Dividing the sides of a congruence

Unlike addition and multiplication, one needs to be careful when dividing the two sides of a congruence. For example, consider $30 \equiv 12 \pmod{9}$, dividing by 3 yields $10 \equiv 4 \pmod{9}$, which is wrong! In general, we can do so only when that number is relatively prime to the modulus.

Proposition: (No proof)
If $ac \equiv bc \pmod{n}$, and $\gcd(c,n) = 1$, then $a \equiv b \pmod{n}$.

Intuitively, $\gcd(c,n) = 1$ implies that we can shorten the "cycle" of the modulus, e.g., the previous example $30 \equiv 12 \pmod{9}$, after division by 3, the "cycle" is $9/3 = 3$, thus $10 \equiv 4 \pmod{3}$.

On the other hand, if we divide by 2, we get $15 \equiv 6 \pmod{9}$, which is incorrect, as $\gcd(9,2) = 1$.

Example:
By the proposition, the solutions to $2x \equiv 1 \pmod{9}$, $6x \equiv 3 \pmod{9}$ are not the same ($0 \equiv 3 \pmod{9}$). Indeed, the solutions are:

$2x \equiv 1 \pmod{9} \Rightarrow x = 5$.
$6x \equiv 3 \pmod{9} \Rightarrow x = 2, 5, 8$.
Problems: Solve the following pair of congruences, or explain why a solution does not exist.

\[2x + 3y \equiv 1 \pmod{6} \]
\[x + 3y \equiv 4 \pmod{6}. \]

Solution:
Adding the two congruences yields:

\[3x + 6y \equiv 5 \pmod{6} \]
[Recall that mod is close under addition.]

Since \(6y \equiv 0 \pmod{6} \), we have:

\[3x \equiv 5 \pmod{6}. \]

But this has no solution! The values of \(3x \pmod{6} \) are only 0 and 3. Thus no \(x,y \) satisfy the solution.

Additive Inverse:
Every integer \(a \) has an additive inverse \(\pmod{n} \n \)
That is, an integer \(x \) satisfying:

\[a + x \equiv 0 \pmod{n} \]

For example, \(x = -a \), or \(x = n - a \) are additive inverse \(\pmod{n} \) of \(a \).
This implies that the congruence:
\[
\frac{a + x \equiv b \pmod{n}}{}
\]
always has a solution of the form:
\[
x = b + (-a) = b - a.
\]
On the other hand, not every congruence of the form \(ax \equiv b \pmod{n}\) has a solution, e.g.,
\[
3x \equiv 1 \pmod{6}
\]
does not have a solution as \(3x \pmod{6}\) is always 0 or 3.
However, \(3x \equiv 1 \pmod{7}\) has a solution, for example \(x = 5\) is a solution.
Why is that?
- Here, the difference is in the modulus. In the last example, 3 and 7 are relatively primes,
 whereas 3 and 6 are not.

Small observation: consider again \(3x \equiv 1 \pmod{7}\).
We can quickly verify that each integer
between 0 and 6 is \(3x \pmod{7}\) for some \(x\). In other words, \(3x \pmod{7}, x=0,1,...,6\)
spans the entire range \([0,6]\) of integers.
So we don't miss any integer in \([0,6]\)!
On the other hand, with \(3x \pmod{6}\), we
miss some of the integers in \([0,5]\),
in fact, we have only 0 or 3. That is, after a multiplication by 3, all integers \((\pmod{6})\)
"fall" on 0 or 3 only.
This property is shown more formally below:

Proposition:

Let \(n > 1 \) be a natural number, and let \(a \) be an integer with \(\gcd(a, n) = 1 \). Then:

1. There exists an integer \(s \), s.t. \(sa \equiv 1 \pmod{n} \). This integer is called a *multiplicative inverse*.
2. For any integer \(b \), the congruence \(ax \equiv b \pmod{n} \) has a solution.
3. The solution to \(ax \equiv b \pmod{n} \) is unique \(\pmod{n} \). That is, if \(ax_1 \equiv b \pmod{n} \) and \(ax_2 \equiv b \pmod{n} \) then \(x_1 \equiv x_2 \pmod{n} \).

Proof:

1. We know that \(\gcd(a, n) \) is a linear combination of \(a \) and \(n \). Since \(\gcd(a, n) = 1 \), we have:

\[
1 = sa + tn, \quad \text{for some integers } s, t.
\]

\[
\frac{1}{t} \left(sa - t - 1 \right) = s - t.
\]

\[
\left(sa - 1 \right) \text{ is divisible by } n.
\]

\[
sa \equiv 1 \pmod{n}
\]

\[
\Rightarrow s \text{ is our multiplicative inverse.}
\]
2. By part 1, we have $sa \equiv 1 \pmod{n}$. Multiplying the congruence $ax \equiv b \pmod{n}$ by s, we obtain:

\[s \cdot ax \equiv s \cdot b \pmod{n} \]

\[x \equiv sb \pmod{n}, \text{ since } sa \equiv 1 \pmod{n} \]

Indeed, let us verify that $x = sb$ is a solution to $ax \equiv b \pmod{n}$:

\[a(sb) = (as) \cdot b \equiv 1 \cdot b \equiv b \pmod{n}. \]

Therefore $x = sb$ is a solution.

3. Uniqueness follows from the fact that if $a \cdot c \equiv b \cdot c \pmod{n}$ and $\gcd(c, n) = 1$, then $a \equiv b \pmod{n}$. [Dividing the sides of a congruence when c, n are relatively primes].

In our case, $\gcd(c, n) = 1$, then if $a \cdot x_1 \equiv a \cdot x_2 \equiv b \pmod{n}$, we must have

\[x_1 \equiv x_2 \pmod{n}. \]

Thus the solution is unique.

Finding the multiplicative inverse:

We use the method in the proof above in order to find the multiplicative inverse. That is, we use the fact that $\gcd(a, n) = 1$ in order to claim that there are integers s, t, such that $sa + t \cdot n = 1$.

Example: Find s, such that $3s \equiv 1 \pmod{7}$.

Here, $1 = 5 \cdot 3 + 2 \cdot 7 \Rightarrow 3s - 1 = 7t$.

We now need to search among all integers s, t, which satisfy $3s - 1 = 7t$.

We test all values of t (in $[0, 6]$):

$t=0 \Rightarrow s = \frac{1}{3}$ →

$t=1 \Rightarrow s = \frac{8}{3}$ →

$t=2 \Rightarrow s = 5$ →

$t=3 \Rightarrow s = \frac{22}{3}$ →

$t=4 \Rightarrow s = 29/3$ →

$t=5 \Rightarrow 3s = 36 \Rightarrow s = 12 \equiv 5 \pmod{7}$, but we already have this solution.

$t=6 \Rightarrow s = \frac{43}{3}$ →

$\Rightarrow s = 5$ is the multiplicative inverse.

Fermat's Little Theorem

This is another application of proposition (x).

Theorem (FLT)

If p is a prime number and $p \nmid c$ (p does not divide c), then $c^{p-1} \equiv 1 \pmod{p}$.

We do not prove it, but let us see a few examples:

$p=2, c=7, p \nmid c, 7^7 \equiv 1 \pmod{2}$

$p=3, c=8, p \mid c, c^{p-1} = 8^2 = 64 \equiv 1 \pmod{3}$

$p=11, c=9, p \mid c, c^{p-1} = 9^{10} \equiv 1 \pmod{11}$.
The Chinese Remainder Theorem

This is a strong tool to solve a system of simultaneous congruences.
For example:
\[
\begin{align*}
 x &\equiv 1 \pmod{4} \\
 x &\equiv 0 \pmod{30}.
\end{align*}
\]

This system does not have a solution, as the first congruence implies that \(x \) is odd, and the second implies that \(x \) is even.
Let us notice that the two moduli \(4, 30 \) are not relatively primes.

Claim: suppose \(m, n \) are relatively primes; \(m, n \in \mathbb{N} \). Then for any integers \(a, b \), the system:
\[
\begin{align*}
 x &\equiv a \pmod{m} \\
 x &\equiv b \pmod{n}
\end{align*}
\]
has a solution.

Proof: Observe that since \(\gcd(m, n) = 1 \), there are integers \(s, t \), such that:
\[
s \cdot m + t \cdot n = 1.
\]
\[
\begin{align*}
 \boxed{x = a \cdot t \cdot n + b \cdot s \cdot m}
\end{align*}
\]
is a solution.
Indeed, since \(t \cdot n = 1 - s \cdot m \), we have \(t \cdot n \equiv 1 \pmod{m} \).
Similarly, \(sm \equiv 1 \pmod{n} \), since \(sm \equiv 1 \pmod{n} \).

Thus:

\[(a \cdot t \cdot n) + b(sm) \bmod m = x\]

\[= (a \cdot 1 + 0) \bmod m = a \cdot 1 \pmod m.\]

\[\Rightarrow x \equiv a \pmod m.\]

Similarly,

\[(a(tn) + b(sm)) \bmod n = \]

\[= (a \cdot 0 + b \cdot 1) \bmod n = b \cdot 1 \pmod n.\]

\[\Rightarrow x \equiv b \pmod n.\]

Thus \(x\) is a solution, as claimed.

Moreover, this solution is unique \(\bmod (mn)\).

That is, if \(x'\) is another solution then

\[x \equiv x' \pmod{mn}.\]

This is because if both \(x, x'\) satisfy \(x \equiv x' \pmod{mn}\), then

\[(x-x')\) is divisible by \(m\), and also divisible by \(n\)

\[\Rightarrow (x-x')\) is divisible by \(mn).\]

Example:

\[x \equiv 2 \pmod{4}, \quad x \equiv 6 \pmod{7}\]

Solution:

\[1 = \frac{5}{3}\]

\[\Rightarrow x \equiv 3(-1) \cdot 7 + 6 \cdot 2 \pmod{28}\]

\[\Rightarrow 3u \equiv 6 \pmod{28}\) is the unique solution.
This was a special case of the Chinese Remainder theorem.

Theorem [CRT] Suppose \(m_1, m_2, \ldots, m_t \) are pairwise relatively primes, that is, \(\gcd(m_i, m_j) = 1 \), for any \(i \neq j, \), \(i, j = 1, \ldots, t \).
Then for any integers \(a_1, a_2, \ldots, a_t \), the system of congruences:

\[
\begin{align*}
x &\equiv a_1 \pmod{m_1} \\
x &\equiv a_2 \pmod{m_2} \\
& \quad \vdots \\
x &\equiv a_t \pmod{m_t}
\end{align*}
\]

has a solution, which is unique modulo the product \(m_1, m_2, \ldots, m_t \).

In our discussion above, we solved the case \(t = 2 \). This theorem is an extension for any \(t \geq 2 \).
In our discussion above we solved the case $t = 2$, and this theorem is an extension to any $t \geq 2$.

Determinability numbers by their remainders.

Let $n \in \mathbb{N}$. By the Fundamental theorem in arithmetic, n can be written as a product of prime numbers:

$$ n = p_1^{d_1} p_2^{d_2} \ldots p_t^{d_t} $$

where p_1, \ldots, p_t are unique primes and the exponents $d_i \geq 0$ (are integers).

Let $a \geq 1$ be some integer and let d_i be its remainder after division by $p_i^{d_i}$.

Then this implies $a \equiv a_i \pmod{p_i^{d_i}}$.

Specifically:

$$ a \equiv a_1 \pmod{p_1^{d_1}} $$
$$ a \equiv a_2 \pmod{p_2^{d_2}} $$
$$ \vdots $$
$$ a \equiv a_t \pmod{p_t^{d_t}} $$

Since $p_1^{d_1}, p_2^{d_2}, \ldots, p_t^{d_t}$ are relatively prime (check!), the Chinese remainder theorem implies that a is unique mod $n = p_1^{d_1} \ldots p_t^{d_t}$.

That is, a is uniquely determined.

This idea is to have important applications in CS. For example, instead of storing large numbers it is sufficient to store the set of remainders as above. Then a can be recovered.