Trees: Applications

Binary trees:
Each vertex has degree either 1 or 2.

Binary tree is a very fundamental data structure in C5, used, e.g., to store data in a "sorted order" (binary search trees) or (heaps). There are more generalized data structure trees as 2-3 trees, B-trees. Each node has between 2 to 3 children.
(i) \Rightarrow (iii): No circuit \Rightarrow G is connected with exactly $(n-1)$ edges.

Proof by induction on n:

$n=1$: The graph contains one vertex and 0 edges. This case is trivial.

$n>1$: If G has no circuits then it must have a vertex with 1-degree, also called a leaf. Otherwise, if all degrees ≥ 2, G must contain a circuit.

We do not prove this part formally.
characterizing Trees

Proof of Theorem:

(i) \Rightarrow (ii): A cycle in a graph is a circuit, and a circuit can be shortened to a cycle. Thus circuit \iff cycle.

Let circuit \Rightarrow a cycle that may be self-intersecting.

Circuit: $(V_1, V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_i)$

Cycle \subset $(V_1, V_3, V_5, V_7, V_8, V_i)$.
Next, let us consider a leaf V in G. We now remove V from G and the edge e connecting V to the rest of G.

Then we are left with a graph on $(n-1)$ vertices. Call this graph G'.

Claim: G' is connected, with no circuits.

Proof: G is connected, the removal of V and e does not violate connectivity. For any two vertices in G' are connected by a path not passing through V. Thus, G does not have circuits \Rightarrow so does G'.
No, apply induction hypothesis on \(G' \).

\(G' \) is connected w/o circuits, has \((n-1)\) vertices \(\Rightarrow G' \) must have \((n-2)\) edges.

Now recover \(G \) from \(G' \): return \(v \) and \(e \) to \(G \) \(\Rightarrow \) we now have \((n-2)+1=n-1\) edges.

\[(\text{Done!})\]

\((\ref{3}) \Rightarrow (\ref{4})\):

Suppose for contradiction that \(G \) has a pair of vertices \(u,v \), with two different walks (using distinct edges) from \(u \) to \(v \). The these two walk create a circuit.
(i) \implies (ii): First (i) implies that between any pair of vertices \(u, v \) there is a path connecting them (the walk can be shortened to a path).

\(\implies G \) is connected.

Next, if \(G \) had a cycle, then it would contain two vertices \(u', v' \) along this cycle, but then we would have 2 paths between \(u' \) to \(v' \).
(iii) \Rightarrow (ii): Assume G is connected, with $(n-1)$ edges.

For contradiction, assume G contains a cycle $\langle V_1, V_2, \ldots, V_k, V_1 \rangle$. Remove the edge $e = V_1, V_2$ from the graph.

This cycle is "broken", but G is still connected.

Any path connecting V, U using e, can now replace e with $\langle V_1, V_k, \ldots, V_2 \rangle$.

$\Rightarrow G - e + e$ is a connected graph on n vertices with $(n-2)$ edges.
We now keep removing edges closing cycles, until G has no cycles.

Suppose we removed $k \geq 1$ edges.

$\Rightarrow G$ is now connected, has n vertices [vertices are not removed], and contains $n-1-k$ edges.

Since we showed that a connected graph on n vertices w/o cycles must have $(n-1)$ edges $\Rightarrow k = 0$.

\Rightarrow Initially, G had no cycles.

Remark:

Trees are smallest connected graphs; if we remove an edge \Rightarrow graph is disconnected.
Theorem: Let G be a tree on $n \geq 1$ vertices. Then it must contain at least 2 leaves.

Proof: We know that G must contain $(n-1)$ edges. Let V_1, V_2, \ldots, V_n be the vertices of G. Then

$$\sum_{i=1}^{n} \deg(V_i) = 2(n-1) = 2n - 2.$$

We know that G must contain one leaf, say V_1. Then

if all other vertex degrees ≥ 2, then the degree sum is $\geq 2(n-1) + 1 = 2n - 1$,

but this is a contradiction to
Minimum Spanning Trees

\[W(T) = 3 \quad \text{and} \quad W(T) = 9 \]

We are given a graph \(G = (V, E) \) and a weight function \(w : E \to \mathbb{N} \).

\(w(e) = \text{weight of } e \)

\(W(T) = \text{weight of spanning tree} \)

We will study two algorithms:
- Kruskal.
- Prim.
How to find a spanning tree?

There are many more spanning trees! Typically, number of spanning trees can be exponential in \(n \).

Theorem [Who proof?]

outside \(\rightarrow \) 8 trees

The course scope, but number of binary trees related to our discussion on \(n \) vertices is \(\frac{2n!}{n+1} \),

where \(\binom{2n}{n} \) is the \(n \)th catalan number.
Graph Traversal Algorithms

We give only a sketch of these algorithms:

BFS:

We begin with s, then visit V_1, V_2, V_3 [put them in a queue]. Then process V_1, V_2, V_3 in this order: From V_1 we go to V_5, V_5 is already visited by s then V_1 does not visit it. Then V_2 visits V_6, V_5 is already visited by V_1, V_2 visits V_7. At last, V_5 visits V_8.

The marked (red) edges are the tree edges.
procedure BFs (G, s)
1. construct an empty queue Q.
Mark each vertex in G as "unseen".
2. Mark s as "seen".
3. enqueue s into Q.
4. while (Q ≠ Ø) do:
5. u = dequeue(Q)
6. for each neighbor w of u do
7. if w is unseen then
8. mark w as "seen".
9. enqueue w into Q.
10. end if
11. end for
12. end while.
The BFS algorithm finds a spanning tree, but not necessarily the minimum one.

Running time of BFS is proportional to:

\[|V| + 2|E| = |V| + \sum_{v \in V} \text{deg}(v) \]

The BFS algorithm has many interesting properties, covered in CS courses:
- It can detect cycles in graphs.
- Find all shortest paths (according to number of edges) from a source to all other vertices.
- Compute a pair of vertices with largest edge-distance, etc.
We begin with s, and keep walking along edges as long as we do not see a leaf. We backtrack at leaves, vertices that have been visited before, we never close a cycle, we walk only along tree edges.

DFS algorithm has many interesting properties...

DFS creates a spanning tree.
Kirchhoff's Theorem

This theorem applies to any row i and column j, that is, to any cofactor of M. \(\Rightarrow \) all cofactors have the same value

8 spanning trees.

Theorem:

Number of labeled trees with \(n \geq 3 \) vertices is \(n^{n-2} \). [Application of Kirchhoff's theorem]