Some practice problems involving Markov Chains

December 20, 2010

1. Show that if T is a Markov chain such that there is a positive probability of transitioning from any vertex to any other vertex in a single time step (note: we are not saying that there is a positive probability of transitioning from vertex i to itself in one time step), then T has a unique equilibrium distribution.

2. Suppose there is an epidemic in which every month half of those who are well become sick, and a quarter of those who are sick become well. Find the steady state for the corresponding Markov process.

3. Suppose that an ant starts at position $(0,0)$, and can move up, down, left, or right one unit, so long as the new position stays inside the grid $\{(x,y) : 0 \leq x, y \leq 2\}$. Determine the probability that the ant reaches position $(2,2)$ within 20 moves.

4. Find an example of a connected Markov chain – you can reach any state from any other state (ignoring edge directions) – that has more than one equilibrium distribution.

5. Population dynamics can often be modeled by composing polynomials, and in this problem we will explore this possibility: suppose that you have a population of bacteria whereby from one generation to the next, a single individual will produce j offspring with probability p_j, and that individual dies in the next generation. Let

$$f(x) = \sum_{j=0}^{\infty} p_j x^j.$$
Say that in our case

\[f(x) = \frac{1}{2} + \frac{1}{4}x + \frac{1}{4}x^2. \]

If at time 0 the population has 1 individual, determine the expected number of individuals for when time \(t = 4 \). Hint: think about what \(f(f(x)) \) means, and then \(f(f(f(x))) \), etc.