Fundamental Group

\[\pi_1(X) = \text{group of homotopy classes of based paths in } X. \]

Will see: \[X \simeq Y \implies \pi_1(X) \simeq \pi_1(Y) \]

Examples:

1. \(\mathbb{R}^3 \) - unknot \(\rightarrow \mathbb{Z} \)

2. \(\mathbb{R}^3 \) - unlink

 \[a b a^{-1} b^{-1} : \]

3. \(\mathbb{R}^3 \) - Hopf link

 \[a b a^{-1} b^{-1} : \]

 Is \(\pi_1 \) abelian?

- push these two strands in tandem around the left-hand circle to see triviality.
Formal Definitions

A path in a space X is a map $I \rightarrow X$.

A homotopy of paths is a homotopy $f_t : I \rightarrow X$ such that $f_t(0)$ and $f_t(1)$ are independent of t.

Example. Any two paths f_0, f_1 in \mathbb{R}^n with same endpoints are homotopic via straight-line homotopy:
\[f_t(s) = (1-t)f_0(s) + tf_1(s) \]

Exercise. Homotopy of paths is an equivalence relation. \(\simeq\)

The composition of paths f, g with $f(1) = g(0)$ is the path $f \circ g$:
\[f \circ g(s) = \begin{cases} f(2s) & 0 \leq s \leq \frac{1}{2} \\ g(2s-1) & \frac{1}{2} \leq s \leq 1 \end{cases} \]

Exercise. $f_0 \simeq f_1$, $g_0 \simeq g_1 \Rightarrow f_0g_0 \simeq f_1g_1$

A loop is a path f with $f(0) = f(1)$.

The fundamental group of X (based at x_0) is the group of homotopy classes of loops based at x_0 under composition. Write $\pi_1(X, x_0)$.
Prop: \(\pi_1(X, x_0) \) is a group.

Proof: Identity = constant loop

\[\begin{array}{c}
\text{Associativity: } \\
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{f} \\
\text{g} \\
\text{h}
\end{array}
\begin{array}{c}
\text{f} \\
\text{g} \\
\text{h}
\end{array}
\begin{array}{c}
\text{f} \\
\text{f}
\end{array}
\end{array}
\end{array}
\end{array} \]

Inverses:

\[\begin{array}{c}
\text{const} \\
\text{f} \\
\text{f}
\end{array} \]

\[f(t) = f(1-t) \]

Prop: \(X = \text{path connected}, \ x_0, x_1 \in X \Rightarrow \pi_1(X, x_0) \cong \pi_1(X, x_1) \]

The isomorphism is not canonical!

Say \(X \) is simply connected if

1. \(X \) is path connected
2. \(\pi_1(X) = 1. \)

This terminology is explained by:

Prop: \(X \) is simply connected \(\iff \) there is a unique homotopy class of paths joining any two points of \(X. \)

Fact: Contractible \(\Rightarrow \) simply connected.
FUNDAMENTAL GROUP OF THE CIRCLE

Thm: \(\pi_1(S^1) \cong \mathbb{Z} \)

Proof outline: Given a loop \(f: I \to S^1 \), want to find a lift, that is:
\[
f: I \to \mathbb{R}
\]
such that \(f(0) = 0 \), \(pf = f \) ← ignore the international date line.

The map \(\pi_1(S^1) \to \mathbb{Z} \) is
\[
f \mapsto f(1)
\]

Well-definedness: existence/uniqueness of lifts
Multiplicativity: easy
Injectivity: homotopic loops have homotopic lifts
Surjectivity: easy

Remains to show loops lift uniquely and homotopies lift.

Idea: Cover \(S^1 \) by small pieces whose preimages in \(\mathbb{R} \) are unions of open intervals.
Given a loop/homotopy, cut it into pieces, lift piece by piece.

Proof thus follows from Lemma below.
Lemma: Given $F: Y \times I \to S^1$

$\tilde{F}: Y \times \{0\} \to \mathbb{R}$ lift of $F|_{Y \times \{0\}}$

$\exists! \tilde{F}: Y \times I \to \mathbb{R}$ lifting F, extending $\tilde{F}|_{Y \times \{0\}}$.

Path lifting: $Y = \{y_0\}$ Homotopy lifting: $Y = I$.

Proof (\(Y = \{y_0\}\) case): Write I for $y_0 \times I$.

Cover S^1 by $\{U_x\}$ so that $\forall x$, $p^{-1}(U_x)$ is a disjoint union of open sets, each homeomorphic to U_x.

F continuous \Rightarrow can choose $0 = t_0 < t_1 < \ldots < t_m = 1$ so that $\forall i$, $F([t_i, t_{i+1}])$ is contained in some U_{x_i}; call it U_i.

Say \tilde{F} defined on $[0, t_i]$, $\tilde{F}(t_i) \in U_i$, $pl_{U_i}: \tilde{U}_i \to U_i$ homeo.

Define \tilde{F} on $[t_i, t_{i+1}]$ via $(pl_{U_i})^{-1} \circ F|_{[t_i, t_{i+1}]}$

Induct.

Exercise. Prove for general Y. \(\Box\)
Prop: $\pi_1(X \times Y) \cong \pi_1(X) \times \pi_1(Y)$ for X, Y path connected.

Cor: $\pi_1(T^2) \cong \mathbb{Z}^2$

Applications

Brouwer Fixed Point Theorem: Every $h: D^2 \to D^2$ has a fixed point.

Proof: Say $h(x) \neq x \ \forall \ x \in D^2$.
Can define $r: D^2 \to S^1$ via retraction.
Let $f_0 = \text{loop in } S^1 = \partial D^2$.
$f_t = \text{any homotopy to a point in } D^2$
$\Rightarrow r f_t = \text{homotopy in } S^1$ of f_0 to trivial loop.
Thus $\pi_1(S^1) = 1$. Contradiction.

Also:

Borsuk-Ulam theorem — for any $f: S^2 \to \mathbb{R}^2$, there is an antipodal pair $x, -x$ s.t. $f(x) = f(-x)$.

Ham Sandwich theorem.
Thrm: If we write S^2 as a union of 3 closed sets, at least one must contain a pair of antipodal points.
Fundamental Theorem of Algebra: Every nonconstant polynomial with coefficients in \(\mathbb{C} \) has a root in \(\mathbb{C} \).

Proof: Let \(p(z) = z^n + a_1z^{n-1} + \ldots + a_n \)

Define \(\tilde{p}(z) = z^n + t(a_1z^{n-1} + \ldots + a_n) \),

\[\tau : \mathbb{C} \to S^1 \]

\[\alpha \rightarrow \frac{\alpha}{|\alpha|} \]

\[R > |a_1 + \ldots + a_n| + 1 \],

\[f_{r,t}(s) : S^1 \to S^1 \]

\[f_{r,t}(s) = \tau \circ p_t(r e^{2\pi i s}) \]

Claim: \(p_t \) has no roots on \(|z| = R \) for \(t \in I \).

\[\Rightarrow f_{r,t}(s) \text{ defined.} \]

Thus the shaded path gives a homotopy from constant loop in \(S^1 \) to degree \(n \) loop \(r_z = 0 \).

Proof of Claim: For \(|z| = R \),

\[|z^n| = R^n = R \cdot R^{n-1} > (|a_1| + \ldots + |a_n|) |z|^{n-1} \]

\[> |a_1z^{n-1} + \ldots + a_n| \]

(But \(|\alpha| > |\beta| \Rightarrow \alpha + \beta \neq 0 \)).
Induced Homomorphisms

\[\varphi : (X, x_0) \rightarrow (Y, y_0) \]
\[\varphi_* : \pi_1(X, x_0) \rightarrow \pi_1(Y, y_0) \]
\[[f] \mapsto [\varphi f] \]

Functoriality

1. \((\varphi \psi)_* = \varphi_* \psi_*\)
2. \(id_* = id\)

Fact: \(\varphi\) a homeomorphism \(\Rightarrow \varphi_* \) an isomorphism

Proof: \(\varphi_* \varphi_*^{-1} = ((\varphi \varphi^{-1})_*) = id_* = id\)

Prop: \(\pi_1(S^n) = 1\) for \(n \geq 2\).

Proof: \(S^n - pt \cong \mathbb{R}^n\), which is contractible.

 By Fact, suffices to show any loop in \(S^n\) is homotopic to one that is not surjective.

Prop: \(\mathbb{R}^2\) is not homeomorphic to \(\mathbb{R}^n\), \(n > 2\).

Proof: \(\mathbb{R}^n - pt \cong S^{n-1} \times \mathbb{R}\)
\[
\pi_1(S^{n-1} \times \mathbb{R}) \cong \pi_1(S^{n-1}) \times \pi_1(\mathbb{R})
\]
\[
\cong \begin{cases}
\mathbb{Z} & n = 2 \\
1 & n > 2
\end{cases}
\]

Apply Fact.
Prop: If \(\varphi: X \to Y \) homotopy equivalence, then \(\varphi_*: \pi_1(X, x_0) \to \pi_1(Y, \varphi(x_0)) \) isomorphism.

Proof: Let \(\psi: Y \to X \) homotopy inverse.
So \(\varphi \psi \cong \text{id} \).

Want \(\varphi_\psi \).
Remains to show: \(H_t: X \to X \) homotopy
\[H_0 = \text{id} \]
\[\Rightarrow (H_1)_*: \pi_1(X, x_0) \to \pi_1(X, H_1(x_0)) \]
an isomorphism.

We already know the path \(H_t(x_0) \) gives
\[\pi_1(X, x_0) \xrightarrow{\cong} \pi_1(X, H_1(x_0)) \]
\[f \mapsto H_t(x_0) f H_t(x_0) \]

But latter path \(\cong H_1 \circ f = (H_1)_*(f) \)

\[H_1(x_0) \]
\[\overbrace{\text{H}_1 \circ f} \]
\[H_1(x_0) \]

So \((H_1)_* \) an isomorphism. \(\Box \)
Prop: \(i: A \to X \) inclusion.
\(X \) retracts to \(A \) \(\Rightarrow i^* \) injective.
\(X \) deformation retracts to \(A \) \(\Rightarrow i^* \) isomorphism.

exercise. \(T^2 \) retracts to \(S^1 \).

In group theory, a retraction is a homomorphism
\(f: G \to H \), where \(H < G \), with \(f|_H = \text{id} \).
\(\Rightarrow G \cong H \times \ker f \).

Free Groups and Free Products

\(F_n = \{ \text{reduced words in } x_1^{\pm 1}, \ldots, x_n^{\pm 1} \} \)

- multiplication: concatenate, reduce.
- associativity: nontrivial!

\(G \ast H = \{ \text{reduced words in } G, H \} \)

\(\ast_{\alpha} G_\alpha \) similar = \(\{ g_1 \cdots g_m \mid g_i \in G_{\alpha_i}, \alpha_i \neq \alpha_{i+1}, g_i \neq \text{id} \} \)

example. Infinite dihedral group \(\mathbb{Z}/2\mathbb{Z} \ast \mathbb{Z}/2\mathbb{Z} \)

= symmetries of

Properties

1. \(G_\alpha \leq \ast G_\alpha \)
2. \(\cap G_\alpha = 1 \)
3. Any collection \(G_\alpha \to H \)
 extends uniquely to \(\ast G_\alpha \to H \)