Multiplying Two Numbers

\[f(n) = \text{number of elementary operations when multiplying two n-digit numbers}. \]

By the naive algorithm, we have

\[ab = a_1 a_2 10^n + [a_1 b_2 + a_2 b_1] 10^n + a_2 b_2 \]

\[\Rightarrow \text{breaking the original problem into four subproblems of size } \frac{n}{2} \text{ each.} \]

The addition and digit shift take roughly \(n \) elementary operations

\[f(n) = 4 f\left(\frac{n}{2}\right) + n \quad (\text{assume } f(1) = 1). \]

\[\Rightarrow f(n) = 2n^2 - n \quad (\text{check by induction}). \]

\[\Rightarrow \text{number of elementary operations is roughly } n^2, \text{ which asymptotically is not any better than the grade school algorithm.} \]
Multiplying Two Numbers

Karatsuba Algorithm

Idea: it is enough to have only three recursive calls.

We compute \(a_1 b_1 \), and \(a_2 b_2 \) using recursion, but \(a_1 b_2 + b_1 a_2 \) is computed in one recursive step.

\[
a_1 b_2 + b_1 a_2 = (a_1 + b_2) (b_1 + a_2) - a_1 b_1 - a_2 b_2
\]

Only one multiplication involving two numbers with \(\frac{n}{2} \) digits. In fact, we may have \(\frac{n}{2} + 1 \) digits, but it will not matter.

\[
f(n) = 3 f(\frac{n}{2}) + 2n \quad (f(1) = 1)
\]

\[
\Rightarrow f(n) = 3^{\log_3 n} - 2n
\]

\[
= \text{roughly } 3^{\log_3 n} \text{ elementary operations suffice.}
\]

Comment: A more efficient implementation of Karatsuba is:

\[
a b = (10^\frac{n}{2}) a_1 b_1 - 10^{\frac{n}{2}} (a_1 - a_2) (b_1 - b_2) + (10^{\frac{n}{2} + 1}) a_2 b_2
\]

The solution to \(f(n) \) is computed by recursion trees.
Matrix Multiplication

Input: A, B two n x n matrices

Output: C = AxB.

First, the standard matrix multiplication costs n^3 elementary operations (check!)

Recursive Algorithm

Divide A, B into four blocks:

\[
A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}
\]

\[
C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}
\]

\[
= \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}
\]

\[
\Rightarrow \text{This consists of 8 multiplications of pairs of 2x2 submatrices.}\]
Adding the resulting submatrix multiplication costs roughly n^2 elementary operations.

\[f(n) = 8 f\left(\frac{n}{2}\right) + n^2, \quad f(1) = 1. \]

Here, $f(n) \approx n^3$, so this is not any better than naive matrix multiplication.

But there is an improvement! Only 7 multiplications suffice. [Not trivial!]

\[f(n) = 7 f\left(\frac{n}{2}\right) + n^2, \quad f(1) = 1. \]

Here, $f(n) \approx n^{\log_2 7} < n^{\log_2 8} = n^3$.

Solution to $f(n)$ is computed by recursion trees.
Evaluation of polynomials

\[P(x) = \sum_{i=0}^{n} a_i x^i = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n. \]

\(a_0, a_1, \ldots, a_n \) are real numbers.

Goal: Given \(x = x_0 \), evaluate \(P(x_0) \)

Simple-minded way: Proceed over \(n \) iterations, at each iteration \(i \), compute \(a_i x^i = a_i \cdot x^{i-1} \cdot x \). That is, we use the value of \(x^{i-1} \) from previous iteration.

\[\Rightarrow \text{at each iteration } i \geq 2, \text{we have 2 multiplications to perform: one for } x \text{ and the other for } a_i. \text{ At iteration } i = 1, \text{ we have only one multiplication operation.} \]

\[\text{Overall, } (2n-1) \text{ operations.} \]

But we can improve this to only } n \text{ operations:

Write:

\[b_n = a_n \]
\[b_{n-1} = a_{n-1} + b_n x_0 \]
\[\vdots \]
\[b_0 = a_0 + b_1 x_0 \]

\[\Rightarrow b_0 \text{ is the value of } P(x_0). \]
That is, we formed a recursive equation for b_0. In fact, this follows from:

$$ P(x) = a_0 + x(a_1 + x(a_2 + \cdots + x(a_{n-1} + a_n x))) \ldots $$

Now, we observe that b_0 can be obtained by just N multiplications. Indeed, in order to move from b_0 to b_{n-1}, we need to make one multiplication, same with the move from b_{n-1} to b_{n-2}, from b_{n-3} to b_{n-4}, and so on... until the last move b_1 to b_0, where b_0 is the value of $P(x_0)$.
Searching an element in a list

1, 5, 10, 7, 2, 11, 6

\[\text{find}(5), \text{find}(7), \text{find}(20) \rightarrow \text{null} \]

We search a given element in the list by traversing all of its elements (say from left to right). If the element is there, we return a pointer; if not, this pointer is null.

If the list consists of \(n \) elements, number of comparisons needed is at most \(n \).

Can we do better?

Suppose next the elements in the list are sorted (say, in an increasing order)

\[1, 2, 5, 6, 7, 10, 11. \]

How shall we search now?

Search 7: first compare 6, 7: \(6 < 7 \)

\[\Rightarrow \text{continue search at right half} \]

\[\{7, 10, 11\} \]

- compare 10, 7: \(7 < 10 \)

\[\Rightarrow \text{continue search at left half} \]
- Now, we are left with a single element in the list. Compare 7, 7 ⇒ 7 = 7.
 We found the element!

This procedure is called a **binary search**. Let us assume the elements are given in an array, A.

Idea: Compute middle value in A with search key. Based on the result, search the upper or lower half of the array.

Next, we describe the algorithm with a pseudo-code: very similar to a real (C/C++/Pascal) code, but does not suffer from software engineering issues. A compact format of the computational steps of the algorithm.

```
function BinarySearch(key, A, low, high)
    if (low == high) then return (A[low] == key).
    else
        mid = (low + high) / 2.
        if (A[mid] == key) return true
        else
            if (A[mid] > key) return BinarySearch(key, A, low, mid-1)
            else return BinarySearch(key, A, mid+1, high)
```
function BinarySearch(key, A, low, high)

if (low == high) then return (A[low] == key)
else
 mid = (low + high) / 2
 if (A[mid] == key) return true
 else
 if (A[mid] > key) return BinarySearch(key, A, low, mid-1)
 else if (A[mid] < key) return BinarySearch(key, A, mid+1, high)

In the code above, each recursive call halves the array A, and we make exactly one recursive call.

\[f(n) = \text{number of comparisons made by Binary Search.} \]

\[\Rightarrow f(n) \leq f\left(\frac{n}{2}\right) + 1 \quad (\text{check!}) \]

\[f(n) \leq \log_2 n \]

[We have \(\log_2 n \) steps until we reduce \(n \) to 1, in each step we make one comparison.]