Classification of Covering Spaces

\[\{ \text{based covers of } X \} \leftrightarrow \{ \text{subgroups of } \pi_1(X) \} \]

\[(\tilde{X}, \tilde{x}_0) \mapsto p_* (\pi_1(\tilde{X}, \tilde{x}_0)) \]

First step: find a cover corresponding to
trivial subgroup.

Theorem: \(X \) = CW-complex (or any path conn, locally path conn, semilocally simply conn.) Then \(X \) has a universal cover \(\tilde{X} \).

Proof: We construct \(\tilde{X} \) directly.

Points in \(\tilde{X} \) \(\leftrightarrow \) homotopy classes of paths from \(\tilde{X} \)
(simple connectivity)
\[\leftrightarrow \] homotopy classes of paths from \(x_0 \)
(homotopy lifting)

So define:
\[\tilde{X} = \{ [\tilde{f}] : \tilde{f} \text{ a path in } X \text{ at } x_0 \} \]

\[p: \tilde{X} \rightarrow X \]
\[[\tilde{f}] \mapsto \tilde{f}(1) \]
Topology on \(\tilde{X} \)

\[U = \{ U \subseteq \tilde{X} : U \text{ path conn.}, \pi_1(U) \to \pi_1(\tilde{X}) \text{ trivial} \} \]

For \(U \in \mathcal{U} \), \(\tilde{f} \) with \(\tilde{f}(1) \in U \), define

\[U[\tilde{f}] = \{ [\tilde{f} \cdot \eta] : \eta \text{ a path in } U, \eta(0) = \tilde{f}(1) \} \]

= open neighborhood of \([\tilde{f}]\) in \(\tilde{X} \).

exercise: The \(U[\tilde{f}] \) form a basis.

We now check the properties of a covering space.

- Continuity. \(p^{-1}(U) \) is a union of \(U[\tilde{f}] \)

- Path connectivity. Let \([\tilde{g}] \in \tilde{X} \).
 \[J_t = \{ \tilde{f} \text{ on } [0,t] \}
 \text{ const. on } [t,1] \]
 is a path from \([\text{const}]\) to \([\tilde{g}]\).

- Simple connectivity. \(p_* \) injective, so suffices to show
 \[p_* \pi_1(\tilde{X}) = 1 \]
 Let \(J \in \text{Im } p_* \Rightarrow J \) lifts to a loop.
 The lift of \(J \) is \(\{ [J_t] \} \)
 loop \[[J_1] = [J_0] \]
 or \([\tilde{g}] = [\text{const}] \)
 \[\Rightarrow \tilde{f} = 1 \text{ in } \pi_1(X) \).
Coveting Space. Note: If \([g'] \in U[g]\) then \(U[g] = U[g']\)

Thus, for fixed \(U \in U\), the \(U[g]\) partition \(p^{-1}(U)\)

\(p: U[g] \rightarrow U\) homeomorphism since it gives a bijection of open sets

\(V[g] \subseteq U[g] \iff V \subseteq U\)

for \(V \in U\).

Theorem: For every \(H \subseteq \pi_1(X)\) there is a covering space \(\tilde{X}_H \rightarrow X\)

with \(p_* \pi_1(\tilde{X}_H, \tilde{x}_0) = H\).

Proof: We realize \(\tilde{X}_H\) as a quotient \(\tilde{X}_H = X/\sim:\)

\([g] \sim [g']\) if \(f(1) = f'(1)\)

and \([g; g'] \in H\).

Exercise: \(\sim\) is an equivalence relation.

Check \(\tilde{X}_H\) a covering space:

Say \([g] \sim [g']\) with \(f(1) = f'(1) \in U \in U\).

Then \([g; \eta] \sim [g'; \eta]\) for any path \(\eta\) in \(U\).

\(\Rightarrow U[g]\) identified with \(U[g']\).

Check \(p_* \pi_1(\tilde{X}_H) = H:\)

Let \(\tilde{x}_0 = [\text{const}]\).

\(f \in \text{Im } p_* \iff \{[g; f]\}\) a loop in \(\tilde{X}_H\)

\(\iff [g_0] \sim [g_1]\)

i.e. \([\text{const}] \sim [g]\)

\(\iff f \in H\).
To finish classification, need to show \tilde{X}_H unique.

Def. Covering spaces $p_1: \tilde{X}_1 \to X$ and $p_2: \tilde{X}_2 \to X$ are isomorphic if there is a homeomorphism $f: \tilde{X}_1 \to \tilde{X}_2$ with $p_1 = p_2 f$ (i.e. f preserves fibers).

Prop. Two path connected covering spaces $p_1: (\tilde{X}_1, \tilde{x}_1) \to X$ and $p_2: (\tilde{X}_2, \tilde{x}_2) \to X$ are isomorphic if and only if

\[\text{Im}(p_1)_* = \text{Im}(p_2)_*. \]

Proof:

\implies easy.

\Leftarrow

Lifting criterion \implies lift p_1 to $\tilde{p}_1: (\tilde{X}_1, \tilde{x}_1) \to (\tilde{X}_2, \tilde{x}_2)$ with $p_2 \tilde{p}_1 = p_1.$

By symmetry $\implies \tilde{p}_2$ with $p_1 \tilde{p}_2 = p_2.$

Note $\tilde{p}_1 \tilde{p}_2$ is a lift of p_2:

$p_2 \tilde{p}_1 \tilde{p}_2 = p_1 \tilde{p}_2 = p_2.$

Unique lifting $+ \tilde{p}_1 \tilde{p}_2(\tilde{x}_2) = \tilde{x}_2 \implies \tilde{p}_1 \tilde{p}_2 = \text{id}.$

Symmetry: $\tilde{p}_2 \tilde{p}_1 = \text{id}.$

$\implies \tilde{p}_1$ a homeo.

Cor. Every subgroup of a free group is free.
Some Examples of Covering Spaces

\[S^1 \times \mathbb{R} \rightarrow T^2 \]

\[T^2 \overset{(x_m, x_n)}{\rightarrow} T^2 \]

Annulus \rightarrow Möbius strip

\[S^2 \rightarrow \mathbb{RP}^2 \]

\[\mathbb{C}^* \rightarrow \mathbb{C}^* \]

\[\mathbb{C}^* \rightarrow T^2 \]

\[\overrightarrow{\infty} \rightarrow \infty \]

\[\overrightarrow{\infty} \rightarrow \infty \]

\[\begin{array}{c}
\text{Diagram 1} \\
\text{Diagram 2} \\
\text{Diagram 3}
\end{array} \rightarrow \begin{array}{c}
\text{Diagram 4} \\
\text{Diagram 5}
\end{array} \]
THE FUNDAMENTAL THEOREM

Fix \(p : (\tilde{X}, \tilde{x}_0) \to (X, x_0) \)
\(H = p_* \pi_1(\tilde{X}, \tilde{x}_0) \)
\(N(H) = \text{normalizer in } \pi_1(X, x_0) \)
\(G(\tilde{X}) = \text{group of deck transformations.} \)

Say \(p \) is \underline{regular} if \(G(\tilde{X}) \) acts transitively on \(p^{-1}(x_0) \).

Regard \(\tilde{x}_0 \) as \([\text{const}]\)
Then \(p^{-1}(x_0) = \{ [\gamma] : \gamma \text{ a loop} \} \)

By lifting criterion, \(\exists \gamma \)
\(\exists \text{ deck trans taking } [\text{const}] \text{ to } [\gamma] \)
\(\iff p_* \pi_1(\tilde{X}, [\gamma]) = p_* \pi_1(\tilde{X}, [\text{const}]) \)
or \(\forall \gamma, p_* \pi_1(\tilde{X}, [\text{const}]) \gamma^{-1} = p_* \pi_1(\tilde{X}, [\gamma]) \)
i.e. \(\gamma \in N(H) \).

We thus have:
\(N(H) \to G(\tilde{X}) \)
\(\gamma \mapsto [\gamma] \)

Note: well-defined by uniqueness of lifts.

Prop: \(\tilde{X} \) regular \(\iff H \) normal.

Theorem: \(G(\tilde{X}) \cong N(H)/H \)

Both are exercises.
Covering Spaces via Actions

An action of a group \(G \) on a space \(Y \) is a homomorphism:
\[
G \to \text{Homeo}(Y)
\]
This is a covering space action if:
\[
\forall y \in Y \exists \text{ neighborhood } U \text{ with } \{ g(U) : g \in G \}
\]
all distinct, disjoint.

Fact: The action of \(G(\hat{X}) \) on \(\hat{X} \) is a covering space action.

Prop: \(Y = \) connected CW-complex
(or any path conn, locally path conn)
\(G \times Y \) via covering space action. Then:
(i) \(p : Y \to Y/G \) a regular covering space.
(ii) \(G \cong G(Y) \)

In particular:
\[G \cong \pi_1(Y/G)/p_*\pi_1(Y) \]
- \(Y \) simply connected \(\Rightarrow \pi_1(Y/G) \cong G \).

Examples:
- \(\mathbb{Z} \times \mathbb{R} \to S^1 \)
- \(\mathbb{Z} \times \mathbb{R} \times I \to \text{Moebius strip} \)
- \(\mathbb{Z}^2 \times \mathbb{R}^2 \to T^2 \) - Klein bottle
- \(\mathbb{Z}/2\mathbb{Z} \times S^n \to \mathbb{R}P^n \)
- \(\mathbb{Z}/m\mathbb{Z} \times M_{m+n} \to M_{k+1} \)
K(G,1) Spaces

Goal: groups \leftrightarrow spaces (up to homotopy equiv.)

homomorphisms \leftrightarrow continuous maps (up to homotopy)

A $K(G,1)$ space is a space with fundamental group G
and contractible universal cover.

Examples. S^1, T^2 in general $\mathbb{Z}^n \leftrightarrow T^n$

What about $G = \mathbb{Z}/m\mathbb{Z}$?

$\mathbb{Z}/m\mathbb{Z}$ acts on $S^\infty = \text{unit sphere in } C^\infty$ via

$$ (z_i) \mapsto e^{2\pi ini} (z_i) $$

which is a covering space action.

(When $m=2$, quotient is \mathbb{RP}^∞).

Why is S^∞ contractible?

Step 1: $f_t(x_1, x_2, \ldots) = (1-t)(x_i) + t(0, x_1, x_2, \ldots)$

Step 2: Straight line projection to $(1,0,0,\ldots)$.

Later: Any $K(\mathbb{Z}/m\mathbb{Z})$ is ∞-dim!
Construction of $K(G,1)$ spaces

Prop: Every group G has a $K(G,1)$

Proof: Define a Δ-complex EG with:

Ordered
n-simplices $\leftrightarrow (n+1)$-tuples
$[g_0, \ldots, g_n]$ \quad $g_i \in G$

To see EG contractible, slide each $x \in [g_0, \ldots, g_n]$ along line segment in $[e, g_0, \ldots, g_n]$ from x to $[e]$

(Note: This is not a deformation retraction since it moves $[e]$ around $[e, e]$.)

$G \rtimes EG$ by left multiplication.

Exercise: This is a covering space action.

$\sim \quad BG = EG/G$ is a $K(G,1)$.

This gives one $K(G,1)$, and it is always ∞-dim.

To study a group G, need a good $K(G,1)$, e.g. $K(PB_n,1) = G^n \setminus \Delta$.
Homomorphisms as Maps

Prop: X is connected CW-complex
$Y = K(G,1)$
Every homomorphism $\pi_1(X, x_0) \to G$ is induced
by a map $(X, x_0) \to (Y, y_0)$.
The map is unique up to homotopy fixing y_0.

This implies:

Prop: The homotopy type of a CW-complex $K(G,1)$
is uniquely determined by G.

Proof of 1st Prop: Assume first X has one 0-cell, x_0.

Let $\varphi : \pi_1(X, x_0) \to \pi_1(Y, y_0)$. Want $f : X \to Y$.

Step 0. $f(x_0) = y_0$.

Step 1. Each edge e of X is an element of $\pi_1(X, x_0)$. Define $f(e)$ via φ.

Step 2. Let $\Delta = 2$-cell with $\psi : \partial \Delta \to X^{(1)}$
$f \psi$ null-homotopic, since φ a homom.
\[\to \text{can extend } f \text{ to } \Delta. \]