Instructions: Print your name and sign your signature to indicate that you accept the honor code. To receive full credit you must provide a proof that any answer you give is correct. You have 75 minutes to answer all the questions. Good Luck

<table>
<thead>
<tr>
<th>Question</th>
<th>Max Point</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
1) Let $f : [a, b] \to \mathbb{R}$ and suppose that there is some M such that $|f'(x)| \leq M$. Prove using the definitions that f is Lipschitz and continuous on $[a, b]$.
2) Assuming that f' exists on $[a, b]$ and $\lim_{x \to c} f'(x) = L$ for some $c \in (a, b)$, prove that f' is continuous at c.
3) Let $f : [a, b] \to \mathbb{R}$ be an integrable function with $f(x) \geq 0$ for all $x \in [a, b]$.

a) If f is continuous at some $c \in (a, b)$ and $f(c) > 0$ show that

$$\int_a^b f(x) \, dx > 0.$$

b) If the set $C = \{x \in [a, b] : f(x) = 0\}$ has measure zero show that

$$\int_a^b f(x) \, dx > 0.$$

Hint: Does $[a, b]$ have measure zero?
4) Let $f : [0, 1] \rightarrow \mathbb{R}$ be the function that is 0 for all irrational numbers and $f(x) = x$ for all rational numbers. Prove that f is not integrable.

Hint: Show that the upper and lower Darboux integrals cannot be the same. Specifically show that any upper sum is bounded below by $\frac{1}{2}$.

5) Answer the following questions True or False. Circle either T or F to indicate your answer. You do not need to justify your answer.

1. If $|f|$ is integrable on $[a, b]$ then f is integrable on $[a, b]$.

 T F

2. If f is not integrable on $[a, b]$ then there are partitions P and Q of $[a, b]$ such that $L(f, Q) > U(f, P)$.

 T F

3. If a function is differentiable on an open interval I then it is continuous on I.

 T F

4. Sets of measure zero must be countable.

 T F

5. If a function is differentiable on an open interval I then its derivative is continuous on I.

 T F

6. If a function has bounded derivative on an interval then it is uniformly continuous on the interval.

 T F

7. Every integrable function has an anti-derivative.

 T F

8. The set of integrable functions form a vector space.

 T F

9. The product of integrable functions is integrable.

 T F

10. The composition of integrable functions is integrable.

 T F