Dijkstra's Algorithm

\[\text{label} = \text{distance} \]
\[\text{label}(a) = 0 \]

Start with a:
\[\text{label}(a) + w(a, b) = 10 < \text{label}(b) = \infty \]
\[\text{label}(a) + w(a, f) = 9 < \text{label}(f) = \infty \]
\[\text{label}(a) + w(a, e) = 7 < \text{label}(e) = \infty \]

permanent, as now \(\text{label}(e) \) is the smallest.
Dijkstra's Algorithm

Continue:

\[\text{label}(e) + w(e, d) = 7 + 15 = 22 \neq \text{label}(d) = \infty \]

\[\text{label}(e) + w(e, f) = 17 > \text{label}(f) = 9 \]

Do not update

Next, label(f) is the smallest:

\[\text{label}(f) + w(f, b) = 9 + 2 = 11 < \text{label}(b) = 20 \]

Next, label(b) is the minimum:

\[\text{label}(b) + w(b, c) = 19 + 9 = 28 < \text{label}(c) = \infty \]

Next, label(d) is the minimum:

\[\text{label}(d) + w(d, c) = 20 + 6 = 26 \geq \text{label}(c) = 20 \]

Do not update
Dijkstra's Algorithm

distance from A to E is 24.

Here we put a slash '/' to denote that the distance was updated.
Dijkstra's correctness

Use induction:

u is "discovered" by v. That is assume $\text{label}(v) + w(v, u)$ is the smallest among all v.

The fact that $\text{label}(u)$ is the shortest path length from s to u is because if we "break" the path at any intermediate vertex w

We must have that both these paths sww, wvu are of shortest length by induction.
Finding the shortest path

Here, ties are chosen arbitrarily.
According to our choice, the shortest path from A to E is \text{AHGIFE}.
More possibilities are: \text{AHGICOE},
\text{AHGIJDE}.

I recall that we put an arrow when a vertex becomes permanent. The arrow points to the "previous" vertex that discovers it.
Find shorter paths, etc.

shortest path from LAX to JFK is:

LAX - ORF - ORD - JFK.

Length: 2777.

shortest path from LAX to BOS:

LAX - ORF - ORD - BOS.

Length: 2904
Floyd-Warshall Algorithm

This is a recursive algorithm, where we recurse on the set of intermediate vertices on the shortest path.

This in fact uses dynamic programming:

A form of recursion, where we can store values for the solutions of subproblems in a matrix $M_{k}[i,j] = $ shortest path length from i to j using only V_i, V_2, \ldots, V_k as intermediate vertices.

Observation: When all weights are positive, each V_i, $1 \leq i \leq k$, appears at most once!
Otherwise, if some v_i appears at least twice, then the "path" from v_i to v_j contains a cycle, but then this is not the shortest path. Cycle only increases the total weight on a path.}

Recursion:

- Using only v_i, \ldots, v_{k-1}
- Using only v_i, \ldots, v_k
The key observation is that we can make local improvements with:

\[M_k(i,j) = \min \left\{ M_{k-1}(i,k), \right\} \]

\[\{ M_{k-1}(i,k) + M_{k-1}(k,j) \} \]

path relaxation.

But we can accelerate the computation of \(M_k(i,j) \) by observing that

\[M_k(i,j) = \min \left\{ M_{k-1}(i,j), \right\} \]

\[\{ M_{k-1}(i,k) + M_{k-1}(k,j) \} \]

This is \(O(1) \) to compute each entry \(M_k(i,j) \), while \(\oplus \) takes \(O(n) \).
Floyd-Warshall Algorithm

\[M_0 \]

\[
\begin{array}{cccc}
 & v_1 & v_2 & v_3 & v_4 \\
v_1 & 0 & 2 & 1 & 4 \\
v_2 & 0 & 3 & 3 & 0 \\
v_3 & 0 & 0 & 1 & 0 \\
v_4 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[M_1 \]

\[
\begin{array}{cccc}
 & v_1 & v_2 & v_3 & v_4 \\
v_1 & 0 & 2 & 1 & 4 \\
v_2 & 0 & 2 & 3 & 0 \\
v_3 & 0 & 0 & 1 & 0 \\
v_4 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[M_2 \]

\[
\begin{array}{cccc}
 & v_1 & v_2 & v_3 & v_4 \\
v_1 & 0 & 2 & 1 & 4 \\
v_2 & 0 & 3 & 3 & 0 \\
v_3 & 0 & 0 & 1 & 0 \\
v_4 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[M_3 \]

\[
\begin{array}{cccc}
 & v_1 & v_2 & v_3 & v_4 \\
v_1 & 0 & 2 & 1 & 2 \\
v_2 & 0 & 3 & 3 & 0 \\
v_3 & 0 & 0 & 1 & 0 \\
v_4 & 0 & 0 & 0 & 0 \\
\end{array}
\]