17. Is the function x^2 uniformly continuous on \mathbb{R}? The function $\sqrt{|x|}$? Why?

Let us show that x^2 is not uniformly continuous by showing that $\forall \epsilon > 0 \ \forall \delta > 0 \ \exists x, y \in \mathbb{R}$ such that $|x - y| < \delta$ and $|x^2 - y^2| \geq \epsilon$. To do this, choose $x = \frac{\delta}{4}$ and set $y = \frac{\delta}{2} + \frac{\delta}{2}$. We see that $|x - y| = \frac{\delta}{2} + \frac{\delta}{2} - \frac{\delta}{2} = \frac{\delta}{2}$. However, we also see that $|x^2 - y^2| = \left(\frac{\delta}{4} + \frac{\delta}{2}\right)^2 - \left(\frac{\delta}{4}\right)^2 = \frac{\delta^2}{16} + \epsilon + \frac{\delta}{4} - \frac{\delta^2}{16} = \epsilon + \frac{\delta^2}{4} = \epsilon + \frac{\delta^2}{4} > \epsilon$. Thus $\forall \epsilon > 0 \ \forall \delta > 0 \ \exists x, y \in \mathbb{R}$ such that $|x - y| < \delta$ and $|x^2 - y^2| \geq \epsilon$ and the function $f(x) = x^2$ is not uniformly continuous on \mathbb{R}.

Since $f(x) = \sqrt{|x|}$ is the composition of two functions (namely \sqrt{x} and $|x|$) we can show that each of these functions is uniformly continuous and use the result from question 20 to conclude that f is also uniformly continuous. First, let us show that \sqrt{x} is uniformly continuous on $[0, \infty)$. To do this, we must find a $\delta > 0$ which is a function of ϵ only such that $|x - y| < \delta$ implies that $\sqrt{x} - \sqrt{y} < \epsilon$. Let us choose $\delta = \epsilon^2$. Then $|x - y| < \delta$ implies that $|x - y| < \delta$. Now there are two possibilities here: either that $x - y < 0$ or $x - y > 0$. Say $x - y < 0$ so that $|x - y| = y - x$. Then we have $y - x < \epsilon^2$ and thus that $y < x + \epsilon^2$. Since $y > 0$ and $x + \epsilon^2 > 0$, we can take the square root of both sides while still preserving the inequality, giving us $\sqrt{y} < \sqrt{x} + \epsilon^2$. By definition, for any $u, v > 0$ we know that $\sqrt{u} + \sqrt{v} < \sqrt{u} + \sqrt{v}$. Here, this lets us say that $\sqrt{y} < \sqrt{x} + \epsilon^2$ implies that $\sqrt{y} < \sqrt{x} + \epsilon$. Subtracting \sqrt{x} from both sides then gives $\sqrt{y} - \sqrt{x} < \epsilon$ whenever $|x - y| < \epsilon$.

Now let us consider the case that $x - y > 0$. Then $|x - y| = x - y > 0$ and we have $0 < x - y < \delta = \epsilon^2$. Adding y gives $y < x + \epsilon^2$. Taking the square root gives $\sqrt{y} < \sqrt{x} + \epsilon^2$. Again using the aforementioned property of inequalities containing square roots, we may now say that $\sqrt{y} < \sqrt{x} + \epsilon$. Subtracting \sqrt{x} then gives $0 < \sqrt{x} - \sqrt{y} < \epsilon$. Combining this inequality with the one from end the of the preceding paragraph gives us $|\sqrt{x} - \sqrt{y}| < \epsilon$ whenever $|x - y| < \delta$ for every $x, y \in [0, \infty)$. Thus \sqrt{x} is uniformly continuous.

For the function $|x|$ we can show uniform continuity by selecting $\delta = \epsilon$. Here, $|x - y| < \delta$ implies $|x - y| < \epsilon$ and, using the reverse triangle inequality we see that $|f(x) - f(y)| = ||x| - |y|| \leq |x - y| < \epsilon$ thus giving us $|x| - |y| < \epsilon$. Thus \sqrt{x} and $|x|$ are both uniformly continuous and their composition is as well.

18. Prove that for any metric space E, the identity function on E is uniformly continuous.

The identity function is defined as $Id(x) = x$, $\forall x \in E$. Here we need to show that given any $\epsilon > 0$, $\exists \delta > 0$ such that $\forall x, y \in E, d(x, y) < \delta$ implies that $d(Id(x), Id(y)) < \epsilon$. Given some $\epsilon > 0$, let us set $\delta = \epsilon$. Then, taking any $x, y \in E$ such that $d(x, y) < \delta$, using $\delta = \epsilon$ we can say that $d(x, y) < \epsilon$. Now, since $Id(x) = x$ and $Id(y) = y$, we may substitute these into the preceding inequality, giving us $d(Id(x), Id(y)) < \epsilon$. Thus we have shown that $d(x, y) < \delta$ implies that $d(Id(x), Id(y)) < \epsilon$ and the proof is complete.
19. Prove that for any metric space E and any $p_0 \in E$, the real-valued function sending any p into $d(p_0, p)$ is uniformly continuous.

Let $f(p) = d(p_0, p)$ where p_0 is any point in E. Here we wish to show that f is uniformly continuous on E. To do this, we must show that given any $\epsilon > 0$, $\exists \delta > 0$ such that $\forall q, r \in E$, $d(q, r) < \delta$ implies that $d(f(q), f(r)) < \epsilon$. Here, note that, via the triangle inequality, $d(q, r) \geq |d(q, p_0) - d(p_0, r)|$. This means that $\delta > d(q, r)$ implies that $\delta > |d(q, p_0) - d(p_0, r)|$. Since $f(q) = d(q, p_0)$ and $f(r) = d(r, p_0)$, we see that the preceding statement implies that $\delta > |f(q) - f(r)|$. Thus here, given any $\epsilon > 0$, setting $\delta = \epsilon$ gives us that $d(q, r) < \delta$ implies $d(f(q), f(r)) < \epsilon$ for every $q, r \in E$ and the proof for uniform continuity is complete.

20. State precisely and prove: A uniformly continuous function of a uniformly continuous function is uniformly continuous.

Here let $f : E \to E'$ and $g : E' \to S$. We seek to show that $h = g \circ f : E \to S$ is uniformly continuous if f and g are. To do this, we must show that given any $\epsilon_h > 0$ $\exists \delta_h > 0$ such that $d_E(p, q) < \delta_h$ implies that $d_S(h(p), h(q)) < \epsilon_h$, $\forall p, q \in E$.

Now, since g is uniformly continuous, given some $\epsilon_g > 0$ we know that $\exists \delta_g$ such that $\forall r, s \in E'$, $d_{E'}(r, s) < \delta_g$ implies that $d_S(g(r), g(s)) < \epsilon_g$. Using the fact that f is uniformly continuous, we can set $\epsilon_f = \delta_g$ and we know that $\forall u, v \in E$ we have $d_E(u, v) < \delta_f$ implies that $d_{E'}(f(u), f(v)) < \epsilon_f = \delta_g$ which in turn implies that $d_S(g(f(u)), g(f(v))) < \epsilon_h$. Rewriting this last inequality, we have $d_S((g \circ f)(u), (g \circ f)(v)) < \epsilon_h$ whenever $d_E(u, v) < \delta_f$. Thus given any $\epsilon_h > 0$ we can set $\delta_h = \delta_f$ and be guaranteed that $d_E(u, v) < \delta_f$ implies that $d_S(h(u), h(v)) < \epsilon_h$ $\forall u, v \in E$, meaning that $h : E \to S$ is uniformly continuous and the proof is complete.
Problem 22

Assume the norm on V is $\| \cdot \|_1$, and the one on V' is $\| \cdot \|_2$.

a. Assume f is continuous at a point x_0.

Let $\varepsilon > 0$. There exists $\delta > 0$ such that

$$\forall \ z \in V, \ \| z - x_0 \|_1 < \delta \Rightarrow \| f(z) - f(x_0) \|_2 < \varepsilon$$

Assume $\| x - y \|_1 < \delta$ for some $x, y \in V$.

One has $\| x - y \|_1 = \| x - y + x_0 - x_0 \|_1$.

Thus $\| x - y + x_0 - x_0 \|_1 < \delta$ and

$$\| f(x - y + x_0) - f(x_0) \|_2 < \varepsilon$$

That is $\| f(x) - f(y) + f(x_0) - f(x_0) \|_2 < \varepsilon$ and so

$$\| f(x) - f(y) \|_2 < \varepsilon$$

Hence $\| x - y \|_1 < \delta \Rightarrow \| f(x) - f(y) \|_2 < \varepsilon$.

So f is uniformly continuous and then continuous everywhere.
b. Assume that \(\| f(x) \| / \| x \| \), \(x \in V, x \neq 0 \) above is bounded say by \(M > 0 \).

For \(x \neq 0 \), \(\| f(x) \| = \| x \| \frac{\| f(x) \|}{\| x \|} \leq M \| x \| \).

For \(x = 0 \) we also have \(\| f(x) \| = 0 \leq M \| x \| = 0 \).

Hence \(\forall x \in V, \| f(x) \| \leq M \| x \| \).

Let \(\varepsilon > 0 \). Take \(\delta = \frac{\varepsilon}{M} \).

\(\| x \| < \delta \Rightarrow \| x \| < \frac{\varepsilon}{M} \Rightarrow \| f(x) \| < \varepsilon \).

Hence \(f \) is continuous at zero and therefore is continuous everywhere.

\(\Rightarrow \) Assume \(f \) is continuous. Let us show that \(A \) is bounded.

Since \(f \) is continuous at \(0 \), \(\forall \varepsilon > 0 \), \(\exists \delta > 0 \) such that \(\| x \| < \delta \Rightarrow \| f(x) \| < \varepsilon \).

For \(x \neq 0 \), \(x = \frac{2 \| x \|}{\delta} \cdot \delta \cdot \frac{1}{2 \| x \|} \cdot x \).

Since \(\| \frac{\delta}{2 \| x \|} x \| = \frac{\delta}{2} < \delta \), \(\| f \left(\frac{\delta}{2 \| x \|} x \right) \| < \varepsilon \).

Thus \(\frac{\| f(x) \|}{\| x \|} = \frac{2 \| x \|}{\delta} \cdot \frac{\| f \left(\frac{\delta}{2 \| x \|} x \right) \|}{\| x \|} < \frac{2 \| x \|}{\delta} \cdot \frac{\varepsilon}{2} \cdot \| x \| \).

So \(f \) is bounded below by \(0 \) and above by \(\frac{2 \varepsilon}{\delta} \).
C. Let \((v_1, \ldots, v_n)\) be a basis of \(V\). Consider the function \(\| \cdot \| : \mathbb{R}^n \to \mathbb{R}
\)
\[(x_1, \ldots, x_n) \mapsto \| \sum x_i v_i \|\]
\(\| \cdot \|\) is a norm on \(\mathbb{R}^n\). Indeed:
\[\| (x_1, \ldots, x_n) \| = 0 \implies \sum x_i v_i = 0 \implies \sum x_i = 0 \implies x_i = 0, \quad i = 1, \ldots, n\]
\[\| x \| = 0 \implies x = 0.\]
\[\| x + y \| = \| \sum (x_i + y_i) v_i \| = \| \sum x_i v_i + \sum y_i v_i \| \leq \| \sum x_i v_i \| + \| \sum y_i v_i \| = \| x \| + \| y \|.\]
\[\| d x \| = \| \sum \lambda x_i v_i \| = |d| \| \sum x_i v_i \| = |d| \| x \|.\]

Since \(\| \cdot \|\) is a norm it is continuous on \(\mathbb{R}^n\).

Let \(\| \cdot \|_0\) denote the Euclidean norm.

\[S^n = \{ x \in \mathbb{R}^n : \| x \|_0 = 1 \} \text{ is compact}.\]

Thus \(\exists x_0 \in S\) such that \(m = \| x_0 \|_0 \leq \| x \|\).

Thus \(\| x_0 \|_0 \leq 1\).

Remark that \(m \neq 0\) since \(m = 0 \implies \| x_0 \| = 0\) and \(x_0 = 0\) is impossible as \(\| x_0 \|_0 = 1\).
For $x \in \mathbb{R}^n$, $x \neq 0$,

$$\frac{x}{\|x\|} \in S^1, \quad m \leq \varphi\left(\frac{x}{\|x\|}\right).$$

$$m \|x\| \leq \frac{x \cdot v_i}{\|x\|},$$

$$\|x\| m \leq \sum_{i} x_i v_i \|v_i\| = \|x\| \|v_i\|.$$

Now for $x = \sum \frac{x_i}{v_i}, v_i \neq 0$

$$\|f(\sum x_i v_i)\| = \|\sum \frac{x_i}{v_i} f(v_i)\|$$

$$\leq \sum \left|\frac{x_i}{v_i}\right| \|f(v_i)\|$$

$$\leq \sum \frac{|x_i|}{v_i} \|f(v_i)\|$$

$$\leq \frac{\|x\|}{m} \|v_i\| \|f(v_i)\|$$

Thus

$$\frac{\|f(x)\|}{\|x\|} \leq \sum \frac{1}{m} f(v_i)$$

Thus f is continuous by part b.}
Checking that the norm makes the set of infinite sequences above a normed vector space:

1. Given that at least one of the \(x_i \)'s is nonzero, clearly \(\max\{|x_1|, |x_2|, |x_3|, \ldots\} > 0 \).

2. \(\max\{|x_1|, |x_2|, |x_3|, \ldots\} = 0 \) only if all the \(x_i \)'s are zero.

3. \(\|cx_1, cx_2, cx_3, \ldots\| = \max\{|cx_1|, |cx_2|, |cx_3|, \ldots\} = \max\{|c||x_1|, |c||x_2|, |c||x_3|, \ldots\} = |c| \cdot \max\{|x_1|, |x_2|, |x_3|, \ldots\} \).

4. By the triangle inequality, \(|x_i + y_i| \leq |x_i| + |y_i| \leq \max_i(x_i) + \max_i(y_i) \). So we must have \(\max_i(x_i + y_i) \leq \max_i(x_i) + \max_i(y_i) \).

Showing the map is a one-to-one linear transformation:

Within each component, we have \(f(x_i) = i \cdot x_i \). This is clearly a linear transformation, and one-to-one. Since all components are then mapped by a linear transformation, the larger map is a linear transformation.

Assume \((x_1, 2x_2, 3x_3, \ldots) = (x_1', 2x_2', 3x_3', \ldots) \)

Then \(i \cdot x_i = i \cdot x_i \) for \(i = 1, 2, \ldots \)

so \(x_i = x_i' \)

and \((x_1, x_2, x_3, \ldots) = (x_1', x_2', \ldots) \)

so the map is one-to-one.
Set \(X^n = (x^1, x^2, \ldots) \)
when \(x^i = 0 \) if \(i \neq n \)
\(x^n = 1 \) if \(i = n \)

\[x^1 = (1, 0, 0, 0, \ldots) \]
\[x^2 = (0, 1, 0, 0, \ldots) \]
\[x^3 = (0, 0, 1, 0, \ldots) \]

If \(f \) denotes the map: \((x^1, x^2, \ldots) \rightarrow (x^1, 2x^2, 3x^3, \ldots) \)

\[f(x^n) = (x^n, 2x^n, \ldots, \) \() = (0, \ldots, 0, n, 0, \ldots) \]

Thus \(\| f(x^n) \| = n \) and \(\| x^n \| = 1 \).

So \(\| f(x^n) \| = n \)
\[\frac{\| f(x^n) \|}{\| x^n \|} \]

and the set \(\{ \| f(x) \| / \| x \| \}, x \rightarrow 0 \) \(f \) is not bounded

and then \(f \) is not
23. Use Problem 22 to prove that if \(V \) is a finite dimensional vector space over \(\mathbb{R} \) and \(\| \|_1, \| \|_2 \) are two norm functions on \(V \).

Solution

Let \(e_i \) be the canonical base of \(V \), and let \(x \in V \). Then \(x = \sum_{i=1}^{n} x_i e_i = \sum_{i=1}^{n} x_i e_i \leq \sum_{i=1}^{n} \| x_i \|_1, \| e_i \|_1 \) by using the definition of a norm and \(\| \|_1 \) is any norm. We can apply the Cauchy-Schwarz inequality \(\| x \|_2 \leq \sum_{i=1}^{n} \| x_i \|_1 \| e_i \|_1 \leq \sum_{i=1}^{n} \| x_i \|_2 \| e_i \|_2 \). We can see that \(\sum_{i=1}^{n} \| x_i \|_2^2 = \| x \|_2^2 \) and \(\sum_{i=1}^{n} \| e_i \|_2^2 = \mu_2 \) where \(\| \|_2 \) is the euclidean norm, and \(\mu_2 \) is some constant. Then \(\| x \|_1 \leq \mu_1 \| x \|_2 \). Now we show that \(f(x) = \| x \|_1 \) is continuous with respect to the euclidean norm. Let \(\epsilon > 0 \), we need to show

\[
\exists \delta > 0 \text{ s.t. } \| x - y \|_2 < \delta \Rightarrow \| x \|_1 - \| y \|_1 < \epsilon. \quad \text{Let } \delta = \frac{\epsilon}{\mu_1}. \text{ Then }
\]

\[
\frac{\epsilon}{\mu_1} \geq \| x - y \|_2 \geq \| x \|_2 - \| y \|_2 = \frac{\epsilon}{\mu_2} \geq \| x \|_1 - \| y \|_1 = \frac{\epsilon}{\mu_1} \| x \|_2 - \| y \|_1. \quad \text{Then, } \epsilon > \| x \|_1 - \| y \|_1, \quad \text{F is continuous. Let } S = \{ x \in V \text{ s.t. } \| x \|_2 = 1 \}. \text{ S is closed and bounded, so it is compact, and then F has a minimum value in S at } x_{\text{min}}. \text{ Now } \forall z \in S, \| x_{\text{min}} - z \|_2 \leq \| x_{\text{min}} - z \|_1 \geq m_1, \text{ where } m_1 \text{ is the minimum value of F in } z. \text{ Then, } \| z \|_1 \geq m_1 \| z \|_2. \quad \text{For any norms, we have basically shown that } \exists \mu_1, m_2, \mu_2 \text{ such that } m_1 \| x \|_2 \leq \| x \|_1 \leq \| x \|_e = m_1 \| x \|_2 \leq \mu_2 \| x \|_1 \leq m_2 \mu_2. \quad \text{It basically follows that given that } \mathbb{R} \text{ is complete, and all norms are equivalent to the euclidean norm, the space is complete V norm.}
\]

33)

a. Show that the sequence of functions \(x, x^2, x^3, \ldots \) converges uniformly on \([0, a]\) for any \(a \in (0, 1) \), but not on \([0, 1]\).

Let \(\{ f_n \} = \{ x^n \} \), and suppose \(f^n \to f \). We must show that for \(\epsilon > 0 \), \(\exists N \) such \(d(f, f^n) < \epsilon \) whenever \(n > N \) for all \(x \).

For \(a \in (0, 1) \), it is clear to see that \(x^n \to 0 \) as \(n \) approaches infinity. We must then show \(\| x^n \| < \epsilon \) whenever \(n \) is greater than some \(N \).

On \([0, a]\), \(x^n \) attain its max at \(x = a \), so \(x^n < a^n \). Then note \(a^n \) decreases with increasing \(n \), so we choose \(N \) such \(a^n < \epsilon \).

\(\{ f_n \} \) doesn't converge uniformly on \([0, 1]\) because at \(x = 1 \) \(f^n = 1^n = 1 \neq a \) for all \(n \).

b. Show that the sequence of functions \(x(1 - x), x^2(1 - x), x^3(1 - x), \ldots \) converges uniformly on \([0, 1]\).

Since on \([0, 1]\), at least one of the quantities \(x^n \) and \((1 - x) \) is less than 1, and at is at most 1, thus we might guess \(f = 0 \). Then we must show for \(\epsilon > 0 \), \(\exists N \) such \(|x^n(1 - x)| < \epsilon \) if \(n > N \).

\(x^n \) and \((1 - x) \) are both continuous functions, and using calculus, we can calculate the maximum value that \(|x^n(1 - x)| \) attains on \([0, 1]\).

\[
\frac{d}{dx} (x^n(1 - x)) = nx^n - x^{n+1} = -x^n + nx^{n-1} - nx^n = -x + n - nx = 0
\]

So \(x^n(1 - x) \) attains its max at \(x = \frac{n}{n+1} \), which is \(\left(\frac{n}{n+1} \right)^n \left(\frac{1}{n+1} \right) \).
Then $|x^n(1-x)| < \left(\frac{n}{n+1}\right)^n \left(\frac{1}{n+1}\right) < \frac{1}{n+1} < \varepsilon$. If we choose $N = (1-\varepsilon)/\varepsilon$, then whenever $n > N$, we will have $|x^n(1-x)| < \varepsilon$.

34) Is the sequence of functions f_1, f_2, f_3, \ldots on $[0,1]$ uniformly convergent if $f_n(x) = \frac{x}{1+nx^2}$. Note $f_n \to 0$. We must find for $\varepsilon > 0$, an N such $n > N$ implies $|f_n - 0| < \varepsilon$.

Observe $f'_n = \frac{(1+nx^2)-x(2nx)}{(1+nx^2)^2} = \frac{1-nx^2}{(1+nx^2)^2} = 0$. This has solution at $x = \sqrt{\frac{1}{n}}$, and f_n attains a max value $\frac{1}{2}\sqrt{\frac{1}{n}}$. So $\left|\frac{x}{1+nx^2}\right| < \frac{1}{2}\sqrt{\frac{1}{n}}$, thus if we choose $N > 1/4\varepsilon^2$, we will have $|f_n - 0| < \varepsilon$ whenever $n > N$.

$f_n(x) = \frac{nx}{1+nx^2}$. Note for all n, $f_n(0) = 0$, and for $x > 0$, $f_n \to \frac{1}{x}$. Since \lim f_n is not continuous on $[0,1]$, it does not converge uniformly.

$f_n(x) = \frac{nx}{1+nx^2}$. Again we have $f_n \to 0$. We must find for $\varepsilon > 0$, an N such $n > N$ implies $|f_n - 0| < \varepsilon$.

Again, taking the derivative and setting it to 0 gives us:

$$f'_n = \frac{(1+n^2x^2)n-nx(2n^2x)}{(1+n^2x^2)^2} = \frac{n-n^3x^2}{(1+n^2x^2)^2} = 0$$

This has solution at $x = 1/n$. But this means that f_n attains a max of $f_n\left(\frac{1}{n}\right) = \frac{n(\frac{1}{n})}{1+n^2(\frac{1}{n})} = \frac{1}{2}$. Thus it would not be possible to choose an N for all ε, specifically any $\varepsilon < \frac{1}{2}$.

37) Let f_1, f_2, f_3, \ldots and g_1, g_2, g_3, \ldots be uniformly convergent sequences of real-valued functions on a metric space E. Show that the sequence $f_1 + g_1, f_2 + g_2, \ldots$ is uniformly convergent.

Let $f_n \to f$ and $g_n \to g$. We have that for all x, for $\varepsilon > 0$, $\exists N_1, N_2$ such $|f_n(x) - f(x)| < \frac{\varepsilon}{2}$ whenever $n > N_1$ and $|g_n(x) - g(x)| < \frac{\varepsilon}{2}$ whenever $n > N_2$.

We hypothesize that $f_n + g_n \to f + g$. So we must find N such $|(f_n + g_n)(x) - (f + g)(x)| < \varepsilon$ whenever $n > N$. Note $|(f_n + g_n)(x) - (f + g)(x)| = |(f_n - f)(x) + (g_n - g)(x)| \leq |f_n(x) - f(x)| + |g_n(x) - g(x)|$. So if we take $N = \max(N_1, N_2)$, we will have that $|(f_n + $
Given \(\epsilon > 0 \), there exists some \(N \) such that \(d(f_n(x), f(x)) < \epsilon \) when \(n > N \). Since each function is bounded, all elements of \(f_n(x) \) are bounded and thus all elements in an open ball \(B_r(x_0) \). Which means that we have

\[
 d(f(x), y) \leq d(f(x), f_n(x)) + d(f_n(x), x_0) < \epsilon + r, \quad \text{for some ball } B_r(x_0).
\]

Thus all elements are contained in an open ball \(B_{\epsilon+r}(x_0) \). Therefore the sequence is bounded.