(\epsilon \) small enough, \(F_\epsilon \) is a smooth map from a neighbor of \(x \) in \(\mathbb{R} \) to a neighbor of \(F_\epsilon(x) \) in \(\mathbb{R} \). Compute

\[
\partial_\epsilon F_\epsilon(x) = \frac{\partial F_\epsilon}{\partial \epsilon}(x)
\] (8)

by treating \(\epsilon \) as a parameter. Show that if there are \(x_1 \) and \(x_2, \ x_1 < x_2, \) such that \(\partial_\epsilon F_\epsilon(x_1) > 0 > \partial_\epsilon F_\epsilon(x_2) \) then there is a periodic orbit starting from some point \((\bar{x}, 0) \) with \(x_1 \leq \bar{x} \leq x_2 \).