Instructions: You must supply your own paper. You will be allowed only a simple calculator – no programmable calculators. You have one hour to complete the exam.

1. Define the following terms.
 a. Say what it means for X_1, \ldots, X_k to be independent random variables.
 b. Define the conditional expectation $\mathbb{E}(X|Y = y)$ in terms of the conditional probability density function $f(x|y)$, and then define $f(x|y)$.
 c. Define the moment generating function of a random variable X.
 d. Define the mth moment of a random variable X.
 e. Define the marginal probability density function for a random variable X, in terms of the joint probability density function for the pair (X, Y).

2. a. Compute the moment generating function $M_X(t)$ for the random variable X having the probability density function

$$f(x) = \begin{cases} 2x, & \text{if } x \in [0, 1]; \\ 0, & \text{otherwise}. \end{cases}$$

b. Using your answer from part a, compute the 3rd moment of X. Don’t just write down the answer – explain how you used moment generating functions to find it. (Note: You can easily check your answer, because the 3rd moment is easy to compute directly. This is not always the case, however, as mgf’s often provide a much easier way to find moments, than direct computation.)

3. Suppose that (X, Y) is a 2D random variable with probability density function given by $f(x, y) = cx^2y$ when (x, y) is confined to boundary and
interior of the triangle with vertices (0, 0), (1, 0), (0, 1); and suppose \(f(x, y) = 0 \) outside that triangle. Determine the constant \(c \).

4. Suppose you roll a 4-sided fair die (called a “D4”), and then flip two fair coins. Let \(X \) be the value of the roll (the numbers 1, 2, 3, 4 are printed on each side of the D4 – the value of your roll is the number printed on the bottom side), and let \(Y \) be the number of heads that you flipped.

 a. Determine the probability density function of the random variable \(Z = X + Y \).

 b. Determine the joint probability density function for \((X, Z)\). (One way to do this is to make a \(4 \times 3\) table of probabilities.)

 c. Determine the conditional expectation \(\mathbb{E}(X | Z = 4) \).

5. Prove that if \(X \) and \(Y \) are independent random variables, then

\[
V(X + Y) = V(X) + V(Y).
\]